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Abstract. Launching and landing rockets on the

Earth and in space have had intensive research and

development in the last years. The idea of reducing

costs is related regularly to the reusability of some

mission stages. Though the launch has attracted

attention due to including the main engines fundamental

to boosting spacecraft onto an orbital or interplanetary

trajectory, the landing takes relevance in space missions.

While the rocket’s landing has been carried out on

Earth using an autonomous spaceport drone ship, it

is challenging to design intelligent model-free systems

that can continuously learn and compensate for slight

deviations until they meet the target. This paper focuses

on studying vertical rocket landing using convolutional

neural networks. Assuming that the rocket is near the

landing area, an attitude rocket control is proposed using

a vision system to recognize it and drive -the nozzle

TVC. Experimental results show the attitude control

commanded by a nozzle TVC of an experimental rocket

under different conditions.

Keywords. Rocket thrust vector control, convolutional

neural networks, attitude rocket control.

1 Introduction

In the last years, there has been an increased

need to reduce the costs in the space launches

through spacecraft reusable. In this way, many
companies, like the US company Space X, have

focused their efforts on the vertical landing where

the rocket’s first stage should be reusable because

it is higher cost.

In particular, the Vertical Takeoff Vertical

Landing, VTVL, technology has been used

successfully recently by companies as SpaceX

(Falcon 9), Blue Origin (New Shepard) for reusable

rockets. However, although VTLV has been

demonstrated to be helpful, some open problems

remain open in vertical takeoff technology and
reusable landing rockets.

Since the beginning, the rocket’s landing has

attracted attention on how to get precision landing

on the Earth and a more challenge in space where

the parachute does not seem the best option [1].

In the literature, the rocket landing has been

studied in two ways: a) as the reentry problem

in the atmosphere where the high acceleration,

dynamic pressure, and heating rate represents

constraints of the optimization problem where

the aerodynamic drag is fundamental to get

deceleration effect and generates the reference

rocket trajectory, and b) vertical landing problem

where the altitude and speed of the rocket are

controlling adjusting engine trust in a vacuum

environment [15].

Due to the near of the landing area, the

aerodynamic forces are in equilibrium with the

gravity force; the remaining mass of the rocket

defines the landing velocity. Thus, the rocket’s

altitude, speed, and attitude are adjusted to satisfy

the landing time. This paper focuses on the vertical

rocket landing on a floating landing platform known

as the Autonomous Spaceport Droneship (ASDS),

where precision is highly challenging.

Mainly to increase the rocket landing precision

and divert or move sideways, the vectored thrust,

TVC, is considered [3, 10, 6]. Finally, due to the
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Table 1. Image augmentation parameters

Train datagen / Evaluate datagen

Rescale 1./255

Rotation range 40,

Width shift range 0.2

Height shift range 0.2

Shear range 0.2

Zoom range 0.2

Horizontal flip True

Fig. 1. (a) A TVC on the rocket,

(b) Experimental prototype

Fig. 2. Images from the landing platform dataset

landing precision capabilities vary on the Earth

and space, this problem implies the researches
and developments of many fields as structural

dynamics, engines, control systems taken place

simultaneously. The rocket landing problem is

studied and solved as an optimization problem

under different constraints where the goal is to

generate online flight trajectory [12, 8, 2].

The principal drawback of these approaches

is the lack of knowledge of some parameters,

aerodynamics or physics, in certain conditions,

and robustness to compensate the parameters

uncertainty, the wind perturbations, or noises that

can affect the rocket’s landing.

Recently, advances in machine learning tools,

like deep learning, have been used to solve some

problems in aircraft or rockets where the principal

goal is a parameter estimation from the available

data and improve the capacity of parameters

estimation through a learning algorithm. The

learning algorithms aim to estimate an unknown

mapping from available data to predict future data,

commonly known as generalization.

Deep Learning is part of Machine Learning,

where information processing is carried out in

hierarchical layers. That is, the deep learning

algorithms are based on neural networks [14].

