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Abstract. In this paper, the Carbon/Nitrogen ratio was 
estimated by classifying the urban organic waste (UOW) 
based on qualitative (color and maturity) and quantitative 
(weight) characteristics via convolutional neural 
networks (CNN) and image processing. The reuse of 
UOW is a suitable process in waste management, 
preventing its disposition in landfills and reducing the 
effects on the environment and human health. Ambient 
conditions affect the UOW characteristics over time. 
Knowing these changes is essential to reuse them 
appropriately, mainly both carbon and nitrogen content. 
A categorization associated with the decomposition 
stage of the UOW was proposed, which becomes the 
corresponding UOW classes. Three convolutional neural 
network models were trained with UOW images. Two 
pre-trained CNN (MobileNet and VGG16) were trained 
by transfer learning technique, and one proposed model 
(UOWNet) was trained from scratch. The UOWNet 
model presented a good agreement for the classification 
task. The results show that this preprocess is a practical 
tool for assessing the Carbon/Nitrogen ratio of UOW 
from its qualitative and quantitative features through 
image analysis. It is a preliminary framework aimed to 
support household organic waste recycling and 
community sustainability. 

Keywords. Fruit waste, Carbon/Nitrogen ratio, 
composting, convolutional neural network, 
image processing. 

1 Introduction 

An estimated 1,957 million tons of fruits and 
vegetables were produced worldwide in 2018, 

harvesting mainly bananas, citrus fruits, apples, 
melons, grapes, tomatoes, various alliums, 
brassica, and cucumbers [1]. The inedible fraction 
of fruits and vegetables, known as urban organic 
waste (UOW) [2], is usually dumped in landfills, 
which generates undesirable impacts on the 
environment and the health of the population [3]. 

An alternative is the reusing UOWs practice 
known as the composting process, which is the 
aerobic decomposition of organic matter under 
appropriate conditions [4]. 

Decomposition and humification (oxidative 
biological transformation) of organic matter is a 
consequence of microbial activity through complex 
metabolic processes [5]. The final product of the 
composting process is compost. That is a 
nutritious, homogeneous, stable, and mature 
material. The compost involves pathogen-free 
nutrients that benefit the soil and plants, minimizing 
pollution [6]. 

Compost and other alternative technologies 
can help address the global fertilizer crisis [7], 
compensating for nutrient deficiencies in the soil to 
increase crop yields. The composting process 
involves several parameters, including humidity, 
aeration, pH, temperature, and carbon and 
nitrogen (C/N) ratio. These depend on the 
compostable materials; for instance, the organic 
waste proportion determines the C/N ratio content 
[7]. The initial C/N ratio is considered one of the 
key factors affecting the composting process and 
compost quality [8]. Carbon is the energy source 
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for microorganisms, nitrogen contributes to the 
organic matter degradation, and both serve the 
protein synthesis and microbial growth [9]. 
Nitrogen and carbon losses occur because of the 
metabolic activities of microorganisms during the 
composting process [10,11]. 

Therefore, a C/N ratio is set within 25-40 at the 
composting start to finish around 10-20 [6]. Green 
and fresh organic materials contain more nitrogen, 
whereas brown and dry matters comprise more 
carbon than other materials; in practical terms, the 
compostable matter color is a good indicator of the 
carbon and nitrogen content [9]. 

Although composting is a well-known process 
for recycling organic waste, the practical utilization 
of UOWs still offers various challenges [12]. 
Besides the heterogeneity of UOWs, their 
qualitative characteristics, such as the stages of 
decomposition, which change color over time, and 
affect their quantitative characteristics (pH, 
humidity, carbon, and nitrogen content), are 
aspects scarcely reported. Commonly, different 
laboratory methods evaluate the C/N ratio, 
requiring reagents and specialized equipment, 
among other expensive resources that could 
be unavailable. 

Practical estimation of the C/N ratio of UOWs is 
one of the keys to fulfilling local demands for better 
management of residues. In addition, it helps 
compost producers to obtain products that 
maintain the same properties, regardless of the 
organic waste used. In this context, the present 
work estimates the C/N ratio based on qualitative 
(color and maturity stage) and quantitative (weight) 
characteristics of the UOWs through the 
classification of images using Convolutional neural 
networks (CNN). 

