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Abstract. The article deals with logic abstraction 
operations, such as isolation, identification and 
generalization and their algorithmic implementation 
using the meta-programming language Sympl, which is 
being developed by the author. As part of the 
implemented logic operations, new data types such as 
“identification set", "concept", “notion” and "category" 
were implemented. The data type “identification set” 
represents sets, the elements of which all have either 
common properties or relations and are the result of the 
application of identification operation to logical objects. 
The data type “concept” is used for representation of 
concepts that are results of application of identification 
and generalization operations and is represented by two 
daughter data types (subtypes): “notion” and “category”. 
The “notion” data type represents the result of 
application of abstraction of generalization to an 
identification set. The application of abstraction of 
generalization two (or more times) results in a “category” 
data type - an extremely broad notion. The developed 
algorithms can be applied in text analysis when words 
are presented as logical objects: for finding synonyms, 
functionally similar personages or objects by their 
description and activities and so on. 

Keywords. Logic programming, language analysis, 
isolation, identification, generalization, set, 
notion, category. 

1 Introduction 

Whereas last trends in logic programming’s 
development were towards high-order logic, this 
theory and its implementation contributing of 
course to logic programming, some other ideas 
were left aside. Such was the theory of 
abstractions derived from classical logic, that was 
under focus in the theory and practice of logic and 

functional programming in late 80-s and early 90-s 
of the XX century, see, for example [4, 5], but was 
abandoned soon after and did not receive any 
further development and implementation. 

This theory, however, must not be neglected as 
its implementation could contribute to logic 
programming and AI research as a whole. The fact 
is that abstraction is a very important cognitive 
function and is proper to human and all highly 
developed organisms with creative activity, such 
as most of mammals and even birds. 

Strangely enough the words “abstraction of 
isolation” or “isolating abstraction”, “abstraction of 
identification” or “identifying abstraction”, 
“abstraction of generalization” or “generalizing 
abstraction”, “concept”, “notion” and “category” are 
ignored in many dictionaries of logical terms, 
including the Oxford’s Dictionary of Logic and most 
of authors deal with it without any further 
classification of its operations, see for example [1]. 
For an exposé of a general mathematical theory of 
set abstracts see [3]. 

In this paper we consider main types of 
abstraction proper to cognition based on their 
application to language, as the results of human 
mental activity are (or can be) expressed through 
words (and language), and have tried to implement 
the logical process in terms of mathematical 
definitions and algorithmization. 

It was shown that abstractions of isolation and 
identification can be well formalized for any area of 
their application (not only language) in terms of 
classical logic and algorithmized as well, while the 
formalization of the abstraction of generalization 
encounters some difficulties, as in order to 
formalize it one must use special procedures to 
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identify properties or relations that have much in 
common, but are not completely equal, as well as 
either create new words for new notions and 
concepts resulting from the application of this 
operation or use an ordinal denotation system, 
based on letters and numbers. 

One may ask however two questions on the 
account of the new theory proposed in this paper – 
why is it necessary to develop a new data type 
theory and why it isn’t possible to implement it in 
terms of existing programming language? 

The answer to these questions will be the 
following – neither Prolog, nor Lisp, as well as 
other declarative and imperative programming 
languages, that were designed for logic and 
symbol programming, as well as standard 
programming languages, such as C++, Pascal and 
others, do support operations that are necessary to 
implement this theory, such as random selection of 
a set’s element and dynamical declaration of a 
function with a dynamically defined name, that is 
needed when  returning a property or a relation of 
a logic element as a function. 

In fact, even C++ - a programming language 
that allows to handle variables and data in most 
virtuous way doesn’t allow to convert dynamically 
an array element of a string/char type to a function 
with the same name as its value. 

The syntax of a new meta-programming 
language Sympl that is being developed by the 
author for this purpose allow to do all these things< 
i.e. it supports type conversion for variables of 
“logic” and “predicate” types that are being 
introduced, based on their logical and functional 
compatibility and not on a calculative one as in C++ 
or Pascal. 

2 Mathematical Definitions 

In the process of cognition, human intelligence 
identifies individual properties, possessed by the 
objects of cognition and the relations between 
these objects, and begins to operate them as if 
they existed independently of these objects. 
Human intelligence is also peculiar to group 
cognition objects on the basis of the allocation of 
their identical properties or relationships. 

In both cases, we are talking about 
abstractions, while in the first case – about the 

isolating abstraction (otherwise called abstraction 
of isolation), and in the second case – about the 
identifying abstraction (otherwise called 
abstraction of identification) and the results of 
these abstractions are called in logic abstract 
objects [2]. 