In addition to the traditional neural network

approximating the unknown mapping from the

input-output data, the deep learning algorithms can
learn basic features from the input data in a deep

learning algorithm.

They have the capacity to understand some

characteristics of the new data that are useful

to make predictions. The interesting feature

of deep neural networks is that the learning

capacity is related to hidden layers number [7].

Some approaches have been developed taking

advantage of the deep learning algorithms as in

[13] where deep neural networks are used to obtain

the Hamilton-Jacobi-Bellman solution to guarantee

aircraft landing, lunar landing in [5], and rocket

launching in [17].

Furthermore, in [16] a deep convolutional

neural network is used to process and classify a

huge number of images data generated by optimal

equipment. This paper uses a deep learning
algorithm called Convolutional Neural Network,

CNN, to learn and identify the landing platform to

control attitude rocket.

The CNN is a feedforward neural network

which by convolutional layers applied filters to

the input data to obtain features from it, called

feature learning. The application of CNN has
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Table 2. Fit generator parameters

Training configuration using ImageDataGenerator

train datagen.flow
from directory

target size=(128,128) /
batch size=64 /class mode=’binary’

validation datagen.

flow from directory

target size=(128,128) /

batch size=64 /

class mode=’binary’

model.fit generator

train generator / epochs=30 /

steps per epoch=63 /
validation data=validation generator /

validation steps=7 / workers=4

Fig. 3. Architecture of the CNN

been extended recently in many areas as computer

vision, speech recognition, machine translation, to

name a few. Motivating from concerns mentioned

above, the vertical rocket landing, and the learning

capabilities of the CNN, the problem to solve is

defined as follows.

1.1 Problem Statement

Although the rocket has many phases of the

return-to-launch-site mission, we focus on the
vertical landing problem, specifically on the rocket’s

orientation near the landing area. Due to the

aircraft does not have a straight path to its

destination.

On the contrary, regularly, there is a slight

deviation concerning the angle route or trajectory.

The problem stands for the attitude rocket control

avoiding any knowledge system.

Thus, to get autonomous and intelligent space

landings, a vision system will drive a nozzle TVC to

guarantee the attitude rocket control while the CNN

is trained to recognize the landing platform.

Assuming that the landing platform is moving

and the rocket is fixed in its center of gravity, in this

paper, a landing platform dataset is built, and the

CNN is trained to identify it.

Once a vision system identifies a target in its

field of view, FOV, a bounding box is created

around it while simultaneously, the coordinates of

the center of the landing platform are obtained.
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Fig. 4. Loss curve (1484 images) Fig. 5. Accuracy curve (1484 images)

Fig. 6. Loss curve (8 feature extraction layers) Fig. 7. Accuracy curve (8 feature extraction layers)

Fig. 8. Loss curve (742 images)
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Fig. 9. Accuracy curve (742 images)
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Fig. 10. Landing platform detection algorithm using Yolov3

Fig. 11. Object detection: Training results Fig. 12. Landing platform detection on the FOV

Finally, the orientation desired angles are

defined, taking as reference the FOV of the vision

system, which nozzle TVC uses to guide the

appropriate rocket.

Specifically, the nozzle TVC system used

on the rocket prototype has two orientations

commanded by electromechanical actuators each

one, see Fig. 1.

The propulsion used is constant, where a

portable air compressor pump supplies it.

The remainder of this paper is organized as

follows.

Section 2 presents the description of training

and testing of the CNN to get an attitude rocket

control by vision system.

Experimental results are presented under

different conditions in Section 3.

Finally, some conclusions are presented

in Section 4.
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Fig. 13. Reference systems of FOV

Fig. 14. Obtaining desired angles from FOV

Fig. 15. Experimental prototype

2 Approach

This section presents the different stages to control

the rocket attitude using CNN as part of its landing

back mission.

Stages as training of CNN, landing platform

recognition by the vision system, and the

generation of the orientation desired angles are

developed in Anaconda Python distribution under

Windows©10 operating system. The principal

packages installed are Tensorflow 1.13.1, Keras

2.3.1, and OpenCV-python 4.4.0.