This proposed preprocess is a preliminary 
systematic framework to support compost 
production at household and tiny community 
levels, recycling the organic waste while 
conserving resources as a sustainability practice. 
For this purpose, a dataset of individual images of 
UOWs was generated as ground truth, associating 
each of them with the weight and decomposition 
stage of the UOW. 

Determining the C/N ratio for five UOW in three 
decomposition stages was performed through a 
systematic literature search and complemented 
with laboratory analyses. Data of C/N ratio was 

arranged in a lookup table. For the automated 
UOW classification, three CNNs architecture 
models were trained. 

The experiments consisted of training the 
models to classify the UOWs in their three stages 
of decomposition, which obtained appropriate 
accuracy. In addition, linear regression models 
were generated to predict the weight of the UOWs 
based on the variables of weight and the number 
of pixels in their images. The classification and 
weight of each UOW are related to the UOW C/N 
lookup table for estimating its C/N ratio. 

2 Classification Algorithms 

Digital image processing allows the interpretation 
of images and autonomous machine perception, 
including image storage, transmission, and 
representation [13]. Object detection and 
classification support a wide range of applications, 
such as security, robot vision, and consumer 
electronics [14]. 

In this context, deep learning techniques have 
emerged as a powerful strategy for learning feature 
representations directly from data, leading to 
advancements in detection and classification tasks 
[15]. Deep learning algorithms composed of 
multiple layers of processing detect features at 
different abstraction levels from data [16]. 

CNNs are deep learning algorithms based on 
artificial neural networks for classification and 
pattern recognition tasks, identifying the geometric 
similarity of the object shapes [17]. 

Automatic food analysis has been an 
application field of these algorithms, developing 
systems to locate and recognize various foods. 
Also, to estimate their quantity for tracking user 
diets, maintaining a healthy weight, and monitoring 
food-related health problems such as obesity and 
diabetes. A dataset of 20 different food categories 
was assessed with four CNNs combined with 
Support Vector Machines (SVM) in the task of 
recognizing food categories and states [18]. Deep 
architectures [19] were used for simultaneous 
learning of ingredient recognition and food 
categorization corresponding to images of given 
dishes for retrieving recipes. 

Then deep learning features and semantic 
ingredient labels are applied to effortlessly recall 
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recipes. CNNs have also been applied for 
identification in videos [20]. Objects and 
ingredients are explored in cooking videos and the 
most frequent objects are analyzed through a deep 
model based on Resnet CNN as a solution to the 
stage identification problem [21]. 

Another deep learning approach based on CNN 
Inception is proposed to identify different cooking 
states from images. The effect was analyzed in 
terms of different parameters such as batch size, 
optimizer, and frozen convolutional layers [22]. 

The automatic classification of fruit can assist in 
supermarket pricing, packaging, transportation, 
harvesting, and mapping on farms. Initial studies 
used near-infrared imaging devices, a gas sensor, 
and high-performance liquid chromatography to 
scan the fruit [23, 24]. Recent works implement 
deep learning techniques for fruits and vegetable 
classification using or modifying some previously 
trained CNN with a large data set. 

When there is a small new dataset, the 
suggested technique relies on data augmentation, 
which consists of applying transformations to data 
[25]. In the case of images, the data augmentation 
applies geometric (zoom, flip, rotation, and 
cropping) or photometric (color fluctuation and 
edge enhancement) transformations [26]. 

A previous study created a 15-class fruit image 
dataset with a data augmentation technique and 
proposed a five-layer CNN [27]. To improve the 
performance of the proposed model, early 
stopping, and variable hyper-parameters were 
used. Some works have used eight and thirteen 
layers and kernels of 33, 55, and 77 [23, 28]. 

Several works have applied CNN for the 
classification of waste using images. For instance, 
a multi-layer deep learning system classifies waste 
into five recyclable categories: paper, plastic, 
metal, glass, and others (fruits, vegetables, plants, 
and kitchen waste) in urban public areas [29]. An 
automatic system using the CNN algorithm 
separates waste into biodegradable and non-
biodegradable [30]. A CNN mobile application 
classifies waste into three categories: trash, 
recyclable, and compostable [31]. However, none 
of these works classifies fruit or vegetable wastes. 

