
Logic Abstraction Operations and their
Algorithmic Implementation

Pavel Zheltov

Kazan Federal University,
Research Laboratory of Text Analytics,

Kazan

PVZheltov@kpfu.ru

Abstract. The article deals with logic abstraction
operations, such as isolation, identification and
generalization and their algorithmic implementation
using the meta-programming language Sympl, which is
being developed by the author. As part of the
implemented logic operations, new data types such as
“identification set", "concept", “notion” and "category"
were implemented. The data type “identification set”
represents sets, the elements of which all have either
common properties or relations and are the result of the
application of identification operation to logical objects.
The data type “concept” is used for representation of
concepts that are results of application of identification
and generalization operations and is represented by two
daughter data types (subtypes): “notion” and “category”.
The “notion” data type represents the result of
application of abstraction of generalization to an
identification set. The application of abstraction of
generalization two (or more times) results in a “category”
data type - an extremely broad notion. The developed
algorithms can be applied in text analysis when words
are presented as logical objects: for finding synonyms,
functionally similar personages or objects by their
description and activities and so on.

Keywords. Logic programming, language analysis,
isolation, identification, generalization, set,
notion, category.

1 Introduction

Whereas last trends in logic programming’s
development were towards high-order logic, this
theory and its implementation contributing of
course to logic programming, some other ideas
were left aside. Such was the theory of
abstractions derived from classical logic, that was
under focus in the theory and practice of logic and

functional programming in late 80-s and early 90-s
of the XX century, see, for example [4, 5], but was
abandoned soon after and did not receive any
further development and implementation.

This theory, however, must not be neglected as
its implementation could contribute to logic
programming and AI research as a whole. The fact
is that abstraction is a very important cognitive
function and is proper to human and all highly
developed organisms with creative activity, such
as most of mammals and even birds.

Strangely enough the words “abstraction of
isolation” or “isolating abstraction”, “abstraction of
identification” or “identifying abstraction”,
“abstraction of generalization” or “generalizing
abstraction”, “concept”, “notion” and “category” are
ignored in many dictionaries of logical terms,
including the Oxford’s Dictionary of Logic and most
of authors deal with it without any further
classification of its operations, see for example [1].
For an exposé of a general mathematical theory of
set abstracts see [3].

In this paper we consider main types of
abstraction proper to cognition based on their
application to language, as the results of human
mental activity are (or can be) expressed through
words (and language), and have tried to implement
the logical process in terms of mathematical
definitions and algorithmization.

It was shown that abstractions of isolation and
identification can be well formalized for any area of
their application (not only language) in terms of
classical logic and algorithmized as well, while the
formalization of the abstraction of generalization
encounters some difficulties, as in order to
formalize it one must use special procedures to

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

ISSN 2007-9737

identify properties or relations that have much in
common, but are not completely equal, as well as
either create new words for new notions and
concepts resulting from the application of this
operation or use an ordinal denotation system,
based on letters and numbers.

One may ask however two questions on the
account of the new theory proposed in this paper –
why is it necessary to develop a new data type
theory and why it isn’t possible to implement it in
terms of existing programming language?

The answer to these questions will be the
following – neither Prolog, nor Lisp, as well as
other declarative and imperative programming
languages, that were designed for logic and
symbol programming, as well as standard
programming languages, such as C++, Pascal and
others, do support operations that are necessary to
implement this theory, such as random selection of
a set’s element and dynamical declaration of a
function with a dynamically defined name, that is
needed when returning a property or a relation of
a logic element as a function.

In fact, even C++ - a programming language
that allows to handle variables and data in most
virtuous way doesn’t allow to convert dynamically
an array element of a string/char type to a function
with the same name as its value.

The syntax of a new meta-programming
language Sympl that is being developed by the
author for this purpose allow to do all these things<
i.e. it supports type conversion for variables of
“logic” and “predicate” types that are being
introduced, based on their logical and functional
compatibility and not on a calculative one as in C++
or Pascal.

2 Mathematical Definitions

In the process of cognition, human intelligence
identifies individual properties, possessed by the
objects of cognition and the relations between
these objects, and begins to operate them as if
they existed independently of these objects.
Human intelligence is also peculiar to group
cognition objects on the basis of the allocation of
their identical properties or relationships.

In both cases, we are talking about
abstractions, while in the first case – about the

isolating abstraction (otherwise called abstraction
of isolation), and in the second case – about the
identifying abstraction (otherwise called
abstraction of identification) and the results of
these abstractions are called in logic abstract
objects [2].

