
Identification of Static and Dynamic
Security Controls Using Machine Learning

Florencio J. González1, Eleazar Aguirre-Anaya1,
Moisés Salinas-Rosales1, Atsuko Miyaji2

1 Instituto Politécnico Nacional,
Computing Research Center, Laboratory of Cybersecurity,

Mexico

2 Osaka University
 Department of Information and Communications Technology,

Japan

fjgonzalezrmx@gmail.com, {eaguirrea,msalinasr}@ipn.mx,
miyaji@comm.eng.osaka-u.ac.jp

Abstract. During a network scanning, identifying the
operating system (OS) running on each network
attached host has been a research topic for a long time.
Researchers have developed different approaches
through network analysis using either passive or active
techniques, such techniques are commonly called “OS
fingerprinting”. According to best security practices, a set
of security mechanisms should be applied to prevent OS
fingerprinting by penetration testers. This article
presents an experimental study to identify the
parameters used by security controls to obfuscate their
behavior on the network. A novel strategy is proposed
to identify network devices despite static and dynamic
obfuscation caused by security controls such as NAT,
protocol scrubbers, or hardened systems. Targets were
identified in virtual and native environments with a high
degree of precision, by means of a layered classification
model integrated by K-means, KNN, Naive Bayes, SVM
and ADA Boost classifiers.

Keywords. OS obfuscation, OS fingerprinting, moving
target defense identification, security architecture,
machine learning.

1 Introduction

Information security is an area in constant
evolution, mainly with two approaches, defensive
and offensive. In both approaches, there are at
least two roles: one is responsible of design,
implement and monitor security controls to protect
information assets, and the other is responsible of

assessing the security posture of an organization.
Secondly, at the time of writing, companies are
moving their own data centers to cloud computing-
based infrastructure and services. Regardless of
whether assets are on-premises or in the cloud,
security dimensions cover computer, network, and
information security. Traditionally, security controls
have been integrated into layer-based models from
a depth approach [1-2].

On this scenario, the defensive side
implements technical controls in the network
architecture to prevent attacks at different layers,
as firewalls, intrusion detection systems (IDS),
intrusion prevention systems (IPS), network
address translation (NAT), and others; additionally,
some security controls can modify statically or
dynamically default configurations, e.g., protocol
scrubbers or hardening processes, avoiding the
exposure of unnecessary information on
the network.

This set of settings reduces the ability of the
offensive side to execute an identification process
based on exposed information. Additionally, a
trending topic on defensive security controls
consists of dynamic definition of the system
architecture, bringing up the concept of Moving
Target Defense (MTD), which aims to prevent
attacks based on the constant variation of an asset
or target, reducing the effectiveness of previous
recognition info obtained by the offensive side [3].

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

ISSN 2007-9737

On this scenario, despite the advances on the
design of the security controls on the defensive
side, little progress has been made on offensive
techniques to identify and fingerprint obfuscation
actions on security controls. In this sense, this
research proposes a novel strategy to identify
static and dynamic security controls based on
machine learning.

On this research we analyzed the behavior of
three security controls standard to change default
configurations to reduce successful fingerprint:
protocol scrubbers, NAT networks, and OS
hardened hosts.

2 Related Work

NAT as a security control is used to hide hosts
behind a public IP address, i.e., the hosts behind a
NAT are in a private network and must go through
it to communicate with other networks; it must be
highlighted that cannot be started communication
with a host behind the NAT. Besides, a Network
Address Port Translation (NAPT) executes not
only an address translation but also port
translation; these kinds of networks are used to
offer services installed in different hosts, using just
one public IP address.

Some researchers contributed with techniques
that could be used to identify NATs,
Mongkolluksamee, Fukuda. et al. presented a
passive technique for detecting NATs [4]. They
counted the number of active hosts behind a NAT
by observing the network traffic generated when
five hosts with different operating systems
downloaded 20 files.

They considered the ID field from the Internet
Protocol (IP), TCP sequence number, and TCP
source port to identify coherence and count the
number of hosts accessing the internet using a
Bellovin’s algorithm. This research expected to
have the same results analyzing the IP ID field, but
nowadays, some NAT devices change the original
values. A protocol scrubber is a transparent and
interposed mechanism for explicitly removing
network scans and attacks at various layers [5].