This work proposes the classification of UOWs 
using CNNs, focusing on the inedible fraction of 
fruits and vegetables (peels and cores). The above 
facilitates estimating the C/N ratio of different 

UOWs and establishing the appropriate 
proportions before starting the composting 
process. Another contribution from this project is a 
database of UOW images since there is no such 
database available. 

This document contributes to the United 
Nations Sustainable Development Goals for Latin 
America by promoting the reuse of UOW which 
makes up approximately 50% of the waste 
generated in cities [3] through the household 
composting process. 

Hence, it pretends to avoid the impact of the 
final disposal of UOWs on landfills, which propitiate 
the generation of toxic and greenhouse gases, 
water and soil contamination, and landscape 
degradation in the surrounding population. 

Household composting releases five times less 
ammonia, methane, and nitrous oxide than those 
industrial which consumes up to 53 times more 
resources (transport, energy, water, and 
infrastructures) and produces volatile organic 
compound emissions [32]. 

Some commercial devices compost household 
waste by mixing it while maintaining humidity and 
temperature. However, the resulting product is 
deficiently stable to be applied immediately 
afterward in gardening or agricultural activities. 
Although they are compact devices, their price is 
like a large appliance [33]. 

Besides, the application of machine learning 
techniques provides automatic classification of 
UOWs before passing through the composting 
process. That allows enhance the management of 
the composting process and estimate the final 
product quality. 

It would help to avoid energy consumption due 
to the use of electronic equipment and laboratory 
reagents Furthermore, the design purpose of a 
CNN model from scratch is to have a compact 
model, which is expected to be embedded in a low-
power processing board or a mobile device such 
as a smartphone. 

3 Methodology 

The system for estimation of the C/N ratio of UOWs 
is composed of two parts: 1) an index database of 
selected UOWs for this study, 2) an Automatic C/N 
ratio estimator for UOWs (Fig. 1). An index is a 
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numerical correlation of a particular UOW in a 
digital image with its qualitative (color and stage of 
decomposition) and quantitative (weight and 
C/N) characteristics. 

3.1 UOW Index Database 

The creation of the UOWs index database involved 
a series of activities that are described in the 
following sections. 

3.1.1 UOWs Selection and Collection 

A detailed query allowed the identification of the 
most statistically consumed fruits and vegetables 
in Mexico [34] to select and collect their inedible 
fraction as UOWs [7,35–37]. 

3.1.2 UOW Images Capture 

Digital images were captured under controlled 
conditions of the collected fruits and vegetables 
UOWs, using a systematic capturing algorithm 
developed in the PythonTM programming language 
[38] with the OpenCV (Open source Computer 
Vision) library [39]. This algorithm tagged and 
stored the images automatically through a Logitech 
c920 webcam located overhead plane at 0.30 m 
and a white light source from a 5 W LED lamp. 

The UOWs were laid in an extended pose on a 
flat and blue background to create contrast with 
their natural colors, minimizing occlusion and 

allowing the separation of the UOWs from this 
background by creating corresponding filters, 
since the blue color is one of the three channels in 
the RGB color space. Images dimensions are 960 
 720 pixels in JPG format (Joint Photographic 
Experts Group). 

3.1.3 Weight Measurement 

After capturing the image, the weighed of each 
UOW, expressed in grams (g), was measured by a 
digital balance, trademark Queen Sense with a 
resolution of 0.01 g and a range from 0.01 to 500 
g, and recorded in the index database. 

3.1.4 Class Assignation 

In this study, a class is the type of UOW and a 
stage of decomposition. The decomposition stage 
of the UOWs was categorized as initial, middle, 
and advanced, mapping the UOWs value to a class 
specified by predefined thresholds. Additionally, a 
color scale is related to each UOW class based on 
the Von Loesecke [40] maturity and color scale of 
postharvest bananas. 

3.1.5 Decomposition Stage Determination  

The UOWs are separated from the blue 
background of each captured image to assess their 
stage of decomposition based on the oxidation 
process, which is shown mainly with dark brown 
and black characteristic colors, although gray and 

 

Fig. 1. Procedure for estimation of C/N ratio of UOWs 
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white colors could be present in organic wastes 
due to fungi colonization [41]. The UOW 
decomposition stage (UOWds) was calculated by: 

𝑈𝑂𝑊ௗ௦ =  100 ∗  𝑑𝑝/𝑡𝑝, (1) 

where tp is the total pixels of each separated UOW 
and dp refers to the number of dark pixels 
comprised in it, using the L channel of the CIELab 
color space that represents the luminosity intensity 
on a scale of 0 to 100 (0 corresponds to black and 
100 to white) [42]. The procedure was 
implemented using Matlab© functions. 