2.1 Training of CNN

The first step before CNN training is to build a

landing platform dataset.

2.1.1 Landing Platform Database

The landing platform dataset was built using a

mobile phone with a resolution of 25 MP. The

dataset images have the same size, are labeled,

and within them, the landing platform is not

centered. The landing platform database has

742 images, where 372 are positive images with

different degrees of illumination and photo angles

to make the learning and detection more robust,

while 370 negative images of anything; other than
the target. In Fig. 2 we can see a sample of

the database created. Once the landing platform

has been built, the next step is to train the CNN to

recognize the landing platform and use it to rocket

control orientation.

2.1.2 Convolutional Neural Network

The training goal of the CNN is to get a valuable

set of weights that allow recognizing the landing

platform and the generalization ability of the model.

Finally, the set of weights is saved for testing

the learning. Before training the CNN, the

image augmentation technique is applied to the

dataset images to get multiple transformed copies

of an image.

The image augmentation technique will be

helpful to generalize the model due to adding

variations levels of unseen data and avoiding
model overfitting. The Image data generator

is a class of Keras that configure and convert

the database into useful data to be entered in

CNN. Finally, each new batch of our data is

adjusted randomly.
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Rocket
Desired 

state

Controller

(PID)
TVC

𝜃𝑑 , 𝜓𝑑 𝜃,𝜓δ𝜃 , δ𝜓𝑒−+
System

Landing platform detection

CNN

Object 

detection
FOV

Fig. 16. Rocket thrust vectoring control system using convolutional neural network, CNN

In Table 1 are shown the augmentation

parameters apply to the dataset images while

parameters of the Flow from dataframe and Keras

Fit generator method are shown in Table 2. The

former directly augment images by reading its

name and target value from a dataset, and the

latter accepts a batch of the dataset updates the

model’s weights.

Now, we are ready to train our CNN. The CNN

uses an image 224 × 224 pixels, four feature

extraction layers, and two fully connected neural

networks in the output layer, see Fig. 3. The

training model was carried out using 30 epochs

with a batch size set to 64.

The optimization algorithm used was the

RMSprop with a learning rate set to 0.0003. The

optimization algorithm used was the RMSprop with

a learning rate set to 0.0003. Finally, the results

of the training using augmenting images database

are given in Fig. 8 and Fig. 9 with the loss and

accuracy curves, respectively.

It is observed from Fig. 8 that the training

loss curve moves down until it reaches a value

of approximately 0.1, while validation loss has

an expected downward trend but in some epochs

display peaks. These peaks represent the images

that the model never saw and cannot recognize.

On the other hand, the training and validation

accuracy curves, Fig. 9, tend to increase which

means the training is adequate even to the small

number of epochs used for the training. Thus,

the neural network has trained to generalize the

images from loss and accuracy curves.

Remark. Fig. 4 and 5 show the training

and validation results using 1,848 images.

The performance is better than in Fig. 8-9

but appears some peaks that represent that

there are images that cannot be learned for

the CNN. By another hand, if the feature

extraction layers are increased to eight, the

performance of the training and validation

significantly improves, see Fig. 6-7. Thus, the

features extraction layers are fundamental in the

learning process to predict future data accuracy.

Once the CNN is trained, the next step is to landing

platform recognition using the vision system.

2.2 Rocket Thrust Vectoring Control
Using CNN

2.2.1 Landing Platform Recognition

Learning an object or image using CNN is

generally used for classification or categorization

tasks where the object recognized within an image

is fundamental.
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Fig. 17. Experimental rocket dimensions

Fig. 18. General scheme used to generate the TVC signals

In this paper, we are interested, in addition, to

knowing the exact location of the landing platform,

see Fig. 12. Thus, the images from the dataset

were labeled with coordinates of the object’s

location embedded into the images. To creates

the labels is used the labelImg application. It is a

graphical image labeling application tool written in

Python where the coordinates are manually saved

in a TXT file for each image.