Since in the process of thinking (mental activity)
human intelligence, along with images, operates
with words, and the results of mental activity are
also expressed through words, the results of
abstractions are reflected in the lexicon of the
natural language.

Thus, as examples of the result of isolating
abstraction can be considered such words as
‘whiteness’ (property), ‘kindness’ (property),
‘friendship’ (relation), etc.

And as examples of the result of the abstraction
of identification can be considered such words as
‘good people’ (on the basis of the property ‘to be
good’), ‘friends’ (on the basis of the relation ‘to be
in friendly relations/friendship with someone’), etc.,
which denote the corresponding set of cognitive
objects. These sets are called identification sets.

In logic, the abstraction of identification,
according to which each predicate can be matched
with a certain set and vice versa, is implemented
by the so called “collapse axiom”.

Symbolically, the collapse axiom is written as
((хϵМ)≡P (x)).

This entry means that, based on the fact that
some objects (x) share a common property (P),
they can be grouped into a separate set (M). The
converse is also true: a set (M) that consists of
some elements (x) corresponds to/can be matched
with a certain property (P) that is shared by the
set’s elements (x).

If one designates the operation of isolating
abstraction as AISOL, then its application to some
object x can be written as:

𝐴ூௌை(𝑥) = ቐ

𝑃(𝑥), 𝑖 = 1, 𝑛തതതതത ;

𝑄൫𝑥, 𝑦൯, 𝑗 = 1, 𝑚 തതതതതത

Ø,

 (1)

where Pj (x) is a property from the set of properties
of the object x, Qj (x, yj) is a relation from the set of
relations of the object x, and yj ˗ an object that is in
a relation (Qj) with x. The application of the
isolating abstraction AI to some object x, in case
when it has no defined properties or relations, will

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Pavel Zheltov780

ISSN 2007-9737

result to an empty set, which is denoted in (1) by
the symbol ‘Ø’.

If we denote the operation of identifying
abstraction as AIDENT, then its application to some
sequence of objects (x1,..., xn) can be written as:

𝐴ூாே்(𝑥ଵ, … 𝑥)𝑀:𝑀𝑃𝑖(𝑥)𝑄𝑖(𝑥, 𝑦), х 𝑀𝑖
= 1, 𝑚തതതതതത.

(2)

3 Algorithmic Apparatus

In this work a meta-programming language called
Sympl, that is somewhat similar to Pascal, is used
for algorithmic implementation. The scope of the
paper doesn’t allow to present its syntax in details,
that is why syntagmas that are alike those of the
standard Pascal are not commented. Only those
that are peculiar to Sympl are explained. The meta-
programming language Sympl is a context-
free language.

Before proceeding to the implementation of
these logical operations in the framework of the
Sympl programming language, let us define the
type “logic” (a logical type) as:

(declare) type “logic” as record of
P: array of string;
Q: array of record self: string,
where Q [i: integer] << self
у: symbol;
end;
end.

Or as:

(declare) type “logic” = record of
P: array: string;
Q: array: record of self: string,
where Q[i] << self,
where i: integer;
у: symbol;
end;
end.

In the declared syntagmas, the logical type is
specified as a record containing an array of
properties (P) and an array of relations (Q).

The reserved word “declare” before the
declaration of a type in Sympl is optional. There are
following syntagma types in Sympl: declarative
ones (that declare types or variables), directive
ones (that give to the compiler of the symbolic
environment directives on how to declare or
execute something), executive ones (straight

commands or operations), interrogative ones
(questions to the symbolic environment) and
affirmative ones (logical affirmations).

The directive, executive and affirmative
syntagmas form the so-called “imperative” part of
the Sympl’s syntax.

For example, the two above syntagmas are
declarative ones, but have a directive expression
with the construction “where …” (“where Q[i:
integer]<<self” and “where Q[i]<<self, where i:
integer” respectively) in each of them, that tells the
compiler to replace (using the right to left
replacement operation expressed by the “<<”
symbol) the “Q[i]” expression (actually the address
of the records’ array’s index expressed by Q[i]) with
the variable “self” of this records array’s index
(actually with the string stored in it). Thus, the
variable self becomes a sort of alias of the Q[i].

In most of existing programming languages this
is impossible. For example, in standard Pascal
(and in the Object Pascal as well) one has to
declare the “logic” type this way:

type logic record
P: array of string;
Q: array of record
relation_name: string;
y: ^logic;
end;
end;

Thus, one has to introduce the variable
relation_name to store the names of the relations
and refer if needed to the name of the i-th relation
stored in an array of relations Q of a variable of a
logic type, by the following, far not most
convenient way:

Q[i].relationname;

As a result, the system will give out the value
stored there, for example the string ‘friendship’.

