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Abstract. Analysis of surface electromyography (sEMG) 
signals is a common practice in biomedical applications 
for recognizing muscle movement, wavelet coefficients 
obtained from wavelet transform (WT) or wavelet packet 
transform (WPT) are used as features of the sEMG 
signal and classified by means of machine learning 
models. To the best of our knowledge, no study has fully 
exploited the resemblance wavelet coefficients have to 
the signal from which they were obtained. In this context, 
time domain feature extraction on smaller data lengths 
can be applied directly to approximation and detail 
coefficients for different decomposition levels. This can 
be seen as different frequency band filtered versions of 
the original signal. The aim of this research is to compare 
time domain feature extraction of wavelet coefficients 
obtained from WT and WPT against time domain feature 
extraction for different frequency bands filtered sEMG 
signals and determine which approach is most suitable 
for hand movement recognition. To this end, sEMG 
signals were decomposed using both the WT (level 6, 
'db4') and WPT (level 3, 'db4') methodologies to 
compare results. The comparison criterion reflects the 
results of the classification of three machine learning 
models. Results were obtained by performing 
supervised multiclass classifications of 18 upper limb 
movements from 40 subjects, retrieved from the 2nd 
public database generated for the Ninapro Project. The 
use of a lower number of coefficients can produce similar 
performance results as shown when comparing WT vs 
WPT. In the other hand, time domain feature extraction 
from filtered sEMG signals using wavelet reconstruction 
produces slightly better performance on classification 
results at a higher computational cost. 

Keywords. Classification, sEMG, feature extraction, 
wavelet decomposition, wavelet packet. 

1 Introduction 

Surface electromyography (sEMG) signals 
collected from the contraction movements of the 
muscles of the upper limbs are a direct 
representation of the functional status of the 
muscles. This direct representation has been 
widely used in medical applications, being the 
recognition of human motion a significant research 
topic in the last decades [1]. 

The potential applications derived from this 
approach range from developing muscle-computer 
interfaces (muCIs) [2] to the control of prosthetic 
devices that makes possible to restore functional 
capabilities in people who have suffered the loss of 
a limb [3,4]. Generally, a sEMG automatic signal 
classification methodology is employed, whereby 
selected features are extracted from the signals 
and used to train a classifier algorithm to predict 
the intended motions of the limbs [5]. 

The Feature Extraction (FE) technique is a 
significant step in achieving the optimal 
performance in classifying the sEMG patterns [6]. 
Hence, many extraction techniques have been 
applied to different signal domains, notably in the 
time domain (TD), the frequency domain (FD), and 
the time-frequency domain (TFD). Several TD 
features such as the Mean Absolute Value (MAV), 
Waveform Length (WL), Root Mean Square 
(RMS), and Integrated EMG (IEMG) have been 
effectively used to solve sEMG classification 
problems [7-9]. 
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However, the TD features are limited to classify 
small sets of muscle movements [10], since their 
use requires assuming that signals are stationary 
so that their statistical parameters are constant in 
time, though in nature EMG signals are not [5]. The 
FD features extracted from EMG signals such as 
the Mean Frequency (MNF), Peak Frequency 
(PKF), Mean Power (MNP), are not much suitable 
for classification [10, 11]. 

Because sEMG signals are not stationary, the 
recommended approach is often to extract time-
frequency (TF) domain features that can be 
obtained through time-scale analysis methods like 
Short Time Fourier Transform (STFT) [10, 12], 
Wavelet Transform (WT) [13] and Wavelet Packet 
Transform [6]. The WT generate useful subsets of 
the frequency components of a signal as Wavelet 
Coefficient Subsets (WCS) [14]. The WT only 
decompose low frequency components 
(approximation coefficients) and ignores the 
effective information in the high-frequency 
components (detail coefficients) [15]. 

The WPT allows decomposing the 
approximation and detail coefficients at the same 
time based in a binary tree structure [16]. Due to 
the complexity of the sEMG signals, wavelet 
coefficients obtained from WT and WPT are widely 
used as the input features on sEMG classification 
tasks. Regarding the characterization studies of 
signals using time-frequency domain methods, 
several works have shown promising results; for 
example, Ajitkumar et al. [17] achieve an accuracy 
of 93.13% for classifying cardiac signals using 
PCG-ECG. 

Specifically, for sEMG signals, Khzeri and 
Jahed [18] used TD features, STFT, WT and WPT 
features, and the combination of two domains to 
classify sEMG signals. Their study showed that the 
combination of all features (TD + TFD) allowed 
achieving the best classification results (83%).  

However, the influence of choosing WT or WPT 
features on the classification results was not 
analyzed, since these were studied together. 
Subsequently, Phyniomark et al. [19] 
demonstrated the utility of extracting EMG features 
(MAV and RMS value) from optimal frequency 
components (sEMG signals) reconstructed from 
optimal WCS resulting from WT. The latter, 
through the comparison of feature extraction from 
WCS with the characterization of signals 

reconstructed from the same WCS, showing that 
the features of the reconstructed signals achieve 
slightly higher class-separability results than 
their  counterpart. 