Since in the process of thinking (mental activity) 
human intelligence, along with images, operates 
with words, and the results of mental activity are 
also expressed through words, the results of 
abstractions are reflected in the lexicon of the 
natural language. 

Thus, as examples of the result of isolating 
abstraction can be considered such words as 
‘whiteness’ (property), ‘kindness’ (property),  
‘friendship’ (relation), etc. 

And as examples of the result of the abstraction 
of identification can be considered such words as 
‘good people’ (on the basis of the property ‘to be 
good’), ‘friends’ (on the basis of the relation ‘to be 
in friendly relations/friendship with someone’), etc., 
which denote the corresponding set of cognitive 
objects. These sets are called identification sets. 

In logic, the abstraction of identification, 
according to which each predicate can be matched 
with a certain set and vice versa, is implemented 
by the so called “collapse axiom”. 

Symbolically, the collapse axiom is written as 
((хϵМ)≡P (x)). 

This entry means that, based on the fact that 
some objects (x) share a common property (P), 
they can be grouped into a separate set (M). The 
converse is also true: a set (M) that consists of 
some elements (x) corresponds to/can be matched 
with a certain property (P) that is shared by the 
set’s elements (x). 

If one designates the operation of isolating 
abstraction as AISOL, then its application to some 
object x can be written as: 

𝐴ூௌை௅(𝑥) = ቐ

𝑃௜(𝑥), 𝑖 = 1, 𝑛തതതതത ;

𝑄௝൫𝑥, 𝑦௝൯, 𝑗 = 1, 𝑚 തതതതതത

Ø,

 (1) 

where Pj (x) is a property from the set of properties 
of the object x, Qj (x, yj) is a relation from the set of 
relations of the object x, and yj ˗ an object that is in 
a relation (Qj) with x. The application of the 
isolating abstraction AI to some object x, in case 
when it has no defined properties or relations, will 
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result to an empty set, which is denoted in (1) by 
the symbol ‘Ø’. 

If we denote the operation of identifying 
abstraction as AIDENT, then its application to some 
sequence of objects (x1,..., xn) can be written as: 

𝐴ூ஽ாே்(𝑥ଵ, … 𝑥௡)𝑀௜:𝑀௜𝑃𝑖(𝑥)𝑄𝑖(𝑥, 𝑦), х 𝑀௜𝑖
= 1, 𝑚തതതതതത. 

(2) 

3 Algorithmic Apparatus 

In this work a meta-programming language called 
Sympl, that is somewhat similar to Pascal, is used 
for algorithmic implementation. The scope of the 
paper doesn’t allow to present its syntax in details, 
that is why syntagmas that are alike those of the 
standard Pascal are not commented. Only those 
that are peculiar to Sympl are explained. The meta-
programming language Sympl is a context-
free language. 

Before proceeding to the implementation of 
these logical operations in the framework of the 
Sympl programming language, let us define the 
type “logic” (a logical type) as: 

(declare) type “logic” as record of  
P: array of string; 
Q: array of record self: string, 
where Q [i: integer] << self 
у: symbol;  
end; 
end. 

Or as: 

(declare) type “logic” = record of  
P: array: string; 
Q: array: record of self: string, 
where Q[i] << self, 
where i: integer; 
у: symbol; 
end; 
end. 

In the declared syntagmas, the logical type is 
specified as a record containing an array of 
properties (P) and an array of relations (Q). 

The reserved word “declare” before the 
declaration of a type in Sympl is optional. There are 
following syntagma types in Sympl: declarative 
ones (that declare types or variables), directive 
ones (that give to the compiler of the symbolic 
environment directives on how to declare or 
execute something), executive ones (straight 

commands or operations), interrogative ones 
(questions to the symbolic environment) and 
affirmative ones (logical affirmations). 

The directive, executive and affirmative 
syntagmas form the so-called “imperative” part of 
the Sympl’s syntax. 

For example, the two above syntagmas are 
declarative ones, but have a directive expression 
with the construction “where …” (“where Q[i: 
integer]<<self” and “where Q[i]<<self, where i: 
integer” respectively) in each of them, that tells the 
compiler to replace (using the right to left 
replacement operation expressed by the “<<” 
symbol) the  “Q[i]” expression (actually the address 
of the records’ array’s index expressed by Q[i]) with 
the variable “self” of this records array’s index 
(actually with the string stored in it). Thus, the 
variable self becomes a sort of alias of the Q[i].  