Since in this work, due to its limited volume, it is
not possible to cite all the production rules of the
Sympl’s syntax (that is yet not complete) we
comment on each of the presented syntagma and
point out its peculiarities if needed.

In order not to return, however, each time to the
explanation of some basic features of Sympl's
syntax in declaring names, we will explain a
number of nuances in naming conventions.

A name in Sympl (as in Pascal) is a sequence
of letters and numbers (from '0' to '9') beginning

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Logic Abstraction Operations and their Algorithmic Implementation 781

ISSN 2007-9737

with a letter. The '_' sign can occur inside a name,
but should not occur in its beginning or end,
because this sign is used as a substitute for the
names of functions, procedures, variables, and
types (fulfills the same function as a template
in C++).

Also, a complete syntagma (function,
procedure, unit or program) in Sympl must end with
a ‘.’, rather than a semicolon (as in most of
programming languages) which corresponds to a
general declarative approach strategy, where each
complete syntagma can in principle be an
independent piece of code ready for execution.

When one retrieves any property or relation
from logical objects and creates independent
predicates (implemented as functions) with names
that match the names of these properties or
relations (that are stored as strings in the P and Q
arrays), the dereferencing operation ‘<…>’ is used:
<P[i]> (<parameter list>) or <Q[i]>
(<parameter list>).

4 Algorithmic Implementation

The operation of isolating abstraction for logical
objects (of the logic type), thus, can be defined
as follows:

//operation of isolating abstraction,

//implemented in Sympl as a function

function Aisol(х: logic): function;

begin

for i:=1 to length(х.P) do
return х.P[i] as function <P[i]>(: logic): Boolean;

for j:=1 to length(х.Q).do
return х.Q[j] as function <Q[j]>(,: logic): Boolean;

end.

As a result of this function’s call are returned a
set of separate predicates (as an array of single
argument functions) extracted from the array of
properties P of the object x, and a set of separate
relations (as an array of two argument functions)
extracted from the array of relations Q of the same
object x:

<P[1]>(), <P[2]>(),...,<P[n]>();

<Q[1]>(,),<Q[2]>(,),...,<Q[m]>(,).

Each element of the first array is a single parameter
(argument) function (that looks like <Name> (_)), and each
element of the second array is a two-place function (of the form
<Name> (_, _)), where the symbol ‘_’ denotes the names of the
parameters of these functions that can be any, but of the logic
type.

The resulting value of these functions when applied to a
logic objects will be true, if a logic object/objects
possesses/possess the property/relation or false if not.

If one executes this Aisol operation applying it to some
logical object x, without returning the result to any variable, i.e.
if one executes the code fragment "Aisol (x)", the results of such
an operation will be available in the system as independently
existing (free) predicates (functions) that can be applied to
logical objects within the framework of the session.

These functions can be accessed by name, and not
necessarily through the P or Q arrays’ indexes as bounded
predicates.

Another possibility realized in Sympl is to return the result
of the execution of the Aisol() function to appropriate variables.
These variables must be arrays:

(P: array[], Q: array[]):=Aisol(х).

The names of these arrays can be any, not necessarily P
and Q, i.e. the coincidence or non-coincidence with the names
of the property and the relations arrays P and Q of logical
objects plays no role. Only the sequence of results plays a role:
the set of separate predicates extracted from the x.P array is
returned to the first array, and the set of separate relations from
the x.Q array is returned to the second.

In this case, each of the newly received array elements is a
function (its type being function), and not a string (its type not
being string) as in the original arrays.

In the example above, the P and Q arrays are declared only
when the Aisol() function is called (inside the parentheses),
which indicates the receipt of the combined result (but not the
union of the results).

In the framework of permissible syntactic polymorphism,
the following possibilities of receiving results are also
admissible in Sympl:

Aisol (x: logic; var P: array[], Q: array[]).

Aisol (x: logic) (P: array[], Q: array[]).

In the first case, the variables to which the
Aisol() function should return the result are
declared using the keyword var, and in the second,
using an additional parameter list.

The variables P[] and Q[] can also be declared
beforehand, before calling the Aisol() function:

P, Q: array of function.

Or like this:

P: array[].

Q: array[].

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Pavel Zheltov782

ISSN 2007-9737

In the first case, P and Q are arrays of the type
function, and in the second case are arrays of an
indeterminate type.

In the second case the type casting for both
arrays will be performed by the system when the
Aisol() result are transferred to them.

