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Abstract. We introduce a new type of fuzzy set called 

Fuzzy Distribution Set (FDS). Fuzzy distribution sets are 
fuzzy sets defined on a finite domain subject to a sum of 
membership values equal to 1. Such fuzzy sets can 
serve as models of subjective probability distributions 
and subjective weight distributions. Considering these 
distributions as fuzzy sets gives a possibility to extend 
on such distributions the operations of fuzzy sets and, 
more generally, the calculus of fuzzy restrictions 
developed during the last decades. Recently Yager 
introduced the concept of negation of probability 
distributions. In our works, we studied several classes of 
such negations. Here we consider an involutive negation 
of probability distributions as a complement of FDS. We 
introduce the operations of union and intersection of 
fuzzy distribution sets. These basic operations on FDS 
can serve as a basis for the application of fuzzy logic 
methods to subjective probability and weight 
distributions. These operations can be used for the 
development of reasoning models with subjective 
probability distributions and subjective weighting 
functions. Weight distributions can be used in multi-
criteria, multi-person, and multi-attribute decision-
making models. 

Keywords. Fuzzy set, probability distribution, weight 

distribution, complement of distributions, union of 
distributions, intersection of distributions. 

1 Introduction 

Recently R. Yager introduced an operation of the 
negation of probability distributions [1]. Such 
negation operation can be used for formalizing 
sentences like "NOT High Price," where "High 
Price" denotes a probability distribution defined on 
a set of prices. Dozen of papers used Yager's 
negation for modeling uncertain information 
related to probability distributions (pd) [4].  

Also, some new negations of pd have been 
proposed [2-4]. Since probability distributions can 
be considered as some kind of probabilistic 
predicates, the natural question appears: How to 
define the operations of disjunction and 
conjunction of probability distributions? The 
disjunction operation could give a possibility to 
formalize sentences like "High OR Very High 
Price." On the other hand, one can use the 
conjunction operations for formalizing sentences 
like "Which of my friends called my father AND 
promised to come today?". Here, subjective 
probability distributions "called" and " promised to 
come today " are defined on the set of my friends.  

We construct new logical operations on the set 
of probability distributions as extensions of 
operations used in fuzzy set theory [5-12]. A 
probability distribution is considered a special type 
of fuzzy set called Fuzzy Distribution Set (FDS). 
We define operations AND, OR, and NOT on the 
set of probability distributions as operations of 
intersection, union, and complement of these fuzzy 
sets. The involutive negation of probability 
distributions proposed in [3] is used as a 
complement of fuzzy distribution sets. The union 
and intersection operations of FDS are constructed 
as extensions of similar operations defined on the 
set of fuzzy sets. Formally, as a fuzzy distribution 
set, one can consider a weight distribution used in 
multi-criteria, multi-person, and multi-attribute 
decision-making. For this reason, fuzzy distribution 
sets can also serve as models of subjective 
weight  distributions. 

In such an interpretation, the fuzzy set-theoretic 
operations considered in this paper can also be 
used as operations on the set of subjective 
weight distributions.  
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The paper has the following structure. Section 
2 gives a definition of a fuzzy distribution set and 
defines a complement of such fuzzy sets as an 
involutive negation of probability distributions. In 
Section 3, we introduce the union operations 
of  FDS. Sections 4 and 5 propose the methods of 
construction of the intersection of FDS. Section 6 
contains an example of the intersection and union 
of subjective probability distributions. Section 7 
contains the conclusion.  

2 Complement of Fuzzy Distribution 
Sets  

Let 𝑋 = {𝑥1, … , 𝑥𝑛} be a finite non-empty set, 
(𝑛 > 1).  