However, neither a models classification 
accuracy nor statistical analysis was used to 
perform a comparison of FE methodologies. In a 
similar analysis, Shin et al. [16] searched for the 
best technique to classify EMG signals using four 
FE methods: TD, Empirical Mode Decomposition 
(EMD), WT and WPT in conjunction with several 
dimensionality reduction techniques 
and  classifiers. 

They reported that the set of TD features 
showed the best classification results (over 80%) 
compared to the other methods. Furthermore, the 
extraction of WT and WPT features was not 
performed in the optimal frequency components, 
as previously suggested, but were extracted from 
all the wavelet coefficients. 

Additionally, a direct comparison between both 
wavelet methods is not presented. On the other 
hand, Kevric and Subasi presented a direct 
comparison between these two wavelet methods 
[20]; they classified EEG signals by extracting six 
TD features from the wavelet coefficients obtained 
from the WT and WPT. They reported that the use 
of WPT features results in higher accuracy values 
than the WT features. 

This is since the WPT generates a greater 
number of features than the WT, and because the 
WPT decomposes the effective high-frequency 
components of the EEG signals. Subsequently, 
Xiuwu et al. [15] used the energy and VAR of the 
WPT coefficients to classify six hand movements 
with a support vector machine (SVM) achieving an 
accuracy of 90.66%. 

Characterizing the wavelet coefficient vectors 
with TD features allows eliminating the limitations 
present when using these features in the time 
domain [15]. Recently, Bhagwat and Mukherji [5] 
used the energy of the coefficients from a 4-level 
WPT as input to a Quadratic Discriminant Analysis 
(QDA) that reached an accuracy of 99.5% for the 
classification of fifteen finger movements. 

Both WT and WPT have demonstrated 
excellent performance in classifying upper limb 
sEMG signals. Nonetheless, we did not find 
previous work that performed a direct comparison 
between the time domain feature extraction of 
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wavelet coefficients obtained from WT, WPT and 
time domain feature extraction for different 
frequency bands wavelet reconstructed sEMG 
signals, that allows us to determine which 
approach is most suitable for hand movement 
recognition in both performance and 
computational cost. 

The rest of this paper is organized as follows: 
Section Materials and Methods provides more 
information about the sEMG dataset being used 
and describes the signal wavelet decomposition 
methods, the FE, and the classification. The 
experimental results and the throughout 
discussion are presented in Section Results and 
Discussion. Last section concludes the paper. 

2 Materials and Methods 

Fig. 1 shows the methodological diagram we 
followed. The process starts with the EMG raw 
signals that are conditioned before being 
processed. After that, there are three pipelines, A) 
extract TD features from the raw signals, B) from 
the WCS and C) from the signals reconstructed 
from the same WCS. The generated features are 
passed to train the classification models and 
finally, the models are tested. 

2.1 Database 

The sEMG signals were taken from the second 
sub-database of the 2nd public database 
generated for the Ninapro Project [21, 23], which is 

a robust tool that allows comparisons between FE 
and classification methodologies for sEMG signals 
in an effort to increase the knowledge in the area 
of prostheses that function via myoelectric control.  

This database contains data recorded from 40 
subjects with no degree of amputation (28 males, 
12 females, aged 29 ± 3.4 years) while they 
performed a series of 50 hand movements. 
Subjects were instructed to imitate the movement 
displayed on a monitor in front of them. 

They performed six repetitions of each 
movement, each one after a rest period of around 
three seconds. sEMG signals were acquired 
through eight electrodes placed around the 
forearm in relation to the radio-humeral joint, two 
electrodes were placed at the main points of 
activity of the flexor and extensor digitorum, and 
two electrodes were placed on the main activity 
spots of biceps and triceps muscles. 

Fig. 2 depicts a cross-section of the right middle 
forearm (in palmar supination), specifying the 
muscles involved in finger and/or wrist movements. 

The 50 movements (rest included) were divided 
into four blocks called exercises. Exercise A 
included information on 12 basic finger 
movements. Exercise B contained information on 
8 hand configurations and 9 wrist movements (see 
Table 1). 

Exercise C contained information on 23 
grasping movements and Exercise D contained 
information on force patterns which corresponded 
finger flexion movements. For this work, Exercise 
B was chosen since it contains hand and 
wrist movements. 

  

Fig. 1. Methodological diagram. The detail (cDn) and approximation (cAn) coefficients generated by the n-level WT 
and the m coefficients generated by the n-level WPT (cBnm) were characterized or reconstructed for further 
characterization. Finally, the coefficients and signals were classified 
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2.2 Experimental Setup 

We used the movement and repetition labels from 
the database to locate each movement and 
repetition sEMG signal. Movement labels range 
from 1-18 (rest included) and repetition labels 

range from 1-6. Subsequently, all EMG channels 
were normalized to have a mean equal to zero and 
a unit standard deviation. 