The operation of identifying abstraction () of
array elements by P(x), i.e. by predicates can be
notated as:

function AequalP(Х: array of logic): array of set;
begin
return Group Х by P(X);
end.

The operation of identifying abstraction by Q (x,
y) will be implemented as follows:

function AequalQ(Х: array of logic): array of set;
begin
return Group Х[] by Х[].Q[] ;
end.

The Group ... by ... syntagma is a symbol
solver’s control command and is a function for
obtaining combinatorial solutions.

The expression Group X[] by X[].P[] is a
command that tells the system to group all the
elements from the array X so that in each group
there have to be at least two elements from X, each
with at least one property from the array P, these
properties being equal.

Literally this expression means the following:
“group all the elements of the array X by the
elements of the array P, belonging to the elements
of the array X”.

As a result of this command’s fulfillment an
array of equalization sets, that represent a
structure and a remainder are returned. The array
of identification sets looks like:

[{[Х [i1], Х [k1], Х [l1],...], [𝑃భ
, 𝑃భ

, 𝑃భ
,...]},

{[Х [i2], Х [k2], Х [l2],...], [𝑃మ
, 𝑃మ

, 𝑃మ
,...]},

...

{[Х [in], Х [kn], Х [ln],...], [𝑃
, 𝑃

, 𝑃
,...]}].

And the remainder, consisting of the elements
of the array X, that don’t have any common
properties, i.e. cannot be equalized and make an
identification set looks like:

[Х[j], Х[m], Х[n], ...].

One can obtain this result using different ways
of this command record, admissible within the
framework of syntactic polymorphism as well:

1) Group X[i] by X[i].P[] where i:=1 to length (X);

2) Group X[i] by X[i]. P[j] where i:=1 to length (X), j:=1 to
length (X[i].P);

3) Group X[i] by X [i]. P[j] where (i:=1 to length (X)) and
(j:=1 to length (X[i].P));

4) Group X[] by X[].P[j] where j:=1 to length (х[].p).

In the above expressions, we used the
“where…” supplement to the “Group ... by ...”
syntagma to explicitly indicate the range of
changes in the numbers (indices) of the array
elements to be grouped.

The expression X [], which is a way to
encompass all elements of the array X, is
equivalent to the expression X [i], when the range
of variation of i varies from the 1st to the last index,
i.e. the length of the array. We used this property
of the command’s record in the expressions 1-3. In
a similar way the range of variation of j index is
indicated in the expressions 2–4.

It should be noted that such a way of recording
this command excludes an erroneous access to
nonexistent elements of the arrays X or P when the
length of the arrays X or P equals to nil, as after the
“where…” syntagma the range of index changes is
clearly indicated, and no control over the access to
nonexistent elements (as in the expressions X[] or
P[]) is required, because in constructions of this
type, it is assumed by default that the established
operations apply only to arrays of nonzero length.

The expression Group X [] by X [] .Q [] indicates
to the system that it is necessary to group all the
elements of the array X into groups so that each
group would have at least two elements X [] with at
least one identical relation from the array of
relations Q.

As a result of its execution, an array of
identification sets is returned, which is a structure
that look like:

[{[Х [i1], Х [k1], Х [l1],...], [𝑄𝑎ଵ, 𝑄𝑏ଵ, 𝑄𝑐ଵ,...]},

 { Х [i2], Х [k2], Х [l2],...], [𝑄𝑎ଶ, 𝑄𝑏ଶ, 𝑄𝑐ଶ,...]},

 ...

{[Х [in], Х [kn], Х [ln],...], [𝑄𝑎, 𝑄𝑏, 𝑄𝑐,...]}].

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Logic Abstraction Operations and their Algorithmic Implementation 783

ISSN 2007-9737

And a remainder of the elements of the array X
that do not have any common relationships, i.e. are
not identifiable:

Х [j], Х [m], Х [n],...].

The identification set is a new data type and is
defined using the following inference rules:

Set_of_Identification ‘{[’Х ‘,’ ‘[’ Y ‘}’;
 Х хХ х ‘,’ хХ| ‘]’;
 Y yY | y ‘,’ yY| ‘]’.

The set of identification, as follows from its
definition, consists of two parts, two arrays. The
elements of the set are grouped on the left side,
and the predicates of the set (properties or
relations) on the right side.