Definition 1. A fuzzy distribution set (FDS) defined 

on 𝑋 is a function 𝑑:𝑋 → [0,1] subject to: 

∑ 𝑑(𝑥𝑖)
𝑛
𝑖=1 = 1. (1) 

Denote 𝑑𝑖 = 𝑑(𝑥𝑖), 𝑖 = 1,… , 𝑛. From (1), 
we have: 

∑ 𝑑𝑖
𝑛
𝑖=1 = 1. (2) 

The set of membership values 𝐷 = {𝑑1, … , 𝑑𝑛} 
will be called a distribution. When several 
distributions considered in some problem are 
defined on the same domain 𝑋 = {𝑥1, … , 𝑥𝑛} it is 

convenient to represent a distribution 𝐷 =
{𝑑1, … , 𝑑𝑛} as n-tuple 𝐷 = (𝑑1, … , 𝑑𝑛). If it is not 
confusing, we will use both of these 
representations of distributions defined on a 
domain 𝑋. In such notations, the distribution 𝐷 =
(0.8, 0.2, 0, … , 0) will denote the distribution 𝐷 with: 

𝑑1 = 0.8, 𝑑2 = 0.2, and 𝑑𝑖 = 0 for 𝑖 = 3,… , 𝑛. 

The distribution 𝐷(𝑖) = (𝑑1, … , 𝑑𝑛) satisfying the 

property: 𝑑𝑖 = 1 for some 𝑖 = 1,… , 𝑛, and 𝑑𝑗 = 0 for 

all 𝑗 ≠ 𝑖, will be referred to as a degenerate or point 

distribution. For example, for 𝑖 = 1 and 𝑖 = 𝑛 we 
have the following point distributions: 𝐷(1) =

(1,0, … ,0), and 𝐷(𝑛) = (0,… ,0,1). 

The simplest example of distribution is the 
uniform distribution: 

𝐷𝑈 = (
1

𝑛
, … ,

1

𝑛
). 

Let 𝒟𝑛 be the set of all fuzzy distribution sets 

defined on the set 𝑋 = {𝑥1, … , 𝑥𝑛}. 

Definition 2. A complement of a fuzzy distribution 

set is a function 𝑐𝑜𝑚:𝒟𝑛 → 𝒟𝑛 such that for any 
fuzzy distribution set 𝐷 = (𝑑1, … , 𝑑𝑛) in 𝒟𝑛 the 

distribution 𝐶 = 𝑐𝑜𝑚(𝐷) = (𝑐1, … , 𝑐𝑛) satisfies for 

all 𝑖, 𝑗 = 1,… , 𝑛, the following properties: 

if  𝑑𝑖 ≤ 𝑑𝑗 , then 𝑐𝑖 ≥ 𝑐𝑗. 

From the definition of the complement, it follows 
for all 𝑖, 𝑗 = 1,… , 𝑛: 

0 ≤ 𝑐𝑖 ≤ 1,      ∑ 𝑐𝑖 =
𝑛
𝑖=1 1, 

if  𝑑𝑖 = 𝑑𝑗 , then 𝑐𝑖 = 𝑐𝑗. 

A negator 𝑁 is a function of distribution values 
𝑑𝑖 taking values in [0,1] point-by-point transforming 

distribution 𝐷 = (𝑑1, … , 𝑑𝑛) into its complement: 

𝑐𝑜𝑚(𝐷) = (𝑁(𝑑1),… , 𝑁(𝑑𝑛)). 

Hence, for all 𝑖, 𝑗 = 1,… , 𝑛, the following properties 
are satisfied [2]: 

0 ≤ 𝑁(𝑑𝑖) ≤ 1,      ∑ 𝑁(𝑑𝑖) =
𝑛
𝑖=1 1, 

if  𝑑𝑖 ≤ 𝑑𝑗 , then 𝑁(𝑑𝑖) ≥ 𝑁(𝑑𝑗), 

if  𝑑𝑖 = 𝑑𝑗 , then 𝑁(𝑑𝑖) = 𝑁(𝑑𝑗). 