Restricting an attacker´s ability to determine the
operating system of a protected host, as the design
and implementation of a TCP/IP stack
fingerprinting scrubber presented by Smart, et al.

in [6], that can avoid Nmap, p0f, and IpMorph from
identifying the host OS of a target.

Fingerprinting tools, as mentioned above, were
unable to identify the operating systems when
faced with a protocol scrubber because they
directly compare features with a database. Based
on this, our research takes advantage of
ambiguities during the network protocol
implementation or manipulation, to identify
patterns that lead to the potential existence of
protocol scrubbers.

Hardening is the process of securing systems
by removing unnecessary services and
applications and modifying default implementation
values to reduce the attack surface. This research
extracted and analyzed features from hardened
systems to identify them by verifying
their congruence.

Typically, hardening a host involves more than
one security procedure, i.e., adding protections to
the operating system, patching the kernel, host
firewalls, and others. In [7], Kaur and Singh. et al.
analyzed some attacks based on operating system
fingerprinting. They discussed some approaches
to protect a system from OS fingerprinting.

They proposed to harden it by modifying some
kernel values to impact default values and mislead
fingerprinting tools. Nowadays, hardening a host is
a mandatory practice, in this sense, the evaluation
processes must be more robust and intelligent to
determine preventive controls compliance.

Based upon those mentioned above, this paper
proposed identifying obfuscation devices using
Machine Learning algorithms, particularly
classifiers, boosting, and clustering. In this
research, an analysis of network flows of real and
virtual environments was carried out to determine
a set of network characteristics that were used to
identify network elements. Three security controls
were analyzed: NAT, protocol scrubbers, and
hardened hosts.

3 Security Controls Analysis

This section describes the analysis, design, and
implementation of the security controls aimed to
identify from an offensive approach.

According to ISO 27001 [8] a security control is
defined as “any administrative, managerial,

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Florencio J. González, Eleazar Aguirre-Anaya, Moisés Salinas-Rosales, et al.582

ISSN 2007-9737

technical or legal method that is used to modify or
manage information security risk”, i.e., practices,
processes, policies, procedures, programs, tools,
techniques, technologies, devices, and
organizational structures. In our research context,
a security control focus on programs, tools,
techniques, technologies and devices used them
to modify information to prevent from a successful
enumeration process.

The standard security controls considered for
experimentation and testing were free source
implementations. Initially it was assumed that the
responses of the controls would be affected by a
virtualization layer, so it was decided to consider
environments with native installations and
virtualized installations.

3.1 NAT

A common NAT implementation is directly over an
operating system using firewall rules by using
software based on the Netfilter framework. In this
research, the NAT analysis involved two
different environments.

The first one, a NAT implemented through
IPTables on a physical non-virtual environment.
The second one, using IPTables installed in a

virtual environment. This allows having samples
from both types of systems to extract features and
identify NATs as a security control from a
wide approach.

3.1.1 NAT as Non-Virtualized System

The analysis of a NAT in non-virtualized systems
was done by studying the involved network
protocols, particularly protocols that offer more
information to identify a NAT according to state of
the art. TCP and IP protocols were analyzed in
NAT network traffic because it translates the
source IP address and TCP ports. This research
proposed to identify NAT networks analyzing these
protocols according to the study of changing fields
as the port range.

The scenario implemented to analyze a NAT is
shown in Figure 1. Users are Linux and Windows
stations connected to a Gateway configured as a
Router, Firewall and NAT, implemented
with IPTables.

To analyze the network traffic generated by the
clients, we use a traffic sniffer called Analyzer in
Figure 1. This sniffer captures network traffic
behind and after the NAT, compares the changes
made by the NAT and extracts the features that
best describe such implementation. It is worth
mentioning that all of devices in the scenario
are physical.

3.1.2 Virtualization Software

Nowadays, many companies have been migrating
their physical servers to virtualized systems, as
Gartner reports in [9]. Due server virtualization
infrastructure market is mature, more than 80% of
workloads are virtualized. In this sense, this
research analyzed virtualized NAT Networks
as well.