Elements of the left side, i.e. the elements of the
set proper, can be accessible in the following ways:

// access to the 1st element of the set

S {[1] |};

// select a random element of the set

select S;

Elements of the right side, i.e., the predicates of
the set, can be accessible as:

// access to the 1st predicate of the set
S {| [1]};
// access to the i-th predicate of the set
S {| [i]};

Other operations applicable to the set are:

operation for including an element in a set. Returns
true if the item has any common predicate with set
data and was successfully included, returns false
otherwise.

include (x, S);

operation for excluding an element from the set.
Returns true if the element to be excluded belongs
to the set. It is possible to exclude an element both
by name and by index:

exclude (S, x);
exclude (S, i);

The operations of abstraction together with the
operation of generalization are the basic
operations of intelligence. The results of these
logical operations are various concepts
and categories.

A concept is a logical object that is a reflection
of other logical objects and contains their
distinguishing features. These include properties
and relationships.

Each concept distinguishes between its content
and scope. The content of a concept is the totality
(set) of the attributes of objects reflected in it [2].

The scope of a concept is a set of logical
objects, each of which has attributes related to the
content of the concept, i.e. predicates.

Thus, a concept is a logical object that consists
of two parts.

The concepts are the result of applying the
abstraction of identification and are declared in
Sympl as follows:

declare type notion: as record of
//notion’s name
name: string;
// array of logical objects forming a set
X: array of logic;
// array of predicates (properties / relations) that all objects have
P: array of predicate;
end;

The objects displayed in the concept stand out
from a composition of a broader set than the scope
of the concept. Thus, we can talk about a hierarchy
of concepts.

By the nature of the elements of their scope,
concepts can be divided into non-collective and
collective. Non-collective are those whose content
features are proper to each scope element.

Collective are concepts in which the features
that make up the content are inherent to the scope
as a whole, rather than to its individual elements.
For example, the constellation "Ursa major", "the
collective of our institution." Extremely broad
concepts are called categories.

As a rule, categories are philosophical
concepts, for example, such as “matter”,
“consciousness”, “being”, “essence”, etc.
Categories can also be obtained by applying the
classification component of a certain relation (or
system of properties) as a generalizing one to
other relations (or property systems). Moreover,
words expressing specific concepts take additional
generalizing meanings or new words are created
for expressing these notions.

If one can move up the hierarchy of concepts
(from categories and concepts of a lower level to
concepts of a higher level) using the abstraction of

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Pavel Zheltov784

ISSN 2007-9737

identification by adding new attributes, one can
move (advance) in the opposite direction using the
abstraction of identification by discarding
existing ones.

The predicate type is defined in Sympl
as follows:

declare type predicate as function _(x: logic) or function _(x, y:
logic);

This record means that a predicate type
variable can be a single-function (record "function
_(x: logic)") or ("or") a two-place function (record
"function _ (x, y: logic)").

The underscore symbol '_' before the list of the
function’s parameters is a substitute for the
function name.

Now, the initialization of a variable notion1 of
the type notion (i.e. a concept) will look like this:

// variable declarations
notion1: notion;
// declaration of an array of identification sets
M: array of set;
//initialization
// we apply to the variable M as the result of //the operation of
identification by properties
M:=AequalP (X);
// if not an empty result
if not (M=void) then
begin
 // initialize the array of logical objects that
 //make up the concept
notion1.x: =М [1] {[] | };
 // initialize the array of predicates that all
// these objects have
notion1.P: =M [1] {|[]};
end.

As a result, we have an object of type notion
(conceptual type), which is the result of applying
the logical operation of identification abstraction
implemented using the Group ... by ... syntagma
and is a first-level abstraction.

To obtain second-level abstraction, it is
necessary to apply the operation of identification
abstraction to an array of logical objects notion1.X
or to M [1] {[] | } and to some other array of logical
objects that are the result of application of the
abstraction of identification and are also logical
objects that form the concepts of the first level.

One must note, that it is possible to apply the
operation of identifying abstraction to concepts of
different levels (for example, when one concept is
an abstraction of the first level and the other is a
concept of the second level abstraction), therefore

it would be more correct to talk about the concepts
of the first level and the concepts of a high level.

Let’s consider an example of the operation of
abstraction of identification by relation:

// declare an array of concepts
notion_array: array of notion.
// declare an array of identification sets
M: array of set;
//initialization
// assign the result of the operation of identification by relations
to the variable M
M: = AequalQ(X);
// if not an empty result
if not (M=void) then
begin
// initialize the array in a loop
for i=1 to length (M) do
begin
notion_array [i] .X: =M [i] {[] | };
notion_array [i] .P: =М [i] {| []};
end;
end;

The naming of the concepts obtained as a result
of applying the abstraction of identification in
Sympl is yet an unsolved problem, though one can
of course use an ordinal system of denotation, i.e.
denote the first obtained concept as C1, the
second as C2, etc., though in a natural language
one creates new words for them, as well as the
formalization of the abstraction of generalization.