Once the signals are normalized, each sEMG 
signal was decomposed using both wavelet 
methodologies (WT and WPT), to subsequently 

 

Fig. 2. Cross-section of the right middle forearm. The octagon represents how the electrodes were placed around the 
forearm. Image retrieved from [24] 

Table 1. Description of the 17 movements in Exercise B 

Movements No. Description 

Hand  
configurations 

1 Thumb up 

2 
Flexion of ring and little fingers; thumb flexed over middle and 
little fingers 

3 Flexion of ring and little fingers 
4 Thumb opposing base of little finger 
5 Abduction of the fingers 
6 Fingers flexed together 
7 Pointing index 
8 Fingers closed together 

Wrist  
movements 

1-2 
Wrist supination and pronation (rotation axis through the middle 
finger)  

3-4 
Wrist supination and pronation (rotation axis through the little 
finger) 

5-6 Wrist flexion and extension 
7-8 Wrist radial and ulnar deviation 
9 Wrist extension with a closed hand 
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extract features from the WCS and from the 
reconstructed sEMG signals from WCS for 
further classification. 

2.3 Signal Decomposition Using Wavelets 

Wavelet transform is useful for processing and 
analyzing non-stationary biomedical signals. The 
Discrete Wavelet Transform (DWT) iteratively 
decomposes a discrete time signal into multi-
resolution subsets of signals or wavelet 
coefficients [19] that represent the frequency 
components of the input signal, by scaling and 
shifting a mother wavelet a certain number of times 
determined by the decomposition level. 

At each level, the input signal passes through a 
high and a low pass digital filter, respectively, and 
subsequently gets down-sampled by two. The 
output at each level consists of two signals: 
approximation (low-frequency components) and 
detail (high-frequency components) coefficients 
[20]. For the next level, the approximation signal 
becomes the input signal, and the process is 
repeated as many times as levels 
of  decomposition. 

Fig. 3A shows a graphical representation of a 
6-level WT of a signal sampled at 2kHz. Different 
features of the input signal can be analyzed from 
each set of coefficients. One example is the signal 
trend, which results from analyzing the 
approximation coefficients associated with the low 
frequencies of the signal. Other features, such as 

discontinuities or transient events, can be 
appreciated by analyzing the detail coefficients, 
which are related to the high frequencies of the 
signal [25]. 

The WT only decomposes low-frequency 
components and may miss effective information in 
the high-frequency components. The Discrete 
Wavelet Packet Transform (DWPT), moreover, 
decomposes the approximation signals but also 
the detail signals at the same time. The detail 
coefficients also serve as input signals for the next 
level corresponding to a binary tree structure [15]. 

DWPT achieves better frequency resolution for 
the decomposed signal than DWT since, in case of 
n-levels, DWT generates 𝑛 + 1 frequency 
components, whereas the number of frequency 
components produced by the DWPT is the 𝑛-th 
power of two [20]. Fig. 3B shows the three-level 
WPT graphical representation for a signal sampled 
at 2kHz. 

Using wavelet decomposition and FE to classify 
EMG signals have been proposed and used in 
numerous works [5, 15-19] based on the non-
stationarity and complexity of the EMG signals.  

In this study, decomposition was performed 
with both methodologies: WT and WPT. 

2.4 Wavelet Decomposition (WT) 

For this analysis, a 6-level wavelet decomposition 
was applied to each channel of the sEMG to divide 
the signal bandwidth uniformly using the mother 

 

Fig. 3. Graphical representation of wavelet decompositions. A) 6-level wavelet decomposition (WT), the cut-off 
frequencies of each filter generate the approximation (A) and detail (D) wavelet coefficients. B) 3-level wavelet packet 
decomposition (WPT) 
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wavelet 'db4' of the Daubechies family, since it is 
well known that this mother wavelet is suitable for 
detecting signal changes and because its shape is 
similar to the shape of motor units’ action potentials 
[26, 27]. The decomposition level was chosen 
trying to match the frequency sub-bands generated 
by the WT and the WPT. 

Since the 3-level WPT generates 2ଷ = 8 
coefficient vectors, the 6-level WT decomposition 
was chosen, which generates seven frequency 
sub-bands, seeking to use the least levels of 
decomposition in low-frequency components. 

Decomposition generated a vector of wavelet 
coefficients formed by the approximation and the 
various detail coefficients. Once decomposition 
was complete, the approximation coefficients 
corresponding to the level six (cA6) and level 1-6 
details (cD1-cD6) were obtained to give 
seven WCS. 

2.5 Wavelet Packet Decomposition (WPT) 

In this analysis, the three-level WPT was applied to 
each channel of the sEMG signals using the 
mother ''db4'' wavelet. This approach produced a 
decomposition tree from which we obtained the 
coefficients corresponding to level three. For each 
channel of the sEMG signals, we obtained eight 
WCS (cB31-cB38) that were related to the 
frequency bands, all with the same resolution (all 
represented with the same number of coefficients). 
Table 2 shows the WCS for both WT and WPT and 
their corresponding frequency sub-bands. 

Based on the coefficients obtained from both 
wavelet decomposition methods, the sEMG 
signals corresponding to each frequency sub-band 
were reconstructed using the Inverse Wavelet 
Transform (IWT) [19]. Finally, we characterized the 
WCS (WDT, WPT) and the sEMG signals 
reconstructed from their respective WCS. 