The first virtualized scenario is shown in Figure
2, where machines and network devices were
virtualized. User machines were virtualized using
VMWare Workstation 12, and the NAT was
considered the default NAT interface from the
VMWare interfaces list.

In the second virtualized scenario, virtualized
user machines are connected to a Router/NAT
running over a virtualized system.

The Router/NAT was implemented using
IPTables on a Debian Linux distribution.

Fig. 1. Figure NAT Scenario

Fig. 2. Virtualized NAT Scenario

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Identification of Static and Dynamic Security Controls Using Machine Learning 583

ISSN 2007-9737

From the environments above, the feature
extraction was through an experimental and
theoretical analysis:

 Analysis of the kernel
parameters documentation.

 Review of the open-source protocol
scrubbers documentation.

 Identification of features extracted in other
research papers.

 Analysis of the network traffic samples
collected from different environments.

The values to identify a NAT were extracted and
selected, analyzing the protocol fields changed by
the NAT implementations:

IP TTL: TTL is a field of the IP protocol that lets
a router know whether a packet has been in the
network for a long period and should be discarded.
In this research, the TTL field lets us identify
whether there could exist more than one host
behind a public IP address based on the outgoing
traffic. Due to each Operating System has different
default implementation values, it is not common to
have different TTL values behind an IP address in
the proposed scenarios. However, it is possible to
find a protocol scrubber in a host that modifies the
TTL value, then were analyzed values that
complement such behavior.

IP ID Range: The ID is a field in IP protocol
used as part of network packets segmentation and
fragmentation processes. Such value must be
unique within a flow and maximum lifetime for all
datagrams. We analyzed the ID field to create sets
of ID values to compare the range for a regular host
and NAT Network based on the outgoing traffic.

TCP port range: NAT networks usually change
the source port by another one to avoid problems

when it is the same for two machines. Causing the
use of ranges of source ports higher than a normal
host range, property that this research took
advantage of to identify a NAT Network.

When comparing the network traffic samples
collected by the Analyzer, we found that the NAT
implementations changed the IP TTL, IP ID range,
and TCP port range. So, we extracted these values
to train the machine learning algorithms described
in the second part of this section.

3.2 Protocol Scrubber

A protocol scrubber is a security mechanism that
aims to hide the identity of a host. Modifying the
default implementation values for the most
common network protocols analyzed to execute
OS fingerprinting.

Three Open-Source protocol scrubbers were
considered and analyzed:

 IP Personality [10].

 Scrub tech [11].

 IP log [12].

Each protocol scrubber was installed in virtual
and physical machines for the analysis. Studying
their configurations for each of them to get the list
of values they change. As a result, it was found a
list of 16 values shown in Table 1 that were
commonly modified by protocol scrubbers, mainly
TCP, IP, UDP, and ICMP.

Also, we studied the kernel parameters that
were indirectly affected, e.g., RTT, timers, the
number of packet retransmissions, and even the
length of a packet. It was used to obscure an
operating system.

3.3 Hardened Host

Besides, we considered hardened hosts, analyzing
not just recommended configurations for
hardening from benchmarks. Considering all
possible parameters that can be modified in the
kernel that affects the network space in some way
to obtain cases for each target.

The studied Linux kernels were the versions
3.16 and 4.1, and the analyzed variables were:

 The ones related to the functionality
of IPv4.

Table 1. PDU fields modified by Protocol Scrubber

Protocol PDU fields modified by Protocol
Scrubber

TCP TS option, Urgent pointer, WinSiz, Sack,
Ack retries, Nop option, WinScale, Max
window, Options order

UDP Checksum

ICMP Length, Payload

IP TTL, ID, ToS. Flags

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Florencio J. González, Eleazar Aguirre-Anaya, Moisés Salinas-Rosales, et al.584

ISSN 2007-9737

 The ones that can be change.

 The ones that prevent attacks.

 The ones that manage network attacks.

 The ones useful to execute fingerprinting.