Finally, in conjunction with labels, this dataset is

trained to obtain its location in the camera’s field of

view. To get the object detection1 real-time object

detection algorithm named Yolov3 is used where

a Darknet-53 CNN is in charge of learning and

classifying the desired image, Fig. 10.

1The process of recognizing and getting its location is called

object detection.

Thus, simultaneously the bounding box

regressor2 and the label’s prediction are made

in the case of having several classes (different

objects/images) [4, 9, 11].

The bounding box uses residual blocks

algorithms for better performance in tiny images,

also Intersection Over Union, IOU, techniques to

get a perfect box over the object. In addition, it uses

three prediction scales to get better performance,

while the labeling uses binary cross-entropy loss

because there are many overlapping labels. Given

that CNN complete training used in YoloV3 takes

much computational time and requires significant

computational power, a transfer learning technique

is used to reduce neural network training time.

2Box that marks the target’s location (landing platform) on the

image.
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Fig. 19. Experiment 1: Performance of θ and ψ angles under different perturbations

Fig. 20. Experiment 1: Control signals:δθ and δψ

Thus, using a pre-trained CNN that contains

the information to recognize faster generic features

from any image, the last three layers of the CNN

are trained to recognize a particular object, in this

case, the landing platform.

That is, the pre-trained weights remain fixed

while the training takes place. The training model

parameters used for the complete training of the

object detection were 30 epochs with a batch size

set to 8. The optimization algorithm used was the

MSEloss. Fig. 11 show the training results.

2.2.2 Generating the Orientation
Desired Angles

Once the artificial vision system recognizes the

landing platform and its location, it is possible

to calculate the desired orientation of the rocket

angles. Let the coordinates of the field of view be

defined according to Fig. 13, where the origin is

placed in the upper left corner, the horizontal axis

has 640 pixels, and the vertical axis has 480 pixels.

Thus, using the landing platform coordinates is

possible to calculate the angles concerning each of

the axes of the field of view, see Fig. 14. Such that

θd and ψd are given as:

θd = tan−1

(

cy′

h

)

= tan−1

(

cy − 480/2

h

)

, (1)

ψd = tan−1

(

cx′

h

)

= tan−1

(

cx− 640/2

h

)

, (2)

where (cx, cy) are the coordinates from the origin

(0,0) to the landing platform detected, (cx′, cy′) are

the coordinates from the median axes, with origin

in (320, 240), to the landing platform, and h is

the distance from the rocket’s camera to the target
where for this application is assumed constant.

Notice that the angles concerning each of

the axes of the field of view, (1)-(2), are no

more than the desired angles to be used rocket

attitude control.
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Fig. 21. Experiment 2: Desired and actual rocket angles

Fig. 22. Experiment 2: Control signals: δθ and δψ

2.2.3 Rocket Thrust Vectoring Control

Finally, once the desired angles θd and ψd are

defined, we can rocket attitude control using nozzle

TVC. The general control scheme proposed is

shown in Fig. 16. For simplicity in this paper, we

consider a traditional PID controller on a process

variable (PV) and a setpoint in discrete form

defined as:

δ∗(tk) = P + I +D, (3)

where:

P KP e(tk),=

I KI

k
∑

i=1

ei(tk)∆tk,=

D KD

∆e(tk)

∆tk
,=

where KP , KI , KD are the feedback gains, e(tk) =
∗(tk) − ∗(tK)d is the tracking error at time step tk
with ∗(tk) the actual state and, ∗(tk)d the desired

state, and ∆tk is the step size. In this case the PID

controller is utilized to control the states θ, and ψ.

Finally, Fig. 15 shows the prototype model rocket

used for experiments. More technical details about

the prototype is given in the next section.

3 Experimental Results

3.1 Experimental Setup

To demonstrate the performance of the proposed

scheme an experimental results were carried out

on a fixed at the center of gravity rocket, see Fig.