2.6 Feature Extraction 

Once the WCS of the WT and WPT, and the 
reconstructed sEMG signals were obtained, we 
characterized them by extracting six TD features 
from each coefficient vector and reconstructed 
signal (see Table 3). 

The features calculated were mean average 
value, simple square integral, root mean square 
value, variance, integrated EMG, and 
waveform length. 

In this way, the dimensionality of each vector 
and signal was reduced to just a six-element 
feature vector, 𝑉௡௖ = {𝐶ଵ, … , 𝐶଺}. Where, 𝑉 is the 
feature vector, 𝑛 is the decomposition level and 𝑐 
is the EMG channel. This procedure was 
performed on each WCS (WT, WPT) and each 
reconstructed sEMG signal. 

As previously mentioned, converting the WCS 
or signals into a reduced feature vector represents 
an important step in classification tasks [20]. 
Generally, feature extraction can be implemented 
in two ways. One of them is the feature projection 
method, which, with the help of artificial intelligence 
models and dimensionality reduction methods 
such as Principal Component Analysis (PCA), 
estimates the best combination of features for the 
classification task. Here, the characteristics 
obtained depend on the model used and the 

Table 2. WCS generated by a WT and WPT 

3-level WPT 
Frequency 
Band (Hz) 

6-level WT 

cB31 0-125 
cA6, cD6, cD5, 

cD4 
cB32 125-250 cD3 
cB33 250-375 cD2 
cB34 375-500  
cB35 500-625 cD1 
cB36 625-750  
cB37 750-875  
cB38 875-1000  

Table 3. Definition of the features used 

Features Definition 

Mean absolute value 
[5, 14-16] 

𝑀𝐴𝑉 =  
ଵ

ே
∑ |𝑉௞|ே

௞ୀଵ . 

Simple square 
integral [14, 15] 

𝑆𝑆𝐼 =  ∑ |𝑉௞|ଶே
௞ୀଵ . 

RMS value [5, 14-16] 𝑅𝑀𝑆 =  ට
ଵ

ே
∑ 𝑉௞

ଶே
௞ୀଵ . 

Variance [10, 15] 𝑉𝐴𝑅 =  
ଵ

ேିଵ
∑ 𝑉௞

ଶே
௞ୀଵ . 

Integrated EMG [5, 
10, 16] 𝐼𝐸𝑀𝐺 =  ∑ |𝑉௞|ே

௞ୀଵ . 

Waveform length [5, 
10, 16] 𝑊𝐿 =  ∑ |𝑉௞ାଵ − 𝑉௞|ேିଵ

௞ୀଵ . 
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dimensionality reduction method [19] and in some 
cases the features that the model considers are not 
known [28]. 

Another method is feature selection and 
represents less computational complexity [19]; it 
has been used in many sEMG classification tasks 
and allows knowing which features are related to 
the best class separability of upper 
limb movements. 

The EMG feature extraction toolbox provided 
by Too et al. [29] is used for FE using MATLAB 
2017b software (MathWorks). 

Finally, we obtained several matrices that 
stored the information of the movements and 
repetitions. Each matrix consisted of 108 (18 
movements × 6 repetitions) × 73 (12 EMG 
channels × 6 TD features + 1 label that identified 
each movement) elements. 

2.7 Classification 

These matrices were used as input for three 
classifiers commonly utilized in earlier work on 
sEMG signal classification: Support Vector 
Machine (SVM) [5, 15, 16, 30], Multilayer 
Perceptron (MLP) [16, 33], and Random Forest 
(RF) [33]. These models are responsible for 
performing the within-subject supervised 
multiclass classification of the 18 movements 
based on their extracted features. 

For each subject, out of the total number of 
features, 80% of the data was used as a 
training/validation dataset and the accuracy was 
evaluated using the remaining 20% as the 
testing  dataset. 

SVM is a linear classifier that maximizes a 
mathematical function over a data set [31]. It is 
designed to maximize classification accuracy while 
avoiding overfitting the data [32], through the 
search for the precise hyperplane that segregates 
the elements of a class from the rest of the classes 

[33]. We implemented the “one-vs-one” strategy for 
the multiclass classification. 
The MLP is the most widely used type of forward 
propagating neural network due to its fast 
operation, easy implementation, and smaller 
training set requirements [34]. 

MLP consists of a system of interconnected 
neurons that represent a nonlinear mapping 
between the input and output vectors [35]. It is 
made up of at least three layers: an input layer, one 
or more hidden layers, and an output layer. Finally, 
RF is a predictor made up of a set of classifiers 
structured as trees. 

Each tree predicts a classification value for an 
input value and the class is subsequently decided 
by the highest voted class value [36]. 

Hyper-parameters such as the penalty cost (C) 
of the kernel and its coefficient (γ) of the SVM, the 
learning rate, the number of neurons in the hidden 
layer, solver, maximum number of iterations, 
activation function of the MLP, the estimators 
number, number of features considered for split, 
depth of tree and the split criterion of the RF were 
automatically optimized through the grid-
search  approach. 

This means that for each subject and each 
frequency component, the hyperparameters of 
each of the models (SVM, MLP and RF) 
were optimized. 