3.1.6 C/N Ratio Determination 

A systematic search of the C/N ratio content for the 
selected OUWs followed the methodology based 
on criteria for review, selection, and evaluation of 
scientific material published on a study subject 
[43]. The systematic search was complemented 
with data obtained from laboratory analysis for the 
estimation of carbon and nitrogen content 
in UOWs. 

The laboratory analysis was performed at 
Centro de Investigaciones Biológicas del 
Noroeste, S. C. (CIBNOR), in La Paz city, B.C.S. 
state, México, implementing the Dumas method to 
estimated nitrogen in a Leco FP-528 equipment. 

The carbon content (%𝐶) was estimated by Eqs. 
2-3. First, the UOW samples were weighed, dried, 
and homogenized. The ash content (%𝐴𝑠ℎ) was 
estimated by weight difference when incinerating 
the dried UOW at 600 °C/5 h (A.O.A.C. 2002 
Method). The content of volatile solids (%𝑉𝑆) 
was estimated: 

%𝑉𝑆 =  100 − %𝐴𝑠ℎ, (2) 

  %𝐶 =
%𝑉𝑆

1.8.    (3) 

One-way ANOVA analysis was applied to the 
results obtained using the R programming 
language [44]. The p-value was calculated and 
compared with the value of α-level (0.05) to 
establish if the differences between groups 
(decomposition stage) are statistically significant. 

3.2 Automatic C/N Ratio Estimator for 
UOWs 

The automatic estimation of the UOW C/N ratio 
from a digital image consisted of three steps: 1) 
UOW images classification, 2) UOWs weight 
estimation, and 3) C/N ratio estimation for UOWs. 

3.2.1 UOW Images Classification  

The classification of a UOW with its stage of 
decomposition was based on a CNN approach, 
adapting and proposing CNN algorithms. The set 
of UOW images was labeled into the classes 
corresponding to the UOW established decay 
stages, distributing each one into three image 
subsets for the CNN training, validation, and 
testing [45]. 

Then, the process executed data augmentation 
techniques to the dataset, applying random 
geometric transformations (flipping, rotation, 
translation, and zoom) to the images and obtaining 
new UOW image poses, but without generating 
data outside of reality [25]. The learning transfer 
strategy was applied to the pre-trained CNNs [17]. 
The CNN learning process was executed in the 
Google Colaboratory environment [46]. 

3.2.2 UOWs Weight Estimation 

The weight data in the database serve to estimate 
the weight of a new UOW image through linear 
regression. The linear regression, generated in the 
R programming language [44], explains the 
relation between the UOW pixel number in the 
image and the UOW weight in grams. 

3.2.3 C/N Ratio Estimation for UOWs 

Each image was associated with a value of the C/N 
ratio according to its class, understanding class as 
the type of UOW and stage of decomposition. 

4 Experimental Results 

4.1 UOW Index Database 

The UOWs index database includes the 
quantitative (weight, C/N ratio) and qualitative 
(color and maturity stage) characteristics of 
selected UOWs associated with an image. 
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4.1.1 UOWs Selection and Collection 

According to the selection analysis, five fruits and 
vegetables with the highest consumption in Mexico 
were selected: banana (Musa paradisiaca), apple 
(Malus domestica), orange (Citrus sinesis), lemon 
(C. aurantifolia), and potato (Solanum tuberosum). 
Table 1 shows the annual consumption per capita 
in México of the selected fruits and vegetables, 
where their inedible fraction (waste) are 
mainly peels. 

4.1.2 UOW Images Capture 

7,500 RGB images of the selected fruit and 
vegetable categories compose the UOW dataset; 
1,500 core and peel images of apple, banana, 
lemon, orange, and potato, respectively, balancing 
equally the image datasets for each decomposition 
stage. Fig. 2 shows the system for capturing UOW 
images, and Fig. 3 depicts an image set with 
UOWs in an extended pose, particularly the 
banana peels, on the blue background. 