For example, what do have in common two
subjects “John” and “Jane” in the following two
sentences: 1)“John helps poor people with
money”; 2) “Jane volunteered to care for cleaning
old people’s flats”? If one will ask this question from
any person, one will obtain the answer “that both
are good (or good-hearted) people”.

This is based on our picture of world as in it: 1)
“helping people with money” is “good”; 2) “cleaning
old people’s flats” is “good” as well. But how can
one obtain such an answer based on a
logical approach?

The answer is that one must analyze a definite
amount of texts, in which will occur a phrase that
both activities are “good”, i.e. one must find for both
predicates “help people with money” and “clean old
people’s flats” common properties, that will be
linked with the property “being good” in some or
other way.

Thus, generalization is possible for two
predicates when there exists an intermediate

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Logic Abstraction Operations and their Algorithmic Implementation 785

ISSN 2007-9737

predicate that can derivate from them directly or
through a sequence of derivatives.

One can formulate this condition for properties
(3), as well as for relations (4), in such a way:

AGENER(P1(x),P2(y))Pi: AISOL(P1(x)) →P3…→Pi
U AISOL(P2(y))->…->Pi

(3)

AGENER(Q1(x1,y2),Q2(y1,x3))Qi: AISOL(Q1(x1,y2)
→Q3... →Qi U AISOL(Q2(y1,x3)->Qk...-> Qi

(4)

Finding such intermediates in a text for two
predicates is, however, not always possible. One
must use text corpora, create semantic fields, but
even in such a way the process will need human
intervention. Thus, the problem of formalization of
the abstraction of generalization
remains unresolved.

5 Examples of the Proposed Theory
Application

One can cite following examples.

Example 1. Automated functional entities
hierarchy building

Let us consider a text, Text1 = “There is a bus
going from the campus to the university. There is a
plane that flies each Sunday from Moscow
to Mexico”.

These sentences describe various entities,
represented by words that are substantives/nouns,
such as “a bus”, “a plane”.

By applying a morphological analyzer to the text
we will obtain a tagged number of words for each
sentence = {“There”=(“there”, Adverb), “is” =(“be”,
Verb, Present Simple, 3rd person, indicative),
“a”=(“a”, Indefinite Article), “bus”=(“bus”, Noun,
Singular), “going”=(“go”, Verb, Present
Continuous, person=any), “from”=(“from”,
Preposition), “the”=(“the”, Definite Article),
“campus”=(“campus”, Noun, Singular), “to”= (“to”,
Preposition), “the”=(“the”, Definite Article),
“university”=(“university”, Noun, Singular);
“There”=(“there”, Adverb), “is” =(“be”, Verb,
Present Simple, 3rd person, indicative), “a”=(“a”,
Indefinite Article), “plane”=(“plane”, Noun,
Singular), “that”= (“that”, Definite Article |
Conjunction | Adverb | Pronoun | Adjective),
“flies”=(“fly”, Verb, Present Simple, 3rd person),

“from”=(“from”, Preposition),
“Moscow”=(“Moscow”, Noun: Geographic Name,
Singular), “to”= (“to”, Preposition),
“Mexico”=(“Mexico”, Noun: Geographical Name,
Singular), “each”=(“each”, Determiner | Pronoun),
“Sunday”=(“Sunday, Noun: Time, Singular)}.

The syntactical structure of each sentence will
look like:

1 (There is [=be]) & (a bus) & (going [=go] (from
(the campus) to (the university)).

2 2. (There is [=be]) & ((a plane) & that & ((fly)&
(each Sunday)& (from & Moscow) (to &
Mexico)).

The logical structure of each sentence after the
application of a logical analyzer will look like:

1 x1= “bus”, x2 = “campus”, x3 = “university”:
x1.P1= “go”: x1.P1.P1=(name=“time”, value=
“Present Continuous”), x1.P1.Q1= “from”(x2),
y1.Q2 = “to”(x3);

2 x4= “plane”, x5 = “Moscow”, x6 = “Mexico”:
x4.P1= “fly”; y2 =x4.P1: y2.P1=(name=“time”,
value=“each Sunday”), y2.Q1= “from”(x5), y2.Q2
= “to”(x6);

As the properties “go” and “fly” are complex
ones and themselves possess properties and
relations – they need to be decomposed to avoid
hierarchical structures that will complicate their
algorithmic processing:

1 x1= “bus”, x2 = “campus”, x3 = “university”:
x1.P1= “go”; y1 =x1.P1: y1.P1=(name=“time”,
value= “Present Continuous”), y1.Q1=
“from”(x2), y1.Q2 = “to”(x3);

2 x4= “plane”, x5 = “Moscow”, x6 = “Mexico”:
x4.P1= “fly”; y2 =x4.P1: y2.P1=(name=“time”,
value=“each Sunday”), y2.Q1= “from”(x5), y2.Q2
= “to”(x6);

One must also introduce a logic rule that
regulates the relations between bound predicates
and the independent logic objects with the same
names that are used for their full scaled definition
in case when they are complex ones and have their
one properties and relations.

if (Pi x.P, Pk x.P) ∩ (yj: yj.name = Pi, yh:
yh.name = Pk) ∩ (yi) ∩ (yh) then (Pi)∩
 (Pk);

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Pavel Zheltov786

ISSN 2007-9737

or

if (Pi x.P, Pk x.P) ∩ (yj: yj.name = Pi, yh:
yh.name = Pk) ∩ Aequal(yj, yh) = true then Aequal
(Pi, Pk) = true.

The programming implementation of this logical
structure using Sympl is given below:

var
Propertyi, Propertyk: string;
Properties: set;
yi, yh: logic;
Rule: logicRule = <if exists(Propertyi: string) and
exists(Propertyk: string) and (Propertyi in Properties) and
(Propertyk in Properties) and (yi.name=Propertyi) and
(yh.name=Propertyk) then Aequal(Propertyi,
Propertyk).results:=Aequal(yi,yh).results)>;
Rule.Apply();
var
X: array of logic = (<“bus”>, <“campus”>, <“university”>,
<“plane”>, <“Moscow”>, <“Mexico”>);
X[1].P[1]=(“go”);
X[4].P[1]=(“fly”);
//declare an array of 2 logical objects y1=x1.P1= //“go” and
y2=x4.P1= “fly”;
declare Y: array of logic = (X[1].P[1], X[4].P[1]);
Y[1].Q[1]=(<“from”>(x:=X[2]), <“to">(y:=X[3]));
Y[2].P[1]=(name= “time”, value=”each Sunday”);
Y[2].Q[1]=(<“from”>(x:=X[4]), “to" (y=X[5]));

Let us apply now the operation of the
abstraction of equalization by properties to the
array of logical objects Х.

notions: array of notion;
// declaration of an array of identification sets
M : array of set;
//initialization
// we apply to the variable M as the result of //the operation of
identification by properties
M:=AequalQ(Y);
// if not an empty result
if not (M=void) then
begin
l:= length(M);
for i:=1 to l do
 begin
 // initialize the array of logical objects that
 //make up the concept
 notions[i].X: =М [i] {[] | };
 // initialize the array of predicates that all
// these objects have
 notions[i].Pr: =M [i] {|[]};
 end;
end.

The array of identification sets obtained as a
result of this operation will look like:

[{[y1= “go”, y2= “fly”], [y11.Q1= “from”(x)”to”(y), y2.Q1=
“from”(x)”to”(y)]},

with a void remainder [].
The equalization between the properties

x1.P1=“go” x4.P1=“fly was made according to their
association to the logic objects y1 and y2 by names
and the possibility of equalization of these latter
objects by the relations y1.Q1= “from”(x2), y1.Q2 =
“to”(x3) and y2.Q1= “from”(x5), y2.Q2 = “to”(x6).

In terms of the presented theory the result
obtained in notion[1] corresponds to the concept
“move”. And one can name this notion manually:
notion[1],name:= “move”;

The application of the operation of isolation
Aisol() to notions[1] Aisol(notions[1]) will give a sort
of a prototype function - an analogue of a virtual
function in Object Oriented Programming.

The application of the abstraction of isolation to
the object vehicle Aisol() will return a logic function
move_in_space(x: logic): boolean.

One can create a separate set of identification
with the same name (“move”) and a logic object
that will be associated with this notion and function:
<“move_in_space”>: set:=notions[1].X;
<“move_in_space”>: logic;
move_in_space.Q[1]:=from(x: logic) to (y: logic).
The association is done automatically by
identical names.