Evaluations of the three classifiers were 
performed by stratified leave-one-out cross-
validation. This evaluation method was chosen 
because it allows each folder to hold a proportional 
distribution of instances that refers to the original 
dataset. Several metrics are available to evaluate 
the performance of classifiers. 

Accuracy, precision, and recall are the main 
measures used for this task [37]. We used the 
average accuracy value (see Table 4) to report 
results, defined as the per-class effectiveness of 
the classifier. The machine learning “scikit-learn” 
toolbox provided by Pedregosa et al. [39] is used 
for training and testing of the algorithms using 
Python 3.9 software. 

For an individual 𝐶௜, the value is defined by the 
true positives (𝑡𝑝௜), false positives (𝑓𝑝௜), false 
negatives (𝑓𝑛௜), and true negatives (𝑡𝑛௜). 

Table 4. Mathematical definition of the average 
accuracy value. 

Feature Definition 

Average Accuracy [38] 
∑

೟೛೔శ೟೙೔
೟೛೔శ೑೙೔శ೑೛೔శ೟೙೔

೗
೔సభ

௟
. 

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 553–567
doi: 10.13053/CyS-27-2-4409

Comparing Wavelet Characterization Methods for the Classification of Upper Limb sEMG Signals 559

ISSN 2007-9737



3 Results and Discussion 

Results are described in four sections. The first 
section presents the results of the WCS 
characterization (WT and WPT). The second 
shows the results of the classification by the 
characterization of reconstructed signals from 
corresponding WCS for both WT and WPT. In the 
third section, methodologies are assessed; finally, 
the accuracy of the three models is compared in 
section four. 

3.1 Classification by FE from WT and WPT 
Coefficients 

Fig. 4 shows the average accuracy values 
obtained by the three classification algorithms 
when using six-elements feature vectors created 
by applying Time Domain Feature Extraction 
(TDFE) to WT-WCS. 

The best classification results (M = 88.00%) are 
obtained by the three models in in the WCS cD2 
corresponding to 200-500 Hz frequency sub-band 
(see Table 2). While the lowest classification 
results (M = 57.54%) are obtained by the three 
models in the WCS cA6 corresponding to 0-15.6 
Hz frequency sub-band (see Table 2). 

To evaluate the significance of the changes in 
accuracy, a series of t-tests were performed, 
comparing the values obtained for each of the 
WCS. From these results we observe that the 
lowest performance results are obtained by the 
three models in the WCS cA6 corresponding to the 
0-15.6Hz frequency sub-band when compared to 
the rest of the WCS (SVM: 𝐹(62.45) = 0.96, 𝑝 <
0.00, MLP: 𝐹(56.79) = 0.65, 𝑝 < 0.00, RF: 
𝐹(318) = 0.04, 𝑝 < 0.00). 

Similarly, the results achieved in the WCS cD6 
corresponding to the 15.6-31.2Hz frequency sub-
band (M = 82.26%) are significantly lower than 
those obtained in the other detail bands and those 
of vector C (SVM: 𝐹(50.63) = 0.36, 𝑝 < 0.00, MLP: 
𝐹(49.48) = 0.11, 𝑝 = 0.001, RF: 𝐹(278) = 0.02, 
𝑝 < 0.02). 

Consistent with the work of Phyniomark et al. 
[19] the lowest class separability results are 
obtained for the WCS cA6 and cD6 corresponding 
to the 0-31.2Hz frequency sub-band and to the last 
level of decomposition. However, Phyniomark et 

al. performed a 4-level decomposition, so they 
considered the cA4 and cD4 WCS corresponding 
to the 0-125Hz frequency sub-band as noise. With 
the 6-level decomposition performed in this work, 
we can consider the 0-31.2Hz band as noise. 

This behavior can be attributed to the lower 
number of wavelet coefficients (𝑁/64), compared 
to the rest of the detail WCS. Furthermore, 
although the best results are obtained in WCS cD2, 
these are not significantly better than those from 
the detail WCS cD5 to cD1 or even from the whole 
wavelet coefficients vector C. 

Therefore, we can assume that the optimal 
WCS to perform the FE are cD5-cD1. Wavelet 
coefficient vector C achieves similar results but 
implies a greater number of coefficients than those 
corresponding to each detail WCS, which 

Fig. 4. Classification accuracy when extracting features 
from the WT-WCS. C represents the result of extracting 
features from all WCS together, corresponding to the 0-
1000 Hz frequency band. The error bars represent the 
standard error of the mean (SEM) 

Table 5. WCS related to their resolution (number 
ofcoefficients) 

WCS Resolution 
C N 

cD1 N/2 
cD2 N/4 
cD3 N/8 
cD4 N/16 
cD5 N/32 

cA6, cD6 N/64 
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translates into a higher computational cost when 
working with this vector.   shows the WCS related 
to their resolution (number of coefficients). 

N is the length of vector C, which is equal to the 
length of the input sEMG signal. Previous works 
such as that of Shin et al. [16] achieved accuracy 
values of less than 80% with a SVM and a MLP, 
when characterizing the wavelet coefficients of a 4-
level WT, in a classification task of 10 hand 
movements and 20 subjects. 