4.1.3 Weight Measurement 

The UOW weight was associated with each 
captured image (Fig. 4). 

4.1.4 Class Assignation 

Class assignment resulted in 15 classes, each type 
of UOW (apple, banana, lemon, orange, and 
potato) associated with a decomposition stage 
(initial, middle, and advanced). An initial stage 
UOW has approximately one day of being 
collected, a middle stage UOW has at most seven 
days, and an advanced stage UOW has more than 
seven days. 

4.1.5 Decomposition Stage Determination 

The L channel (luminosity intensity) of the CIELab 
color space was chosen to estimate the 
decomposition stage of a UOW in an image 
applying Equation (1). Decomposition stages 
thresholds were established on the L channel to 
count the dark pixels (dp), setting  𝑈𝑂𝑊ௗ௦  < 30 for 
the initial stage, 30 < 𝑈𝑂𝑊ௗ௦ < 50 for the middle 
stage, and 50 < 𝑈𝑂𝑊ௗ௦ for the advanced stage. 
Fig. 5 shows the original image converted in the 
L channel. 

Finally, the image histogram was generated in 
the L channel, and the thresholds were applied to 

 

Fig. 2. UOW image capture system 

 

Fig. 3. UOW samples: a) apple core, b) banana peel, 
c) lemon peel, d) orange peel, and e) potato peel 

 

Fig. 4. UOW weight measurement 

Table 1. Annual consumption and the inedible fraction 
of fruit and vegetables selected for the study 

UOW 

Annual 
consumption 

per capita (kg) 

a 

Inedible 
fraction b 

Fraction 
(%) b 

Apple 8 Peel, core 12 

Banana 14.4 Peel 35 

Orange 37.2 Peel, 
seeds 

30 

Lemon 
15.1 Peel, 

seeds 
34 

Potato 15.1 Peel 16 
a [34], b [7,35–37]. 
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determine the decomposition stages. The 
decomposition stage algorithm allowed 

categorizing a UOW image dataset into the 15 
classes, with accuracies from 52-55 %. 

Thus, this process was visually supervised to 
corroborate the correct estimation of the 
decomposition stages of the UOWs shown in the 
images to obtain an accurately labeled dataset, 
using a color scale related to each UOW category 
in three stages of decomposition: initial, middle, 
and advanced (Table 2). 

4.1.6 C/N Ratio Determination 

The C/N ratio systematic search of UOWs obtained 
2988 articles with the search engines proposed: 
971 full documents and 2017 abstracts. After 
eliminating duplicates, and applying the exclusion 
criteria, 20 papers were found that present the C/N 
ratio of selected UOW without indicating the stage 
of decomposition. This search leads to two 
observations. First, it is evident the lack of C/N data 
for UOWs, and second, the UOW decomposition 
stages are unrevealed data. 

The one-way analysis of variance of the results 
of laboratory analyses suggests that there are 
significant differences in the C/N ratio of the UOWs 
in all stages, except for the case of orange in the 
middle and advanced stages. Table 3 shows the 
C/N ratio obtained by laboratory analysis for the 
three decomposition stages (initial, middle, and 
advanced) and the result of the systematic search. 

4.2 Automatic Estimator of the UOWs C/N 
Ratio 

After determining the decomposition stage of the 
UOWs in the images, a detailed image collection 
was made. The purpose was to have 
representative and balanced UOW images in the 
15 classes with 500 images per class. 

Then, each classes were divided into 
percentages of 70 (350 images), 20 (100 images), 
and 10 (50 images) for training, validation, and test 
respectively using Split-Folder© 0.4.3  library [63]. 
The UOW images were split randomly into train, 
validation, and test datasets (folders) for each 
class according to the programmed ratios. 