In most of existing programming languages this 
is impossible. For example, in standard Pascal 
(and in the Object Pascal as well) one has to 
declare the “logic” type this way: 

type logic  record 
P: array of string; 
Q: array of record 
relation_name: string; 
y: ^logic; 
end;  
end; 

Thus, one has to introduce the variable 
relation_name to store the names of the relations 
and refer if needed to the name of the i-th relation 
stored in an array of relations Q of a variable of a 
logic type, by the following, far not most 
convenient way: 

Q[i].relationname; 

As a result, the system will give out the value 
stored there, for example the string ‘friendship’. 

Since in this work, due to its limited volume, it is 
not possible to cite all the production rules of the 
Sympl’s syntax (that is yet not complete) we 
comment on each of the presented syntagma and 
point out its peculiarities if needed. 

In order not to return, however, each time to the 
explanation of some basic features of Sympl's 
syntax in declaring names, we will explain a 
number of nuances in naming conventions. 

A name in Sympl (as in Pascal) is a sequence 
of letters and numbers (from '0' to '9') beginning 
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with a letter. The '_' sign can occur inside a name, 
but should not occur in its beginning or end, 
because this sign is used as a substitute for the 
names of functions, procedures, variables, and 
types (fulfills the same function as a template 
in C++). 

Also, a complete syntagma (function, 
procedure, unit or program) in Sympl must end with 
a ‘.’, rather than a semicolon (as in most of 
programming languages) which corresponds to a 
general declarative approach strategy, where each 
complete syntagma can in principle be an 
independent piece of code ready for execution. 

When one retrieves any property or relation 
from logical objects and creates independent 
predicates (implemented as functions) with names 
that match the names of these properties or 
relations (that are stored as strings in the P and Q 
arrays), the dereferencing operation ‘<…>’ is used: 
<P[i]> (<parameter list>) or <Q[i]> 
(<parameter list>). 

4 Algorithmic Implementation 

The operation of isolating abstraction for logical 
objects (of the logic type), thus, can be defined 
as follows: 

//operation of isolating abstraction, 

//implemented in Sympl as a function 

function Aisol(х: logic): function; 

begin 

for i:=1 to length(х.P) do  
return х.P[i] as function <P[i]>(: logic): Boolean; 

for j:=1 to length(х.Q).do  
return х.Q[j] as function <Q[j]>( ,: logic): Boolean; 

end. 

As a result of this function’s call are returned a 
set of separate predicates (as an array of single 
argument functions) extracted from the array of 
properties P of the object x, and a set of separate 
relations (as an array of two argument functions) 
extracted from the array of relations Q of the same 
object x: 

<P[1]>(), <P[2]>(),...,<P[n]>();  

<Q[1]>(,),<Q[2]>(,),...,<Q[m]>(,). 

Each element of the first array is a single parameter 
(argument) function (that looks like <Name> (_)), and each 
element of the second array is a two-place function (of the form 
<Name> (_, _)), where the symbol ‘_’ denotes the names of the 
parameters of these functions that can be any, but of the logic 
type. 

The resulting value of these functions when applied to a 
logic objects will be true, if a logic object/objects 
possesses/possess the property/relation or false if not. 

If one executes this Aisol operation applying it to some 
logical object x, without returning the result to any variable, i.e. 
if one executes the code fragment "Aisol (x)", the results of such 
an operation will be available in the system as independently 
existing (free) predicates (functions) that can be applied to 
logical objects within the framework of the session. 

These functions can be accessed by name, and not 
necessarily through the P or Q arrays’ indexes as bounded 
predicates. 

Another possibility realized in Sympl is to return the result 
of the execution of the Aisol() function to appropriate variables. 
These variables must be arrays: 

(P: array[ ], Q: array[ ]):=Aisol(х). 

The names of these arrays can be any, not necessarily P 
and Q, i.e. the coincidence or non-coincidence with the names 
of the property and the relations arrays P and Q of logical 
objects plays no role. Only the sequence of results plays a role: 
the set of separate predicates extracted from the x.P array is 
returned to the first array, and the set of separate relations from 
the x.Q array is returned to the second. 

In this case, each of the newly received array elements is a 
function (its type being function), and not a string (its type not 
being string) as in the original arrays. 

In the example above, the P and Q arrays are declared only 
when the Aisol() function is called (inside the parentheses), 
which indicates the receipt of the combined result (but not the 
union of the results). 

In the framework of permissible syntactic polymorphism, 
the following possibilities of receiving results are also 
admissible in Sympl: 

Aisol (x: logic; var P: array[  ], Q: array[  ]). 

Aisol (x: logic) (P: array[  ], Q: array[  ]). 