The proposed methodology overcome these 
results for 18 hand and wrist movements and 40 
subjects. Fig. 5 shows the average accuracy 
values obtained by the three models when using 
six-elements feature vectors created by applying 
TDFE to WPT-WCS. 

The highest average accuracy values (M = 
88.59%, M = 87.29%) for this methodology are 
observed in wavelet coefficient vector C and in 
WCS cB36 (625-750 Hz), respectively. While the 
lowest performance results are observed in the 
WCS cB35 corresponding to the 500-625Hz 
frequency sub-band (M = 82.57%). 

After statistical analysis, it was observed that 
WCS cB35 produced significant lower 
performance results when compared to the rest of 
the WCS and to wavelet coefficient vector C, by 
SVM and MLP (SVM: 𝐹(358) = 0.00, 𝑝 < 0.000, 

MLP: 𝐹(358) = 0.03, 𝑝 < 0.000, RF: 𝐹(48.49) =
0.74, 𝑝 > 0.05). In addition, no significant 
differences were found between the rests of 
the WCS. 

Previous works have used the characterization 
of WPT-WCS to solve upper limb movement 
classification tasks. For example, Shin et al. [16] 
used the energy of the coefficients of a 4-level 
WPT in conjunction with an SVM and an MLP and 
achieved accuracy values greater than 70%. 

Both models along with the methodology 
proposed in this work overcome these results. In 
an attempt to use the dimensionality reduction of 
WPT coefficients with TD features, eliminating the 
drawbacks of using these features on the TD, 
Xiuwu et al. [15] used the SSI and VAR of the 
coefficients of a 3-level WPT to classify 6 hand 
movements of 12 subjects in conjunction with an 
improved version of the SVM.They achieved an 
average accuracy of 90.66%. 

Our methodology reaches slightly lower values 
 (88.59%) for more movements and subjects; 
nonetheless, it allows knowing the optimal WCS for 
FE. Recently Bhagwat and Mukherji [5] achieved 
an accuracy value of 99.5% when using the log 
value of the RMS of the coefficients of a 4-level 
WPT, in conjunction with QDA for the classification 
of 15 finger movements from eight subjects. 

This characterization of all the WPT coefficients 
implies a higher computational cost than 
characterizing the optimal sub-bands of the sEMG 
signals. In future works, we propose the use of the 
log value of the RMS of the WPT coefficients of the 
optimal WCS, to see if it is possible to achieve an 
accuracy value comparable to that achieved by 
Bhagwat and Mukherji, with a lower 
computational  cost. 

From this analysis we can see that similar 
results were obtained with both methodologies 
(WT, WPT) when characterizing the coefficients. 
The principal differences were in the resolution of 
the WCS (i.e., the number of coefficients 
considered by each one). 

The optimal WCS of the WT to extract features 
are cD5-cD1, while for the WPT all WCS are 
optimal except for cB35. It is worth noting that all 
WCS generated by the 3-level WPT have a 
resolution of 𝑁/8, while the optimal WCS 
generated by the WT (cD5-cD1) have different 
resolutions (see Table 5). Although, both 

 

Fig. 5. Classification accuracy when extracting features 
from the WPT-WCS. C represents the result of 
extracting features from all wavelet coefficient subsets 
together, corresponding to the 0-1000Hz frequency 
band. The error bars represent the standard error of the 
mean (SEM) 
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methodologies achieve similar accuracy results, it 
is the cD5 WCS that achieves these results by 
making use of the lowest number of wavelet 
coefficients (𝑁/32). 

Previously, Kevric and Subasi [20] compared 
both decomposition methodologies –5-level WT 
and 4-level WPT– when performing a two-class 
categorization of EEG signals from just 5 subjects. 
They reported WPT as the best methodology with 
a classification accuracy of 94.5% compared to WT 
(81.1%). Their results can be attributed to the fact 
that the 4-level WPT generated a greater number 
of WCS (16) than those produced by the 5-level 
WT (6). 

To evaluate the methodologies in approximate 
equality of conditions (i.e. number of WCS) in this 
work it was proposed to match the vectors 
obtained by the wavelet transformations. Seven 
WCS were obtained for the WT and 8 for the WPT, 
however, the WT emphasized the low-frequency 
components, while the WPT emphasized the high-
frequency components, losing detail in the low-
frequency bands (see Table 2). 

We found similar results for both the WT and 
WPT methodologies (88.00% and 87.29%, 
respectively). This is by performing multiclass 
categorization (18 movements) of sEMG signals 
from 40 subjects. 

3.2 Classification by FE of Reconstructed 
Signals from WT and WPT 

Fig. 6 shows the average classification results 
obtained using the features of the reconstructed 
signals in different frequency bands from the WT 
coefficients as inputs to the three classifiers. 

The highest average accuracy value  (M = 
88.38%) for this methodology is observed in the 
reconstructed signal D3 corresponding to the 125-
250Hz frequency sub-band. While the lowest 
accuracy results are observed for the 
reconstructed signal A6 corresponding to the 0-
15.6 Hz frequency sub-band. 