We will say that a negator 𝑁 generates a 

complement 𝑐𝑜𝑚(𝐷) = (𝑁(𝑑1), … , 𝑁(𝑑𝑛)) of FDS 

𝐷 and distribution  𝐷 = (𝑑1, … , 𝑑𝑛). 
A negator 𝑁 is called a distribution-independent 

[2] if for any distribution 𝐷 = (𝑑1, … , 𝑑𝑛) in 𝒟𝑛 the 

negator 𝑁(𝑑𝑖) depends only on the value 𝑑𝑖 but not 

on other values 𝑑𝑗 from 𝐷. A negator that is not 

distribution-independent will be referred to as 
distribution-dependent. 

Consider examples of negators [2-4]. 

Yager negator is defined for all 𝑑 in [0,1] as 
follows [1]: 

𝑁𝑌(𝑑) =
1−𝑑

𝑛−1
. 

It is a distribution-independent negator. For any 
distribution 𝐷 = (𝑑1, … , 𝑑𝑛) in 𝒟𝑛 it defines a 
complement of 𝐷 as follows: 

𝑐𝑜𝑚𝑌(𝐷) = (
1−𝑑1

𝑛−1
, … ,

1−𝑑𝑛

𝑛−1
). 

The uniform negator is defined for all 𝑑 in [0,1] 
as follows [2]: 

𝑁𝑈(𝑑) =
1

𝑛
. 
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It is another example of a distribution-independent 
negator. For any distribution 𝐷 = (𝑑1, … , 𝑑𝑛) in 𝒟𝑛 

negator 𝑁𝑈 defines its complement as follows: 

𝑐𝑜𝑚𝑈(𝐷) = (
1

𝑛
, … ,

1

𝑛
) = 𝐷𝑈. 

The following negator 𝑁𝐵, introduced in [3], is 

defined for any distribution 𝐷 = (𝑑1, … , 𝑑𝑛) in 𝒟𝑛 

and all 𝑑𝑖, 𝑖 = 1,… , 𝑛  as follows: 

𝑁𝐵(𝑑𝑖) =
max(𝐷)+min(𝐷)−𝑑𝑖

𝑛(max(𝐷)+min(𝐷)) −1
=

𝑀𝐷−𝑑𝑖

𝑛𝑀𝐷−1
 . (3) 

where max(𝐷) = max{𝑑1, … , 𝑑𝑛}, min(𝐷) =
min{𝑑1, … , 𝑑𝑛} and 𝑀𝐷 = max(𝐷) + min(𝐷). This 
negator is an example of a distribution-dependent 
negator. It depends not only on membership value 
𝑑𝑖, but also on maximal and minimal values of the 

distribution 𝐷. 

Generally, this distribution-dependent negator 
can be denoted, for example, as 𝑁𝐵(𝐷, 𝑑𝑖), but, for 

simplicity of notations, we denote it here as 𝑁𝐵(𝑑𝑖). 

The complement 𝑐𝑜𝑚 of fuzzy distribution sets 

is called involutive, if for all distributions 𝐷 =
(𝑑1, … , 𝑑𝑛) in 𝒟𝑛 it satisfies the following 
involutivity property: 

𝑐𝑜𝑚(𝑐𝑜𝑚(𝐷)) = 𝐷. 

This property is fulfilled for the complement 𝐴 of 

crisp, non-fuzzy sets: 𝐴 = 𝐴, so it is also 
convenient to have involutive complements for 
fuzzy distribution sets. The complements of FDS 
based on Yager negator, uniform negator, and 
many other negators are non-involutive [2-4]. The 
complement of FDS based on the negator 𝑁𝐵 (3): 

𝑐𝑜𝑚𝐵(𝐷) = (𝑁𝐵(𝑑1), … , 𝑁𝐵(𝑑𝑛)). 

is involutive, satisfying the property: 

𝑐𝑜𝑚𝐵(𝑐𝑜𝑚𝐵(𝐷)) = 𝐷. 

3 Union of Fuzzy Distribution Sets 

As in fuzzy sets theory, we can define the union of 
fuzzy distribution sets element-by-element using a 
disjunction operation (disjunctor) applied to 
elements of FDS. Let us use t-conorms [9] as such 
disjunctors for constructing the union of FDS.  