The body of this function can be
implemented as:

move_in_space(x: logic).body = begin
 for i=1 to length (x.P) do
 begin
 if x.P[i] in move_in_space then
 begin
 move_in_space:= true;
 break;
 end;
 end;

Example 2. Automated object entities hierarchy
building

Let us now apply in the scope of the
programming code of the Example 1 the operation
of equalization by properties to the logical objects
of the array X:

M: array of set;
M:=AequaPl(X);

// if not an empty result
if not (M=void) then
begin
l:= length(M);
for i:=1 to l do
 begin

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Logic Abstraction Operations and their Algorithmic Implementation 787

ISSN 2007-9737

 // initialize the array of logical objects that
 //make up the concept
 notions[i].X: =М [i] {[] | };
 // initialize the array of predicates that all
// these objects have
 notions[i].Pr: =M [i] {|[]};
 end;
end.

The array of identification sets obtain as a result
of this operation will look like:

[{[x1= “bus”, x4= “plane”], [x1.P1= “go”, x4.P1= “fly”]}],

and the remainder will look like [x2, x3].
In terms of the presented theory the result in the

notions[1] corresponds to the concept “vehicle” as
“A vehicle is an object that can move in space”, i.e.
“from the point x to a point y” and will be some sort
of analogue of an object prototype that will
correspond to a parent class in OOP:

notions[1].name:=“vehicle”;
<“vehicle”>: set:=M[1]{[]|};
<“vehicle”>: logic
(P= (“move_in_space”);
 Q = ();
).

The declared above logic object “vehicle” has a
single element of the properties array P[1]= “move
in space” and a void array of relations.

6 Conclusion

The presented abstraction theory and its
algorithmic implementation as was shown in the
examples can be used primary for obtaining new
knowledge patterns.

Following tools have been developed in the
paper: a type “logic” (logical data type), which
implements a logical object with a set of properties
and relations implemented as arrays; Aisol()
function that implements the logical operation of
isolating abstraction; AequalP() function that
implements the logical operation of property
abstraction; AequalQ() function that implements
the logical operation of abstraction of identification
over relations; the Group ... by ... syntagma, which
allows to group logical objects by their properties
or relationships using a symbol solver built into the
system and obtain an array of identification sets as
a result; a type “set” (a type that implements the
identification set), which is a set on the left side of

which is an array of logical objects that are
elements of this set, and on the right side of which
is an array of predicates (properties or relations)
that are common for all of its elements; the
operation of accessing an array of elements of the
identification set: M{[]}; the operation of accessing
the array of predicates of the identification set: M{|
[]}; the operation of selecting a random element
from a set: select; the operation of including an
element into a set: include; the operation of
excluding an element x from the set: exclude; the
operation of excluding an element from the set by
its index: exclude; the type “notion” (“conceptual
data type”).

The area of application of the presented theory
is an automatized building of text entities and
based on them automatized declaration of class
hierarchy and virtual functions.

As a result of further development in this
direction, it is also possible to implement such
logical concepts as category and the category’s
data type (“categorical data type”).

However, the problem of formalization of the
abstraction of generalization remains unresolved.

Acknowledgments

Dedicated to the author´s father, Professor
Valerian Zheltov. This paper has been supported
by the Kazan Federal University Strategic
Academic Leadership Program ("PRIORITY-
2030"), Strategic Project #4.

References

1. Welling, H. (2007). Four mental operations in
creative cognition: The importance of abstraction.
Creativity Research Journal, Vol. 19, No. 2-3, pp.
163–177. DOI: 10.1080/10400410701397214.

2. Gorskiy, D. P., Ivin, A. A., Nikiforov, A. L.
(1991). Kratkiy slovar' po logike [A Concise
Dictionary of Logic], Moskva Prosveshchenie.

3. Tennant, N. (2004). A general theory of abstraction
operators. The Philosophical Quarterly, Vol. 54, No.
214, pp. 105–133. DOI: 10.1111/j.0031-8094.20
04.00344.x.

4. Silbermann, F. S. K., Jayaraman, B. (1989). Set
abstraction in functional and logic programming.
Proceedings of the Fourth International Conference

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Pavel Zheltov788

ISSN 2007-9737

on Functional Programming Languages and
Computer Architecture, pp. 313–326. DOI:
10.1145/99370.99398.

5. Yokomori, T. (1987). Set abstraction-an extension
of all solutions predicate in logic programming

language. New Generation Computing, Vol. 5, pp.
227–248. DOI: 10.1007/BF03037464.

Article received on 02/12/2022; accepted on 20/03/2023.
Corresponding author is Pavel Zheltov.

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 779–789
doi: 10.13053/CyS-27-3-4411

Logic Abstraction Operations and their Algorithmic Implementation 789

ISSN 2007-9737