As was shown in the previous section, the WCS 
cA6 produces the lowest accuracy results when 
classifying. However, when performing the 
reconstruction of this sEMG signal in the 
corresponding frequency sub-band associated to 
this WCS significant higher performance values 
are reached (M = 57.54%, M = 76.68%, 
respectively) (SVM: 𝐹(77.99) = 0.98, 𝑝 < 0.00, 
MLP: 𝐹(77.50) = 0.55, 𝑝 < 0.00, RF: 𝐹(78) = 0.03,
𝑝 = 0.003). This behavior can be attributed to the 
resolution of the reconstructed sEMG that is a 
vector of length bigger than the WCS cA6 
(𝑁 >   𝑁/64). 

However, in both methodologies, this frequency 
sub-band associated to the WCS cA6 can be 
considered as noise when compared to the rest of 
the frequency sub-bands. 

As in the feature extraction of the WT-WCS, the 
signal reconstruction from WCS cD6 
corresponding to the 15.6-31.2 Hz frequency sub-
band reaches lower accuracy values than the rest 
of the detail bands (M = 84.36%). It was only found 
that for the MLP the accuracy values of this 
frequency sub-band are comparable to the rest of 
the detail bands (SVM: 𝐹(50.61) = 0.50,  𝑝 =
0.001, MLP: 𝐹(53.28) = 0.99,  𝑝 > 0.05, RF: 
𝐹(278) = 0.00,  𝑝 = 0.001). 

The average classification results obtained 
using the features extracted from the reconstructed 
signals of the WPT coefficients are shown in 
Fig.  7. The highest average accuracy value 
(88.02%) is observed for reconstructed signals 
using the WCS cB35 corresponding to the 500-
625Hz frequency sub-band. The lowest average 
accuracy is observed for reconstructed signals 

 

Fig. 6. Classification accuracy when extracting features 
from the WT reconstructed signals. C represents the result 
of extracting features from the original sEMG signal (0-
1000Hz). The error bars represent the standard error of 
the mean (SEM) 
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using the WCS cB34 corresponding to the 375-
500Hz frequency sub-band (M = 82.98%). 

Compared with the results of the WCS 
characterization, the feature extraction of the B35 
frequency sub-band reconstructed signal produces 
significantly better results (82.58%, 88.02%, 
respectively) (SVM: 𝐹(75.23) = 0.24, 𝑝 = 0.001, 
MLP: 𝐹(74.99) = 0.11,  𝑝 = 0.001). 

This behavior is attributed to the resolution 
considered by each methodology (FE from 
coefficients: 𝑁/8, FE from the reconstructed 
signal: 𝑁). 

Finally, although the lowest results were 
observed in band frequency sub-band B34, these 
are not significantly lower than the rest of the sub-
bands except for B35 (SVM: 𝐹(58.81) = 0.06, 𝑝 =
0.06, MLP: 𝐹(57.78) = 0.30, 𝑝 > 0.05, RF: 
𝐹(56.40) = 0.11, 𝑝 = 0.06). 

However, the results of the B35 sub-band are 
significantly better than the results of the rest of the 
sub-bands (SVM: 𝐹(318) = 0.03, 𝑝 = 0.01, MLP: 
𝐹(318) = 0.14, 𝑝 = 0.02, RF: 𝐹(57.42) = 0.81,
𝑝 > 0.05). 

3.3 Classification by Coefficient 
Characterization Vs Reconstructed Signal 
Characterization 

The results obtained using these two 
methodologies (FE from WCS and FE from 
reconstructed sEMG signals) are similar. However, 
as discussed in the previous sections, feature 
extraction of the reconstructed sEMG signals 
achieves significantly better results when using the 
A6 sub-band (WT) and the B35 sub-band (WPT). 

This behavior is attributed to the resolution of 
the sEMG signal (𝑁), which is bigger than any 
WCS. For the rest of the comparisons, the results 
of classifying features of the WCS or the 
reconstructed signals are comparable. 

Phyniomark et al. [19] compared both methods 
and reported slightly superior results when 
extracting features from the signals. The statistical 
analysis carried out in this work shows that for the 
proposed methodology, the differences between 
the methods are not significant. 

These results indicate that both procedures can 
be used to classify sEMG signals with an average 
accuracy above 87%. It is important to note, 
however, that there are differences in resolution 
between WT and WPT, and that computing costs 
differ between characterization with WCS and 
signal reconstruction from those WCS.  

On the other hand, we can highlight from signal 
reconstruction characterization that signal 
reconstruction is a process equivalent to applying 
a band-pass filter to the original sEMG signal, so it 
can be implemented with cutoff frequencies 
defined in the frequency sub-bands, then after, 
characterize and classify the signal expecting 
higher classification percentages similar to both 
methodologies (D5-D1, B35). 

In addition, implementing the filter can be 
achieved analogically, leaving only the feature 
extraction and classification processes to 
the  software. 