T-conorm is a function 𝑆: [0,1] × [0,1] → [0,1], 
such that for all 𝑎, 𝑏, 𝑐 in [0,1] the following 
properties are satisfied [9]: 

𝑆(𝑎, 𝑏) = 𝑆(𝑏, 𝑎)     (commutativity), 

𝑆(𝑎, 𝑆(𝑏, 𝑐)) = 𝑆(𝑆(𝑎, 𝑏), 𝑐)       (associativity), 

𝑆(𝑎, 𝑏) ≤ 𝑆(𝑎, 𝑐), whenever 𝑏 ≤ 𝑐  (monotonicity), 

𝑆(𝑎, 0) = 𝑆(0, 𝑎) = 𝑎         (boundary condition). 

The following boundary condition follows from the 
properties of t-conorms: 

𝑆(1, 𝑎) = 𝑆(𝑎, 1) = 1.      

Here are the examples of the basic t-conorms: 

𝑆𝑀(𝑎, 𝑏) = max(𝑎, 𝑏)           (maximum), 

𝑆𝑃(𝑎, 𝑏) = 𝑎 + 𝑏 − 𝑎𝑏             (probabilistic sum). 

For all t-conorms 𝑆 and all 𝑎, 𝑏 in [0,1] it 
is fulfilled: 

𝑆𝑀(𝑎, 𝑏) ≤ 𝑆(𝑎, 𝑏). 

Definition 3. A union of fuzzy distribution sets 
based on T-conorm 𝑆 is a function 𝑢𝑛:𝒟𝑛 × 𝒟𝑛 →
𝒟𝑛, defined for all FDS 𝐴 = (𝑎1, … , 𝑎𝑛) and 𝐵 =
(𝑏1, … , 𝑏𝑛) in 𝒟𝑛 as follows:  

𝑢𝑛(𝐴, 𝐵) = 𝐶 = (𝑐1, … , 𝑐𝑛), (4) 

where  

𝑐𝑖 =
𝑆(𝑎𝑖,𝑏𝑖)

∑ 𝑆(𝑎𝑖,𝑏𝑖)
𝑛
𝑖=1

, 𝑖 = 1,… , 𝑛. (5) 

It is easy to see that (4) is a distribution. From 
the boundary conditions and (2), it follows that the 
denominator of (5) is positive. From the definition 
of t-conorms for all 𝑖 = 1,… , 𝑛, it follows: 

0 ≤ 𝑐𝑖 ≤ 1, 

and from (5) we have: 

  ∑ 𝑐𝑖 =
𝑛
𝑖=1 ∑

𝑆(𝑎𝑖,𝑏𝑖)

∑ 𝑆(𝑎𝑖,𝑏𝑖)
𝑛
𝑖=1

=𝑛
𝑖=1 1. 

From the properties of t-conorms, it follows that 
for all 𝐴,𝐵 in 𝒟𝑛 the property of commutativity 
is satisfied: 

𝑢𝑛(𝐴, 𝐵) = 𝑢𝑛(𝐵, 𝐴). 

The function 𝐷𝐼𝑆: [0,1] × [0,1] → [0,1] defined 
for any distributions 𝐴 = (𝑎1, … , 𝑎𝑛) and 𝐵 =
(𝑏1, … , 𝑏𝑛) in 𝒟𝑛 and all 𝑖 = 1,… , 𝑛 by 

Computación y Sistemas, Vol. 26, No. 3, 2022, pp. 1411–1416
doi: 10.13053/CyS-26-3-4360

Fuzzy Distribution  Sets 1413

ISSN 2007-9737



𝐷𝐼𝑆(𝑎𝑖 , 𝑏𝑖) =
𝑆(𝑎𝑖 , 𝑏𝑖)

∑ 𝑆(𝑎𝑖 , 𝑏𝑖)
𝑛
𝑖=1

 (6) 

will be called a disjunctor. The following properties 
of disjunctor (6) follow from the properties of t-
conorms for all 𝑖, 𝑗 = 1,… , 𝑛: 

Commutativity: 

𝐷𝐼𝑆(𝑎𝑖 , 𝑏𝑖) = 𝐷𝐼𝑆(𝑏𝑖 , 𝑎𝑖). 