In the first case, the variables to which the 
Aisol() function should return the result are 
declared using the keyword var, and in the second, 
using an additional parameter list. 

The variables P[] and Q[] can also be declared 
beforehand, before calling the Aisol() function: 

P, Q: array of function. 

Or like this: 

P: array[  ]. 

Q: array[  ]. 
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In the first case, P and Q are arrays of the type 
function, and in the second case are arrays of an 
indeterminate type. 

In the second case the type casting for both 
arrays will be performed by the system when the 
Aisol() result are transferred to them. 

The operation of identifying abstraction () of 
array elements by P(x), i.e. by predicates can be 
notated as: 

function AequalP(Х: array of logic): array of set; 
begin 
return Group Х by P(X); 
end. 

The operation of identifying abstraction by Q (x, 
y) will be implemented as follows: 

function AequalQ(Х: array of logic): array of set; 
begin 
return Group Х[  ] by Х[  ].Q[  ] ; 
end. 

The Group ... by ... syntagma is a symbol 
solver’s control command and is a function for 
obtaining combinatorial solutions. 

The expression Group X[] by X[].P[] is a 
command that tells the system to group all the 
elements from the array X so that in each group 
there have to be at least two elements from X, each 
with at least one property from the array P, these 
properties being equal. 

Literally this expression means the following: 
“group all the elements of the array X by the 
elements of the array P, belonging to the elements 
of the array X”. 

As a result of this command’s fulfillment an 
array of equalization sets, that represent a 
structure and a remainder are returned. The array 
of identification sets looks like: 

[{[Х [i1], Х [k1], Х [l1],...], [𝑃௔భ
, 𝑃௕భ

, 𝑃௖భ
,...]}, 

{[Х [i2], Х [k2], Х [l2],...], [𝑃௔మ
, 𝑃௕మ

, 𝑃௖మ
,...]}, 

... 

{[Х [in], Х [kn], Х [ln],...], [𝑃௔೙
, 𝑃௕೙

, 𝑃௖೙
,...]}]. 

And the remainder, consisting of the elements 
of the array X, that don’t have any common 
properties, i.e. cannot be equalized and make an 
identification set looks like: 

[Х[j], Х[m], Х[n], ...]. 

One can obtain this result using different ways 
of this command record, admissible within the 
framework of syntactic polymorphism as well: 

1) Group X[i] by X[i].P[ ] where i:=1 to length (X); 

2) Group X[i] by X[i]. P[j] where i:=1 to length (X), j:=1 to 
length (X[i].P); 

3) Group X[i] by X [i]. P[j] where (i:=1 to length (X)) and 
(j:=1 to length (X[i].P)); 

4) Group X[  ] by X[  ].P[j] where j:=1 to length (х[  ].p). 

In the above expressions, we used the 
“where…” supplement to the “Group ... by ...” 
syntagma to explicitly indicate the range of 
changes in the numbers (indices) of the array 
elements to be grouped. 

The expression X [], which is a way to 
encompass all elements of the array X, is 
equivalent to the expression X [i], when the range 
of variation of i varies from the 1st to the last index, 
i.e. the length of the array. We used this property 
of the command’s record in the expressions 1-3. In 
a similar way the range of variation of j index is 
indicated in the expressions 2–4. 

It should be noted that such a way of recording 
this command excludes an erroneous access to 
nonexistent elements of the arrays X or P when the 
length of the arrays X or P equals to nil, as after the 
“where…” syntagma the range of index changes is 
clearly indicated, and no control over the access to 
nonexistent elements (as in the expressions X[] or 
P[]) is required, because in constructions of this 
type, it is assumed by default that the established 
operations apply only to arrays of nonzero length. 

The expression Group X [] by X [] .Q [] indicates 
to the system that it is necessary to group all the 
elements of the array X into groups so that each 
group would have at least two elements X [] with at 
least one identical relation from the array of 
relations Q. 

As a result of its execution, an array of 
identification sets is returned, which is a structure 
that look like: 

[{[Х [i1], Х [k1], Х [l1],...], [𝑄𝑎ଵ, 𝑄𝑏ଵ, 𝑄𝑐ଵ,...]}, 

  { Х [i2], Х [k2], Х [l2],...], [𝑄𝑎ଶ, 𝑄𝑏ଶ, 𝑄𝑐ଶ,...]}, 

       ... 

{[Х [in], Х [kn], Х [ln],...], [ 𝑄𝑎௡, 𝑄𝑏௡, 𝑄𝑐௡,...]}]. 
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And a remainder of the elements of the array X 
that do not have any common relationships, i.e. are 
not identifiable: 

Х [j], Х [m], Х [n],...]. 