4.2.1 UOW Images Classification 

Three CNN architecture models were selected to 
train and compare their performance for UOW 
classification: 1) UOWNet, an own proposed CNN 

 

Fig. 5.  Banana peel stage of decomposition based on 
L channel of the Lab color space: a) initial, b) middle 
and c) advanced 

Table 2. Color and stage of decomposition by 
UOW class 

UOW Initial Middle Advanced 
Apple Intense red  Opaque red Brown 

Banana Intense yellow  
Opaque 
yellow 

Brown 

Orange 
Intense 
orange 

Opaque 
orange 

Brown 

Lemon 
Intense 

Green/yellow  
Opaque 

Green/yellow 
Brown 

Potato Light brown Brown 
Dark 

brown 

Table 3. UOWs C/N Ratio. Laboratory analysis and 
systematic search 

UOW 
Laboratory analysis Systematic 

search* Initial Middle Advanced 

Apple 106.06 78.72 88.65 48 

Banana 56.45 39.79 43.43 34.34 

Lemon 40.46 35.79 37.21 28.38 

Orange 54.50 66.28 66.30 48.18 

Potato 21.56 19.30 17.33 14.94 
*[47,48,57–62,49–56]. 

Table 4. Accuracy for the pre-trained CNN 
and OUWNet 

UOW MobileNet VGG16 UOWNet Average 

Apple 85.24% 82.10% 89.52% 85.62% 

Banana 90.67% 82.48% 86.76% 86.64% 

Lemon 68.57% 59.52% 73.23% 67.11% 

Orange 80.86% 72.95% 82.48% 78.76% 

Potato 82.66% 73.04% 86.47% 80.72% 
Model 

Average 
81.60% 74.02% 83.69%   
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in this study based on the LeNet-5 network blocks, 
with five convolutional layers, one fully connected 
layer, and small kernels (33). 2) MobileNet 
developed by Google [64] applies 11 and 33 
kernels in layers. 3) VGG16 proposed by Oxford 
University [65] consists of a stacked set of 
convolutional layers, with small kernels (3 x 3) [66]. 

The lack of a large amount of UOW data and 
the high computational cost to train CNNs from 
scratch encouraged the adaptation of the 
MobileNet and VGG16 pre-trained networks for 
classification tasks by transfer learning technique. 

The same hyperparameters were set on each 
CNNs, including the loss function: categorical 
cross-entropy and the optimization function: Adam. 
A learning rate of 0.0001 with 100 epochs and a 

value for dropout of 0.2 were set, allowing the 
model to randomly remove some nodes during 
training and reduce overfitting [67]. Image 
dimensions were 224  224  3 (width, height, 
channels) with a batch size of 32. 

Table 4 shows the resulting performance of the 
models for the UOW classification. For instance, 
the model completed for the apple core achieved 
an average accuracy of 85.62%. Fig. 6 shows the 
loss and accuracy graphs resulting from the 
training and validation phases. Fig. 7 shows the 
confusion matrices obtained in the testing phase of 
the three CNN models. 

Normalized confusion matrices (%) are 
generated for the test data and a better ranking is 
presented for MobileNet and UOWNet models. 

 

Fig. 6. Accuracy curves: MobileNet V2, VGG16, and UOWNet 
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Banana peel reflected an average accuracy of 
86.64%, and the confusion matrices show a better 
performance for the MobileNet and 
UOWNet models. 

Lemon peel presented the lowest average 
accuracy (67.11%) with the low percentages in the 
test classification. The models present accuracies 
of 78.76% and 80.72% for orange and potato 
peels, respectively. 

These results also showed that the MobileNet 
and UOWNet models present higher accuracy than 
the VGG16 model. This could be explained 
because the VGG16 is complex for the small 
dataset size of this project for a large number of 
trainable parameters and convolutional layers, 
making it less efficient [67]. 

In the case of apple, lemon, and orange, this 
model tends overfitting. In contrast, the MobileNet 
model presents underfitting due to the MobileNet 

model was developed for mobile device vision 
applications, which reduces its accuracy [64].Fig. 8 
depicts the CNN model performance considering 
the Kappa statistics () ranging from 0 to 1. 

This metric measures the reliability between the 
ground truth po (for labeled data that are the values 
of each UOW) and the results of the UOW CNN 
classifiers that are expected by chance alone pe 
[68], expressed by: 

𝜅 =
௣೚ି௣೐

ଵି௣೐
. (4) 

 

Fig. 8. Kappa statistics for CNN models. UOWNet 
presented a good agreement for all classes 

 

Fig. 9. Linear model for weight and pixels 

 

 

Fig. 7. Confusion matrixes obtained in the testing phase 
for the CNN models: Advanced, Middle, and Initial 
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The Kappa values are associated with an 
agreement label [69] between computed 
classification (model results) and expected 
classification (by chance prediction) for the UOW 
classifiers: very bad (<0.00), bad (0.00-0.20), 
regular (0.21-0.40), moderate (0.41-0.60), good 
(0.61-0.80) and very good (0.81-1.00). 