Monotonicity:  

if 𝑎𝑖 ≤ 𝑎𝑗 and 𝑏𝑖 ≤ 𝑏𝑗, then 𝐷𝐼𝑆(𝑎𝑖 , 𝑏𝑖) ≤ 𝐷𝐼𝑆(𝑎𝑗 , 𝑏𝑗). 

For t-conorm 𝑆𝑀(𝑎, 𝑏) = max(𝑎, 𝑏), we obtain 
the following disjunctor: 

𝐷𝐼𝑆𝑀(𝑎𝑖 , 𝑏𝑖) =
max(𝑎𝑖,𝑏𝑖)

∑ max(𝑎𝑖,𝑏𝑖)
𝑛
𝑖=1

. 

For t-conorm 𝑆𝑃(𝑎, 𝑏) = 𝑎 + 𝑏 − 𝑎𝑏, we obtain 
the following disjunctor:  

𝐷𝐼𝑆𝑃(𝑎𝑖 , 𝑏𝑖) =
𝑎𝑖+𝑏𝑖−𝑎𝑖𝑏𝑖

∑ (𝑎𝑖+𝑏𝑖−𝑎𝑖𝑏𝑖)
𝑛
𝑖=1

=
𝑎𝑖+𝑏𝑖−𝑎𝑖𝑏𝑖

2−∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1

. 

4 Intersection of Fuzzy Distribution 
Sets Using t-Norms 

T-norm is a function 𝑇: [0,1] × [0,1] → [0,1], such 

that for all 𝑎, 𝑏, 𝑐 in [0,1] the following properties are 
satisfied [9]: 

𝑇(𝑎, 𝑏) = 𝑇(𝑏, 𝑎)     (commutativity), 

𝑇(𝑎, 𝑇(𝑏, 𝑐)) = 𝑇(𝑇(𝑎, 𝑏), 𝑐)       (associativity), 

𝑇(𝑎, 𝑏) ≤ 𝑇(𝑎, 𝑐), whenever 𝑏 ≤ 𝑐 (monotonicity), 

𝑇(𝑎, 1) = 𝑇(1, 𝑎) = 𝑎        (boundary condition). 

The following boundary condition follows from the 
properties of t-norms: 

𝑇(0, 𝑎) = 𝑇(𝑎, 0) = 0.      

Here are the examples of the basic t-norms: 

𝑇𝑀(𝑎, 𝑏) = min(𝑎, 𝑏)          (minimum), 

𝑇𝑃(𝑎, 𝑏) = 𝑎𝑏              (product). 

For all t-norms 𝑇 and all 𝑎, 𝑏 in [0,1], it is fulfilled: 

𝑇(𝑎, 𝑏) ≤ 𝑇𝑀(𝑎, 𝑏). 

Definition 4. An intersection of fuzzy distribution 

sets based on t-norm 𝑇 is a function 𝑖𝑛𝑡:𝒟𝑛 × 𝒟𝑛 →

𝒟𝑛, defined for all FDS 𝐴 = (𝑎1, … , 𝑎𝑛) and 𝐵 =
(𝑏1, … , 𝑏𝑛) in 𝒟𝑛, as follows: 

𝑖𝑛𝑡(𝐴, 𝐵) = 𝐶 = (𝑐1, … , 𝑐𝑛), 

where, for all 𝑖 = 1,… , 𝑛, 𝑐𝑖 is defined by: 

𝑐𝑖 =
1

𝑛
,   if   𝑇(𝑎𝑖 , 𝑏𝑖) = 0   for all 𝑖 = 1,… , 𝑛, 

otherwise: 

𝑐𝑖 =
𝑇(𝑎𝑖,𝑏𝑖)

∑ 𝑇(𝑎𝑖,𝑏𝑖)
𝑛
𝑖=1

. (7) 