The identification set is a new data type and is 
defined using the following inference rules: 

Set_of_Identification  ‘{[’Х ‘,’ ‘[’ Y ‘}’; 
         Х  хХ  х ‘,’ хХ| ‘]’; 
         Y yY | y ‘,’ yY| ‘]’. 

The set of identification, as follows from its 
definition, consists of two parts, two arrays. The 
elements of the set are grouped on the left side, 
and the predicates of the set (properties or 
relations) on the right side. 

Elements of the left side, i.e. the elements of the 
set proper, can be accessible in the following ways: 

// access to the 1st element of the set 

S {[1] |}; 

// select a random element of the set 

select S; 

Elements of the right side, i.e., the predicates of 
the set, can be accessible as: 

// access to the 1st predicate of the set 
S {| [1]}; 
// access to the i-th predicate of the set 
S {| [i]}; 

Other operations applicable to the set are: 

operation for including an element in a set. Returns 
true if the item has any common predicate with set 
data and was successfully included, returns false 
otherwise. 

include (x, S); 

operation for excluding an element from the set. 
Returns true if the element to be excluded belongs 
to the set. It is possible to exclude an element both 
by name and by index: 

exclude (S, x); 
exclude (S, i); 

The operations of abstraction together with the 
operation of generalization are the basic 
operations of intelligence. The results of these 
logical operations are various concepts 
and categories. 

A concept is a logical object that is a reflection 
of other logical objects and contains their 
distinguishing features. These include properties 
and relationships. 

Each concept distinguishes between its content 
and scope. The content of a concept is the totality 
(set) of the attributes of objects reflected in it [2]. 

The scope of a concept is a set of logical 
objects, each of which has attributes related to the 
content of the concept, i.e. predicates. 

Thus, a concept is a logical object that consists 
of two parts. 

The concepts are the result of applying the 
abstraction of identification and are declared in 
Sympl as follows: 

declare type notion: as record of 
//notion’s name 
name: string; 
// array of logical objects forming a set 
X: array of logic; 
// array of predicates (properties / relations) that all objects have 
P: array of predicate; 
end; 

The objects displayed in the concept stand out 
from a composition of a broader set than the scope 
of the concept. Thus, we can talk about a hierarchy 
of concepts. 

By the nature of the elements of their scope, 
concepts can be divided into non-collective and 
collective. Non-collective are those whose content 
features are proper to each scope element. 

Collective are concepts in which the features 
that make up the content are inherent to the scope 
as a whole, rather than to its individual elements. 
For example, the constellation "Ursa major", "the 
collective of our institution." Extremely broad 
concepts are called categories. 

As a rule, categories are philosophical 
concepts, for example, such as “matter”, 
“consciousness”, “being”, “essence”, etc. 
Categories can also be obtained by applying the 
classification component of a certain relation (or 
system of properties) as a generalizing one to 
other relations (or property systems). Moreover, 
words expressing specific concepts take additional 
generalizing meanings or new words are created 
for expressing these notions. 

If one can move up the hierarchy of concepts 
(from categories and concepts of a lower level to 
concepts of a higher level) using the abstraction of 
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identification by adding new attributes, one can 
move (advance) in the opposite direction using the 
abstraction of identification by discarding 
existing ones. 

The predicate type is defined in Sympl 
as follows: 

declare type predicate as function _(x: logic) or function _(x, y: 
logic); 

This record means that a predicate type 
variable can be a single-function (record "function 
_(x: logic)") or ("or") a two-place function (record 
"function _ (x, y: logic)"). 

The underscore symbol '_' before the list of the 
function’s parameters is a substitute for the 
function name. 

Now, the initialization of a variable notion1 of 
the type notion (i.e. a concept) will look like this: 

// variable declarations 
notion1: notion; 
// declaration of an array of identification sets 
M: array of set; 
//initialization 
// we apply to the variable M as the result of //the operation of 
identification by properties 
M:=AequalP (X); 
// if not an empty result 
if not (M=void) then  
begin 
 // initialize the array of logical objects that 
 //make up the concept 
notion1.x: =М [1] {[] | }; 
 // initialize the array of predicates that all 
// these objects have 
notion1.P: =M [1] {|[]}; 
end. 

As a result, we have an object of type notion 
(conceptual type), which is the result of applying 
the logical operation of identification abstraction 
implemented using the Group ... by ... syntagma 
and is a first-level abstraction. 