15. The rocket comprises a nose cone, body tube,

and TVC nozzle with two degrees of freedom.

The experimental rocket principal dimensions

are shown in Fig. 17 where the fineness of the

nose is 1.39, and its approximated total weight is

615 g. As the rocket is fixed at the center of gravity,

as propulsion is used a portable air compressor

pump with pressure around 300 KPa, obtaining a

thrust of 6.2× 10−3 kN.
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To identify the landing platform, on the rocket is

placed the vision system through a web camera,

Genius Qcam 6000 of 2MP. In addition, the

OpenCV library is installed on a Raspberry Pi

4, 8Gb RAM, located inside the body tube to

recognize the landing platform. Finally, CNN is

programming on Raspberry Pi 4, too. On the other

hand, an IMU MPU-6050 is used to carry out the

rocket orientation measurement: θ, and ψ angles.

Thus, once the actual angles and the coordinates

landing platform are available, the nozzle TVC

control signals are calculated on Arduino UNO,

also inside the body tube. See Fig. 18.

Remark. The desired angles information

in sent from the Raspberry Pi to Arduino

through SERIAL communication (SSH). Although

this communication kind produce a delay, this

communication has a type of switch which causes

the sent data to pile up, the attitude control is

carried out adequately. Due to data Arduino

arriving in a non-existent format, a delay of 3 sec.

is programmed on the Raspberry.

3.2 Experimental Conditions

The objective of the experiments is to rocket

thrust vectoring control orientation; that is, the

rocket should be oriented according to the landing

platform that is assumed is moving.

In the first experiment, the goal is to test that the

TVC nozzle can maintain the rocket in equilibrium

positions under different perturbations, that is,

θ = ψ ≈ 0. Fig. 19 shows the performance

of the θ and ψ angles when the rocket is subject

to two manual perturbations. Notice that, after

the induced perturbations, the TVC nozzle can

stabilize the rocket, that is, θ = ψ → 0.

In Fig. 20 is shows the control signals applied

to the TVC nozzle. In the second experiment, the

vision system on the rocket is used to recognize

and follow the landing platform using a TVC nozzle.

The CNN is used to acknowledge and calculate

the landing platform coordinates representing the

desired angles, θd, and ψd.

Thus, the controller’s goal of the TVC nozzle is

to generate the control signals to get the desired

rocket orientation. Fig. 21 shows how once

the desired angles are generated, the controller

produces the adequate control signals applied

to the TVC that guarantee to reach the desired

angles. Notice that exists a delay of around 7

s between each sending of coordinates. This

is due to delay communication between Arduino

and Raspberry. Therefore, the rocket reaches the

desired angles despite this delay and noise on

orientations measurements. Finally, in Fig. 22 the

control signals performance of θd and ψd are show.

4 Conclusion and Future Work

The vertical rocket landing using CNN, especially

the attitude control by nozzle TVC without knowing

the system or landing trajectory, is presented.

Assuming that the landing platform is moving, the

rocket’s orientation is driven by a vision system

that recognizes the target, controlling the rocket

orientation by the nozzle TVC. In addition, the

building dataset, training, and testing of the CNN

is presented. Although experimental results are

done under a controlled environment, the rocket is
fixed on the center of gravity. The results show

that the proposed scheme is robust enough to

latency, noise in sensors, and motors, to control

rocket orientation using CNN. In this way, the CNN

can be considered part of an intelligent system

for launching and landing tasks where the learning

characteristics from new data to make predictions

without any knowledge of the system or desired

trajectory can be helpful from space missions.
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D. P. (2010). Minimum-landing-error

powered-descent guidance for mars landing

using convex optimization. Journal of

Guidance, Control, and Dynamics, Vol. 33,

No. 4, pp. 1161–1171. DOI: 10.2514/1.47202.

3. Devlin, T., Dickerhoff, R., Durney, K.,
Forrest, A., Pansodtee, P., Adabi, A.,
Teodorescu, M. (2018). ElbowQuad: Thrust

vectoring quadcopter. AIAA Information

Systems-AIAA Infotech @ Aerospace,

pp. 8–12. DOI: 10.2514/6.2018-0893.