The function 𝐶𝑂𝑁: [0,1] × [0,1] → [0,1] defined 

for any distributions 𝐴 = (𝑎1, … , 𝑎𝑛) and 𝐵 =
(𝑏1, … , 𝑏𝑛) in 𝒟𝑛 by   

𝐶𝑂𝑁(𝑎𝑖 , 𝑏𝑖) =

{
 

 
1

𝑛
, 𝑖𝑓 𝑇(𝑎𝑖 , 𝑏𝑖) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… , 𝑛,

𝑇(𝑎𝑖 , 𝑏𝑖)

∑ 𝑇(𝑎𝑖 , 𝑏𝑖)
𝑛
𝑖=1

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

will be called a conjunctor. The following properties 
of conjunctor follow from the properties of t-norms 
for all 𝑖, 𝑗 = 1,… , 𝑛: 

Commutativity: 

𝐶𝑂𝑁(𝑎𝑖 , 𝑏𝑖) = 𝐶𝑂𝑁(𝑏𝑖 , 𝑎𝑖). 

Monotonicity:  

if 𝑎𝑖 ≤ 𝑎𝑗 and 𝑏𝑖 ≤ 𝑏𝑗, then 𝐶𝑂𝑁(𝑎𝑖 , 𝑏𝑖) ≤ 𝐶𝑂𝑁(𝑎𝑗 , 𝑏𝑗). 

5 Intersection of Fuzzy Distribution 
Sets Using Union and Complement 

From De Morgan law of crisp sets: 

𝐴 ∩ 𝐵 = 𝐴⋃𝐵, 

and the involutivity of complement 𝐴 = 𝐴 we have: 

𝐴⋂𝐵 = 𝐴⋃𝐵. 

We will use this formula to define a new 
intersection of fuzzy distribution sets. 

Definition 5. An intersection of fuzzy distribution 
sets is a function 𝑖𝑛𝑡: 𝒟𝑛 × 𝒟𝑛 → 𝒟𝑛, defined for all 

FDS 𝐴 = (𝑎1, … , 𝑎𝑛) and 𝐵 = (𝑏1, … , 𝑏𝑛) in 𝒟𝑛, 
as  follows: 

𝑖𝑛𝑡(𝐴, 𝐵) = 𝑐𝑜𝑚𝐵(𝑢𝑛(𝑐𝑜𝑚𝐵(𝐴), 𝑐𝑜𝑚𝐵(𝐵))), 

such that in the distribution: 
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𝑖𝑛𝑡(𝐴, 𝐵) = 𝐶 = (𝑐1, … , 𝑐𝑛), 

𝑐𝑖 is defined for all 𝑖 = 1,… , 𝑛, by: 

𝑐𝑖 = 𝑁𝐵 (𝐷𝐼𝑆(𝑁𝐵(𝑎𝑖), 𝑁𝐵(𝑏𝑖))). 

Step-by-step, we obtain: 

𝑁𝐵(𝑎𝑖) =
max(𝐴)+min(𝐴)−𝑎𝑖

𝑛(max(𝐴)+min(𝐴)) −1
, 

𝑁𝐵(𝑏𝑖) =
max(𝐵)+min(𝐵)−𝑏𝑖

𝑛(max(𝐵)+min(𝐵)) −1
, 

𝐷𝐼𝑆(𝑁𝐵(𝑎𝑖), 𝑁𝐵(𝑏𝑖)) =
𝑆(𝑁𝐵(𝑎𝑖),𝑁𝐵(𝑏𝑖))

∑ 𝑆(𝑁𝐵(𝑎𝑖),𝑁𝐵(𝑏𝑖))
𝑛
𝑖=1

. 

Denoting  𝑒𝑖 = 𝐷𝐼𝑆(𝑁𝐵(𝑎𝑖), 𝑁𝐵(𝑏𝑖)) and 𝐸 =
(𝑒1, … , 𝑒𝑛), finally we obtain: 

𝑐𝑖 = 𝑁𝐵(𝑒𝑖) =
max(𝐸)+min(𝐸)−𝑒𝑖

𝑛(max(𝐸)+min(𝐸)) −1
. 