Were analyzed the kernel parameters in
proc/net/core/*, /proc/net/ipv4/*, /proc/net/ipv6/*,
and /proc/net/unix/*. Initially we identified 750
parameters related to network configuration, then
those that had effects with remoting were filtered
out, and the result was 340 network parameters.

Then was analyzed parameters involved in
attacks protection as well as parameters able to
modify fields directly in network protocols, resulting
in 130 parameters to harden a host.

Finally, we studied hardened hosts through a
host identification approach and were found 25
values that can be obtained or calculated through
network interactions. Additionally, we identified
eight values that differentiate the analyzed devices
once we made the selection. Table 2 lists the eight
values found in hardened hosts.

4 Identification of Security Controls
Using ML

This section describes a strategy to identify
security controls integrated by a trained detection
models by Machine Learning algorithms.

4.1 Design

Machine Learning involves algorithms to predict,
organize data, and describe structures. This
research faced a problem in making predictions
based on human knowledge. With this context, it
was chosen to employ supervised learning through
classification and regression based on
previous analyses.

Generally, classification is used when data is
used to predict a category. The data involved more
than two categories, so it was needed to implement
multi-class classification. During the analysis of
classification algorithms, four were selected based
on accuracy, training time, linearity, number of
parameters, and number of features of the data
used in this problem:

 Naive Bayes,

 Support vector machine,

 K-nearest neighbors,

 Decision Tree.

4.1.1 Evaluation Approach

We evaluated the four algorithms using metrics in
Equations 1, based on the confusion matrix.

Recovery(OS) =
𝐴௜௜

∑௡
௃ୀଵ

𝐴𝑖𝐽 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑂𝑆)

=
𝐴௜௜

∑௡
௃ୀଵ

𝐴𝐽𝑖 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

= 𝛴௜ୀଵ
௡

𝐴𝑖𝑖

∑௡
௜ୀଵ

𝛴௃ୀଵ
௡ 𝐴𝑖𝐽.

(1)

Recovery is the proportion of cases correctly
identified as belonging to class 𝐶 among all cases
that belong to class 𝐶. Precision, also called true
positive rate, is the proportion of cases correctly
identified as belonging to class 𝐶 among all cases
of which the classifier indicates that they belong to
class 𝐶. Finally, Accuracy is the ratio of correct
predictions to total predictions made.

Table 2. Modifiable settings analyzed for hardened hosts

Settings Function

tcp_syncookies TCP SYN cookie protection

icmp_echo_
ignore_
broadcasts

Prevents being part of smurf
attacks

icmp_ignore_
bogus_error_
responses

Ignore ICMP Bogus Error
Responses

conf.all.accept_
source_route

Disable IP source routing on all
interfaces

tcp_fin_timeout Reduce the amount of time that a
TCP circuit can stay in the
TIME_WAIT state

tcp_synack_
retries

Controls the number of
retransmissions in Linux
operating system.

tcp_timestamps Protect against wrapping
sequence numbers, round trip
time calculation implemented in
TCP

tcp_syn_retries Mitigates against SYN flood
attacks

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Identification of Static and Dynamic Security Controls Using Machine Learning 585

ISSN 2007-9737

4.1.2 Dataset

The network devices considered in this work were
those manipulate information, specifically NAT,
protocol scrubbers, and hardened hosts. The
process started by analyzing the network protocols
TCP+IP and ICMP, from specific enumeration
requests. One of the fields analyzed was the IP ID
and its behavior in varied conditions and with
multiple types of applications.

The dataset used for training and validation
process have the structure shown in Table 3,
where xn is a feature from the protocol, and the first
column is the label. The network samples for each
security control were captured from physical and
virtual systems. The number of dataset samples
used for training and testing is shown in Table 4.

Samples of the NAT network were from
physical and virtual environments. Physical
samples were captured from 4 university
laboratories by IPTables implementation on a
Debian system. We captured traffic samples for
4 days. For the virtual environments, samples
were captured fr3om:

 Linux and Windows users virtual systems
and a IPTables Gateway installed in a
Debian virtual system on VMWare.

 Linux and Windows users virtual systems
and VMWare NAT interface as a Gateway.

 Linux and Windows virtual systems as
services behind IPTables installed in
Debian virtual system on VMWare.