According to the Kappa statistic, the UOWNet 
models presented a good agreement, whereas the 
MobileNet and VGG16 models performed a 
moderate agreement for the lemon class. 

Increasing the size of the UOW dataset and 
adjusting the hyperparameters could improve the 
classification accuracy for any of three CNNs 
applied [31]. 

4.2.2 UOWs Weight Estimation 

The weight estimation for each UOW class was 
obtained using the linear regression method. Five 
different models were generated to explain a linear 
relationship between variables: the number of 
pixels and the associated weight (in grams). 
Equation (5) describes this relation: 

𝑦ො = 𝛼 + 𝛽𝑥, (5) 

where ŷ is the expected value of the weight and x 
is the number of pixels. Fig. 9 shows the resulting 
scatter plots for each UOW class. The linear 
equation and the coefficient of estimation (R2) for 
each model are also shown. 

The results of weight estimation revealed that 
the best model explaining the variation of data 
were the apple and potato models (R2 ≥ 90). This 
is due to the apple core and potato peel having a 
consistent shape and few variations in the number 
of pixels for any of the three stages 
of decomposition. 

The weight estimation in some images is limited 
to the pose of the UOW, resulting in a lower 
account of pixels. Such is the case for banana 
peel; the model obtained explains 72% of the data 
variation (R2 = 72). 

When capturing the image, placing the UOWs 
extended fully would increase the explanatory 
percentage between the variables weight and the 
number of pixels for all types of UOWs. Another 
variable, such as the decomposition stage, could 
be considered to increase the correlation. 

The result in the linear models of the orange 
and lemon classes (R2 = 62 and R2 = 63, 
respectively), can be explained by the fact that 
some orange and lemon wastes still contained 
juice, which means that the weight may be greater 
than the weight estimated by the linear 
model approach. 

4.2.3 C/N Ratio Estimation for UOWs 

The proposed framework identifies the class of 
each UOW (type and decomposition state), 
assesses its C/N ratio from the laboratory analysis 
C/N result (Table 3), and calculates its weight by 

 

Fig. 10. C/N estimation for UOWs 
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the corresponding linear model to estimate the 
resulting C/N ratio of the mixture of UOWs. 

Fig. 10 depicts an exercise for UOWs 
classification, weight estimation, and C/N ratio 
query. Once the relative weight (𝑊௜) and C/N ratios 
(𝐶𝑁𝑅௜) of the individual UOWs to be composted are 
obtained, Eq. 6 can be used to calculate the ratio 
of the mix as a whole (𝐶𝑁𝑅்), which is expected to 
be in the range 25-40 at the beginning of the 
composting process: 

𝐶𝑁𝑅் = (𝑊ଵ ∗ 𝐶𝑁𝑅ଵ) + (𝑊ଶ ∗ 𝐶𝑁𝑅ଶ) + ⋯ (6) 

5 Conclusion 

The proposed CNN-based method to estimate the 
C/N ratio of UOWs through images is a practical 
and appropriate preprocess as an immediate 
alternative and less expensive than 
laboratory analyses. 

The transfer learning strategy allowed the 
training of the pre-trained CNNs with new image 
categories: apple core and banana, lemon, orange, 
and potato peels. 

The UOWNet model showed a significant 
performance in the testing phase compared to the 
MobileNet and VGG16 models, suggesting that 
increasing the layer number, adapting the 
hyperparameters, and increasing the dataset, may 
obtain better performance for UOW classification. 
The latter also would imply a lower computational 
cost compared to the other CNN models. 

The paper contribution includes a UOW 
classification based on the decomposition stage 
and a database of UOW indices correlating 
qualitative and quantitative characteristics.  

In the future, more experiments will be 
necessary for improving the image set, also testing 
other filter sizes to improve the overall 
performance of the proposed model to classify the 
decomposition stages of UOWs. 

Further work will generate a trained CNN model 
to classify the UOW using embedded and mobile 
devices for fieldwork. 
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