To obtain second-level abstraction, it is 
necessary to apply the operation of identification 
abstraction to an array of logical objects notion1.X 
or to M [1] {[] | } and to some other array of logical 
objects that are the result of application of the 
abstraction of identification and are also logical 
objects that form the concepts of the first level. 

One must note, that it is possible to apply the 
operation of identifying abstraction to concepts of 
different levels (for example, when one concept is 
an abstraction of the first level and the other is a 
concept of the second level abstraction), therefore 

it would be more correct to talk about the concepts 
of the first level and the concepts of a high level. 

Let’s consider an example of the operation of 
abstraction of identification by relation: 

// declare an array of concepts 
notion_array: array of notion. 
// declare an array of identification sets 
M: array of set; 
//initialization 
// assign the result of the operation of identification by relations 
to the variable M 
M: = AequalQ(X); 
// if not an empty result 
if not (M=void) then 
begin 
// initialize the array in a loop 
for i=1 to length (M) do 
begin 
notion_array [i] .X: =M [i] {[] | }; 
notion_array [i] .P: =М [i] {| []}; 
end; 
end; 

The naming of the concepts obtained as a result 
of applying the abstraction of identification in 
Sympl is yet an unsolved problem, though one can 
of course use an ordinal system of denotation, i.e. 
denote the first obtained concept as C1, the 
second as C2, etc., though in a natural language 
one creates new words for them, as well as the 
formalization of the abstraction of generalization. 

For example, what do have in common two 
subjects “John” and “Jane” in the following two 
sentences: 1)“John helps poor people with 
money”; 2) “Jane volunteered to care for cleaning 
old people’s flats”? If one will ask this question from 
any person, one will obtain the answer “that both 
are good (or good-hearted) people”. 

This is based on our picture of world as in it: 1) 
“helping people with money” is “good”; 2) “cleaning 
old people’s flats” is “good” as well. But how can 
one obtain such an answer based on a 
logical approach? 

The answer is that one must analyze a definite 
amount of texts, in which will occur a phrase that 
both activities are “good”, i.e. one must find for both 
predicates “help people with money” and “clean old 
people’s flats” common properties, that will be 
linked with the property “being good” in some or 
other way. 

Thus, generalization is possible for two 
predicates when there exists an intermediate 
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predicate that can derivate from them directly or 
through a sequence of derivatives. 

One can formulate this condition for properties 
(3), as well as for relations (4), in such a way: 

AGENER(P1(x),P2(y))Pi: AISOL(P1(x)) →P3…→Pi 
U AISOL(P2(y))->…->Pi 

(3) 

AGENER(Q1(x1,y2),Q2(y1,x3))Qi: AISOL(Q1(x1,y2) 
→Q3... →Qi U AISOL(Q2(y1,x3)->Qk...-> Qi 

(4) 

Finding such intermediates in a text for two 
predicates is, however, not always possible. One 
must use text corpora, create semantic fields, but 
even in such a way the process will need human 
intervention. Thus, the problem of formalization of 
the abstraction of generalization 
remains unresolved. 

5 Examples of the Proposed Theory 
Application 

One can cite following examples. 

Example 1. Automated functional entities 
hierarchy building 

Let us consider a text, Text1 = “There is a bus 
going from the campus to the university. There is a 
plane that flies each Sunday from Moscow 
to Mexico”. 

These sentences describe various entities, 
represented by words that are substantives/nouns, 
such as “a bus”, “a plane”. 

By applying a morphological analyzer to the text 
we will obtain a tagged number of words for each 
sentence = {“There”=(“there”,  Adverb), “is” =(“be”, 
Verb, Present Simple, 3rd person, indicative), 
“a”=(“a”, Indefinite Article), “bus”=(“bus”, Noun, 
Singular), “going”=(“go”, Verb, Present 
Continuous, person=any), “from”=(“from”, 
Preposition), “the”=(“the”, Definite Article), 
“campus”=(“campus”, Noun, Singular), “to”= (“to”, 
Preposition),  “the”=(“the”, Definite Article), 
“university”=(“university”, Noun, Singular); 
“There”=(“there”, Adverb), “is” =(“be”, Verb, 
Present Simple, 3rd person, indicative), “a”=(“a”, 
Indefinite Article), “plane”=(“plane”, Noun, 
Singular), “that”= (“that”, Definite Article | 
Conjunction | Adverb | Pronoun | Adjective), 
“flies”=(“fly”, Verb, Present Simple, 3rd person), 

“from”=(“from”, Preposition), 
“Moscow”=(“Moscow”, Noun: Geographic Name, 
Singular), “to”= (“to”, Preposition),  
“Mexico”=(“Mexico”, Noun: Geographical Name, 
Singular), “each”=(“each”, Determiner | Pronoun), 
“Sunday”=(“Sunday, Noun: Time, Singular)}. 