3.4 Classification of sEMG Signals Using SVM, 
MLP and RF 

Based on the classification results, we were able to 
observe that the results achieved by the RF tend 
to be lower than those achieved by the SVM and 
the MLP. Therefore, we decided to compare them 

 

Fig. 7. Classification accuracy when extracting features 
from the WPT reconstructed signals. C represents the 
result of extracting features from the original sEMG signal 
(0-1000Hz). The error bars represent the standard error of 
the mean (SEM) 
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statistically in order to determine if this trend is 
significant statistically. 

Table 6 and Table 7 show the p-values of the 
significant differences found when comparing the 
accuracy of the models, for the FE from WCS and 
from the reconstructed signals, respectively. 

When comparing models, A vs B, for example 
SVM (A) vs. RF (B), a red label shows an increase 
in accuracy for model B. A green label represents 
an increase in accuracy for model A. 

Consistent with our observations, the statistical 
analysis shows that both the SVM and the MLP 
reach higher accuracy values than the RF in 
several cases. In fact, RF only outperform MLP or 
SVM when using WT-WCS cA6 features. 

We might assume that RF works better with 
low-frequency features, however, RF does not 
outperform the other models when using the low-
frequency features of the WTP-WCS, which have 
higher resolution than its counterparts. Therefore, 
we could assume that RF works better with lower-
resolution WCS. 

Furthermore, the behavior of the SVM and the 
MLP are comparable, they even show no 
difference in their behavior when classifying any of 
the WT-WCS (see Table 6) or any of the 
reconstructed WPT-signals (see Table 7). 
Concerning the significant differences found, the 
SVM and the MLP perform better than the RF in all 
cases, except when comparing them in the A6 
WCS (see Table 6). 

However, even for this model this WCS 
generates the lowest classification results. When 
comparing models, A vs B, for example SVM (A) 
vs. MLP (B), a red label shows an increase in 
accuracy for model B. A green label represents an 
increase in accuracy for model A. 

The highest average classification accuracy, 
per model, for the 18 movements are 90.05%, 
obtained with MLP from the reconstructed signal 
from the WCS cD3, 89.80% obtained with the SVM 
from the WCS cD2 and, 86.55% obtained with RF 
from the reconstructed signal from the WCS cD2.  

Also, it can be seen that the results obtained 
from WCS cD4 (62.5-125Hz) and cD1 (500-
1000Hz) and their reconstructed counterparts (D4 
and D1) are independent of the classification 
model, this behavior can also be observed for the 
WCS cB33 (250-375Hz) and cB35 (500-625Hz). 
This could be attributed to the fact that the features 

obtained from these WCS, and reconstructed 
signals are sufficiently robust to achieve 
comparable results for all three models. 

Consistent with the work of Shin et al. [16] who 
used the SVM and the MLP to classify 10 hand 
movements, both models reach the highest results 
compared to other models, in the case of Shin et 
al. QDA, K-Nearest Neighbor (KNN), and Extreme 
Learning Machine (ELM). 

4  Conclusions 

This paper presents a comparison of various 
sEMG signal characterization methodologies. We 
observed that WT characterization obtain 
comparable results as WPT using WCS with small 
number of coefficients. When extracting 
characteristics of the WT-WCS, the optimal 
subsets are cD5 to cD1 corresponding to the 31.2-
1kHz frequency sub-band, however, the WCS cD5 
is the one with the lowest resolution (𝑁/32) and 
therefore implies the lowest computational cost. 

When using WPT and therefore having more 
resolution available (𝑁/8) all the WCS achieve 
similar results, except for WCS cB35, 
corresponding to the 500-625Hz frequency sub-
band. Moreover, when reconstructing the sEMG 
signals from the WT-WCS, the optimal signals to 
do FE are D5 to D1, nevertheless, the resolution of 
each of these signals is higher than their 
WCS  counterparts. 

Table 6. Significant differences when comparing the 
accuracies of the models when classifying from the FE 
of the WT-WCS and reconstructed signals 

 WCS 
Reconstructed 

Signals 

 
SVM 

vs 
MLP 

SVM 
vs 
RF 

MLP 
vs 
RF 

SVM 
vs 

MLP 

SVM 
vs 
RF 

MLP 
vs 
RF 

A6  0.00 0.00    
D6    0.00  0.00 
D5  0.01 0.00    
D4       
D3  0.04   0.04 0.01 
D2  0.03     
D1       
C   0.00   0.00 
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Finally, WCS cB35 (500-625Hz), which 
achieves the worst performance results with a 
resolution of 𝑁/8, reaches the best results by 
reconstructing its corresponding sEMG signal 
(B35) and thus increasing its resolution to 𝑁. 

Findings also demonstrate that it is possible to 
characterize sEMG signals at low and high 
frequencies and obtain similar results when they 
are classified, which enables the use of systems 
with low sampling frequency that conserve useful 
information behind the sEMG activity.  

As future directions, we intend to use features, 
which are known to achieve high accuracy values 
when classifying sEMG signals, in optimal 
frequency components in order to know if it is 
possible to achieve these same values using 
filtered sEMG signals or low-resolution WCS. 

Finally, our results seek to contribute to the 
knowledge of characterization methodologies and, 
consequently, to the development of upper limb 
support technologies. 
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