6 Example 

Suppose you with your wife want to evaluate how 
many neighbors will come to your open party. She 
supposes that you will have 5-6 guests, and you 
suppose to have 8-9 guests. Suppose you can 
represent these evaluations as subjective 
probability distributions defined on the set: 

𝑋 = {4, 𝟓, 𝟔, 7, 𝟖, 𝟗, 10}, 

for your wife as:  

𝑊 = (0.1, 𝟎. 𝟑, 𝟎, 𝟑, 0.2, 0.1, 0, 0) 

and for you, as: 

𝑌 = (0, 0, 0, 0.1, 𝟎. 𝟒, 𝟎, 𝟒, 0.1). 

Using the formula (7) with minimum and product 
conjunctions, you obtain intersections of these 
distributions as possible solutions to your problem. 

Using minimum t-norm 𝑇𝑀 you obtain 

𝑖𝑛𝑡𝑀(𝑊, 𝑌) = (0, 0, 0, 𝟎. 𝟓, 𝟎. 𝟓, 0, 0), 

i.e., 𝑝(7)  =  𝑝(8)  =  0.5, and 𝑝(𝑘) = 0, for 𝑘 =
4,5,6,9,10. 

Using product t-norm 𝑇𝑃  you obtain: 

𝑖𝑛𝑡𝑃(𝑊, 𝑌) = (0, 0, 0, 𝟎. 𝟑𝟑, 𝟎. 𝟔𝟕, 0, 0), 
i.e., 𝑝(7) = 0.33, 𝑝(8)  =  0.67, and 𝑝(𝑘) = 0, for 𝑘 =
4,5,6,9,10. 

Compared with initial subjective evaluations of 
the number of guests: 5-6, and 8-9, the applied 

models give 7-8 as the more probable number of 
guests for both t-norms used in the model, but the 
product t-norm evaluates the number of 8 guests 
as the most probable. 

Evaluation of the probable number of guests 
using union operation gives the following results for 
maximum 𝑆𝑀 and probabilistic sum 𝑆𝑃 t-conorms: 

𝑢𝑛𝑀(𝑊, 𝑌) = (0.056, 𝟎. 𝟏𝟔𝟕, 𝟎. 𝟏𝟔𝟕, 0.111, 𝟎. 𝟐𝟐𝟐, 𝟎. 𝟐𝟐𝟐, 0.056), 
𝑢𝑛𝑃(𝑊,𝑌) = (0.052,𝟎. 𝟏𝟓𝟓, 𝟎. 𝟏𝟓𝟓, 0.144, 𝟎. 𝟐𝟑𝟕, 𝟎. 𝟐𝟎𝟔, 0.052), 

These distributions are defined on the domain: 
𝑋 = {4, 𝟓, 𝟔, 7, 𝟖, 𝟗, 10}. 

All elements of this domain have non-zero 
probabilities with local maximums for 5-6 and 8-9 
guests corresponding to the initial subjective 
distributions but considering 8-9 as more probable. 

The product t-conorm refines the probability 
values giving the most probable value for 8 guests.  

Similar methods can be used for aggregating 
subjectively defined weight distributions widely 
used in multi-criteria, multi-objective, multi-person, 
and multi-alternative decision-making.  

7 Conclusion 

The paper proposed a new type of fuzzy set that 
can be used to model subjective probability 
distributions and subjective weight distributions.  

Fuzzy logic allows you to build models of 
subjective reasoning and human behavior It has 
numerous applications in control, pattern 
recognition, decision-making, machine learning, 
and other research areas. The paper paves a new 
way to apply the power of fuzzy logic for modeling 
and processing subjective probability distributions 
and subjective weight distributions.  

In future works, we plan to extend the methods 
of processing fuzzy distribution sets by applying 
generalized fuzzy conjunction and disjunction 
operations and other fuzzy logic techniques (in the 
wide sense) [7-12]. 
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