The syntactical structure of each sentence will 
look like: 

1 (There is [=be]) & (a bus) & (going [=go] (from 
(the campus) to (the university)). 

2 2. (There is [=be]) & ((a plane) & that & ((fly)& 
(each Sunday)& (from & Moscow) (to & 
Mexico)). 

The logical structure of each sentence after the 
application of a logical analyzer will look like: 

1  x1= “bus”, x2 = “campus”, x3 = “university”: 
x1.P1= “go”: x1.P1.P1=(name=“time”, value= 
“Present Continuous”), x1.P1.Q1= “from”(x2), 
y1.Q2 = “to”(x3); 

2   x4= “plane”, x5 = “Moscow”, x6 = “Mexico”: 
x4.P1= “fly”;  y2 =x4.P1: y2.P1=(name=“time”, 
value=“each Sunday”), y2.Q1= “from”(x5), y2.Q2 
= “to”(x6); 

As the properties “go” and “fly” are complex 
ones and themselves possess properties and 
relations – they need to be decomposed to avoid 
hierarchical structures that will complicate their 
algorithmic processing: 

1  x1= “bus”, x2 = “campus”, x3 = “university”: 
x1.P1= “go”;  y1 =x1.P1: y1.P1=(name=“time”, 
value= “Present Continuous”), y1.Q1= 
“from”(x2), y1.Q2 = “to”(x3); 

2   x4= “plane”, x5 = “Moscow”, x6 = “Mexico”: 
x4.P1= “fly”;  y2 =x4.P1: y2.P1=(name=“time”, 
value=“each Sunday”), y2.Q1= “from”(x5), y2.Q2 
= “to”(x6); 

One must also introduce a logic rule that 
regulates the relations between bound predicates 
and the independent logic objects with the same 
names that are used for their full scaled definition 
in case when they are complex ones and have their 
one properties and relations. 

if (Pi  x.P, Pk x.P) ∩ ( yj: yj.name = Pi, yh: 
yh.name = Pk) ∩ ( yi ) ∩ (yh ) then (Pi  )∩ 
 (Pk  ); 
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or 

if (Pi  x.P, Pk x.P) ∩ ( yj: yj.name = Pi, yh: 
yh.name = Pk)  ∩ Aequal(yj, yh) = true then Aequal 
(Pi, Pk) = true. 

The programming implementation of this logical 
structure using Sympl is given below: 

var 
Propertyi, Propertyk: string; 
Properties: set; 
yi, yh: logic; 
Rule: logicRule = <if exists(Propertyi: string) and 
exists(Propertyk: string) and (Propertyi in Properties) and 
(Propertyk in Properties) and (yi.name=Propertyi) and 
(yh.name=Propertyk) then Aequal(Propertyi, 
Propertyk).results:=Aequal(yi,yh).results)>; 
Rule.Apply(); 
var 
X: array of logic = (<“bus”>, <“campus”>, <“university”>, 
<“plane”>, <“Moscow”>, <“Mexico”>); 
X[1].P[1]=(“go”); 
X[4].P[1]=(“fly”); 
//declare an array of 2 logical objects y1=x1.P1= //“go” and 
y2=x4.P1= “fly”; 
declare Y: array of logic = (X[1].P[1], X[4].P[1]); 
Y[1].Q[1]=(<“from”>(x:=X[2]),  <“to">(y:=X[3])); 
Y[2].P[1]=(name= “time”, value=”each Sunday”); 
Y[2].Q[1]=(<“from”>(x:=X[4]),  “to" (y=X[5])); 

Let us apply now the operation of the 
abstraction of equalization by properties to the 
array of logical objects Х. 

notions: array of notion; 
// declaration of an array of identification sets 
M : array of set; 
//initialization 
// we apply to the variable M as the result of //the operation of 
identification by properties 
M:=AequalQ(Y); 
// if not an empty result 
if not (M=void) then 
begin 
l:= length(M); 
for i:=1 to l do 
 begin 
 // initialize the array of logical objects that 
 //make up the concept 
  notions[i].X: =М [i] {[] | }; 
 // initialize the array of predicates that all 
// these objects have 
  notions[i].Pr: =M [i] {|[]}; 
 end; 
end. 