4. Farhadi, A., Redmon, J. (2018). Yolov3:

An incremental improvement. Computer Vision

and Pattern Recognition, pp. 1804–2767.

DOI: 10.48550/ARXIV.1804.02767.

5. Furfaro, R., Bloise, I., Orlandelli, M.,
Di-Lizia, P., Topputo, F., Linares, R. (2018).
Deep learning for autonomous lunar landing.

Master’s thesis, Politecnico di Milano and

University of Arizona.

6. Knuth, D. E. (1992). Literate programming. ,

No. 27, pp. 97–111.

7. Krizhevsky, A., Sutskever, I., Hinton,
G. E. (2012). Imagenet classification with

deep convolutional neural networks. Advances

in Neural Information Processing Systems,

Curran Associates, Inc., Vol. 25.

8. Liu, X., Shen, Z., Lu, P. (2016). Entry

trajectory optimization by second-order cone

programming. Journal of Guidance, Control,

and Dynamics, Vol. 39, No. 2, pp. 227–241.

DOI: 10.2514/1.g001210.

9. Mao, Q. C., Sun, H. M., Liu, Y. B., Jia,
R. S. (2019). Mini-YOLOv3: Real-time object

detector for embedded applications. IEEE

Access, Vol. 7, pp. 133529–133538. DOI: 10.

1109/access.2019.2941547.

10. Oates, G. C. (1984). Aerothermodynamics of

gas turbine and rocket propulsion. American

Institute of Aeronautics and Astronautics.
DOI: 10.2514/4.861345.

11. Redmon, J., Divvala, S., Girshick,
R., Farhadi, A. (2016). You only look

once: Unified, real-time object detection.

Proceedings of the IEEE conference on

computer vision and pattern recognition,

pp. 779–788. DOI: 10.48550/arXiv.1506.

02640.

12. Sagliano, M., Mooij, E., Theil, S.
(2017). Onboard trajectory generation for

entry vehicles via adaptive multivariate

pseudospectral interpolation. Journal of

Guidance, Control, and Dynamics, Vol. 40,

No. 2, pp. 466–476. DOI: 10.2514/1.G001817.

13. Sánchez-Sánchez, C., Izzo, D. (2018).
Real-time optimal control via deep neural

networks: Study on landing problems. Journal

of Guidance, Control, and Dynamics, Vol. 41,

No. 5, pp. 1122–1135. DOI: 10.2514/1.

G002357.

14. Vasilev, I., Slater, D., Spacagna, G.,
Roelants, P., Zocca, V. (2019). Python deep

learning: Exploring deep learning techniques

and neural network architectures with PyTorch,

Keras, and TensorFlow. Packt Publishing.

15. Wang, C., Song, Z. (2019). Trajectory

optimization for reusable rocket

landing. Chinese Automation Congress,

pp. 3052–3057. DOI: 10.1109/CAC48633.

2019.8997476.

16. Zhang, L., Chen, Z., Wang, J., Huang,
Z. (2018). Rocket image classification based

on deep convolutional neural network. 10th
International Conference on Communications,

Circuits and Systems, pp. 383–386. DOI: 10.

1109/ICCCAS.2018.8769176.

17. Zhou, G., Fan, Y., Cui, R., Bian, W., Zhu,
X., Gai, K. (2018). Rocket launching: A

universal and efficient framework for training

well-performing light net. DOI: 10.48550/arXiv.

1708.04106.

Article received on 30/08/2022; accepted on 15/04/2024.
∗Corresponding author is Rodolfo Garcia-Rodriguez.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 647–658
doi: 10.13053/CyS-28-2-4354

Rodolfo Garcia-Rodriguez, Ivan Martinez-Perez, Luis E. Ramos-Velasco, Mario A. Vega-Navarrete658

ISSN 2007-9737