The array of identification sets obtained as a 
result of this operation will look like: 

[{[y1= “go”, y2= “fly”], [y11.Q1= “from”(x)”to”(y), y2.Q1= 
“from”(x)”to”(y)]}, 

with a void remainder []. 
The equalization between the properties 

x1.P1=“go” x4.P1=“fly was made according to their  
association to the logic objects y1 and y2 by names 
and the possibility of equalization of these latter 
objects by the  relations y1.Q1= “from”(x2), y1.Q2 = 
“to”(x3) and y2.Q1= “from”(x5), y2.Q2 = “to”(x6). 

In terms of the presented theory the result 
obtained in notion[1] corresponds to the concept 
“move”. And one can name this notion manually: 
notion[1],name:= “move”; 

The application of the operation of isolation 
Aisol() to notions[1] Aisol(notions[1]) will give a sort 
of a prototype function - an analogue of a virtual 
function in Object Oriented Programming. 

The application of the abstraction of isolation to 
the object vehicle Aisol() will return a logic function 
move_in_space(x: logic): boolean. 

One can create a separate set of identification 
with the same name (“move”) and a logic object 
that will be associated with this notion and function:  
<“move_in_space”>: set:=notions[1].X; 
<“move_in_space”>: logic; 
move_in_space.Q[1]:=from(x: logic) to (y: logic). 
The association is done automatically by 
identical names. 

The body of this function can be 
implemented as: 

move_in_space(x: logic).body = begin 
 for i=1 to length (x.P) do 
  begin 
   if  x.P[i] in move_in_space then 
    begin 
      move_in_space:= true; 
      break; 
    end; 
 end; 

Example 2. Automated object entities hierarchy 
building 

Let us now apply in the scope of the 
programming code of the Example 1 the operation 
of equalization by properties to the logical objects 
of the array X: 

M: array of set; 
M:=AequaPl(X); 

// if not an empty result 
if not (M=void) then 
begin 
l:= length(M); 
for i:=1 to l do 
 begin 
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 // initialize the array of logical objects that 
 //make up the concept 
  notions[i].X: =М [i] {[] | }; 
 // initialize the array of predicates that all 
// these objects have 
  notions[i].Pr: =M [i] {|[]}; 
 end; 
end. 

The array of identification sets obtain as a result 
of this operation will look like: 

[{[x1= “bus”, x4= “plane”], [x1.P1= “go”, x4.P1= “fly”]}], 

and the remainder will look like [x2, x3]. 
In terms of the presented theory the result in the 

notions[1] corresponds to the concept “vehicle” as  
“A vehicle is an object that can move in space”, i.e. 
“from the point x to a point y” and will  be some sort 
of analogue of an object prototype that will 
correspond to a parent class in OOP: 

notions[1].name:=“vehicle”; 
<“vehicle”>: set:=M[1]{[]|}; 
<“vehicle”>: logic 
( P= (“move_in_space”); 
  Q = (); 
). 

The declared above logic object “vehicle” has a 
single element of the properties array P[1]= “move 
in space” and a void array of relations. 

6 Conclusion 

The presented abstraction theory and its 
algorithmic implementation as was shown in the 
examples can be used primary for obtaining new 
knowledge patterns. 

Following tools have been developed in the 
paper: a type “logic” (logical data type), which 
implements a logical object with a set of properties 
and relations implemented as arrays; Aisol() 
function that implements the logical operation of 
isolating abstraction; AequalP() function that 
implements the logical operation of property 
abstraction; AequalQ() function that implements 
the logical operation of abstraction of identification 
over relations; the Group ... by ... syntagma, which 
allows to group logical objects by their properties 
or relationships using a symbol solver built into the 
system and obtain an array of identification sets as 
a result; a type “set” (a type that implements the 
identification set), which is a set on the left side of 

which is an array of logical objects that are 
elements of this set, and on the right side of which 
is an array of predicates (properties or relations) 
that are common for all of its elements; the 
operation of accessing an array of elements of the 
identification set: M{[]}; the operation of accessing 
the array of predicates of the identification set: M{| 
[]}; the operation of selecting a random element 
from a set: select; the operation of including an 
element into a set: include; the operation of 
excluding an element  x from the set: exclude; the 
operation of excluding an element from the set by 
its index: exclude; the type “notion” (“conceptual 
data type”). 

The area of application of the presented theory 
is an automatized building of text entities and 
based on them automatized declaration of class 
hierarchy and virtual functions. 

As a result of further development in this 
direction, it is also possible to implement such 
logical concepts as category and the category’s 
data type (“categorical data type”). 

However, the problem of formalization of the 
abstraction of generalization remains unresolved. 
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