 Linux and Windows users virtual systems
and a IPTables Gateway installed in a
Debian virtual system on Virtual Box.

 Linux and Windows users virtual systems
and aVirtual Box NAT interface as
a Gateway.

 Linux and Windows virtual systems as
services behind IPTables installed in
Debian virtual system on Virtual Box.

Protocol scrubber samples were captured by
installing IP Personality, Scrub tech, and IP log on
physical and virtual systems. We captured the
traffic generated from the interaction between
scanners and the target system.

The systems were virtualized in VMWare
Workstation and Virtualbox, six samples of network
flows were generated and collected. Finally, for
Hardened Host were installed four hardened
operating systems: Anik O, Fireball, Hardened
Linux, and Pentoo.

Each of them was installed in a physical and
virtual system, using VMWare and Virtual Box to
capture outgoing traffic generated by automated
scripts and the interactions generated between a
scanner and the target system.

4.2 Naive Bayes

Naive Bayes is a probabilistic classifier based on
the Bayes theorem with strong naive
independence assumptions between the features.
Equations used in this research are shown in
equation 2:

𝑃(𝐶 | 𝑥ଵ, 𝑥ଶ, … , 𝑥௡)

=
൫𝛱௜ୀଵ

௡ 𝑃(𝑋௜| 𝐶)൯𝑃(𝐶)

𝑃(𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡)

𝑃(𝑥ଵ, 𝑥ଶ, … , 𝑥௡| 𝐶)𝑃(𝐶)

𝑃(𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡)

𝑃(𝐶) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑥௜ 𝑎𝑛𝑑 𝑎𝑟𝑒 𝐶 𝑐𝑙𝑎𝑠𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝐶 𝑐𝑙𝑎𝑠𝑠

𝑃(𝐶) = 𝑃(𝐶)𝑃(𝐶) … 𝑃(𝐶)
𝑃(𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡) = 𝑃(𝑥ଵ)𝑃(𝑥ଶ) … 𝑃(𝑥௡).

(2)

Table 5 shows the confusion matrix executing
Naive Bayes with NAT, Protocol Scrubber, and
Hardened samples. During the test of the

Table 3. Data structure used for classifiers training

Label Features

NAT feature 𝑥ଵ, feature 𝑥ଶ,… feature 𝑥௡

Prot.Scrubber feature 𝑥ଵ, feature 𝑥ଶ,… feature 𝑥௡

Hardened feature 𝑥ଵ, feature 𝑥ଶ,… feature 𝑥௡

Table 4. Samples used for training and testing

Sec.
Control

Physical Virtual Total
samples

#Packets

NAT 4 6 10 100M

Protocol
Scrubber

3 6 9 5M

Hardened
Host

4 8 12 6M

Total 11 20 31 111M

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Florencio J. González, Eleazar Aguirre-Anaya, Moisés Salinas-Rosales, et al.586

ISSN 2007-9737

algorithm, 50% of samples were used for training
and the other 50% for testing.

Each sample has at least 5,000,000 packets
filtered to process just IP, TCP, and ICMP
protocols, interactions, and statistics from ports
and IP IDs analysis, obtaining at least 2,000,0000
packets for each sample. Based on recovery and
precision metrics for each security control was
calculated the accuracy as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝛴௜ୀଵ
௡ ஺௜௜

ఀ೔సభ
೙ 𝛴௃ୀଵ

௡ 𝐴𝑖𝐽 =
ଵଶ

ଵହ
= 0.8. (3)

The evaluation metrics for the Naive Bayes
classifier obtained from the confusion matrix are
shown in Table 6. Results show that protocol
scrubber classification is the worst compared with
the other security controls. However, notice that
the protocol scrubber has a dynamic value for the
protocol fields, unlike the others.

4.3 Support Vector Machine

Support Vector Machine is a supervised learning
algorithm for classification, usually, it is used for
clustering if implemented as an unsupervised
algorithm. There are two kinds of SVM classifiers:
SVM Linear classifier and Non-Linear
SVM classifier.

This research considered non-linear SVM,
applying multi-class classification through a “one-
against-one” approach [13], on the Scikit
framework. The 𝑛௖௟௔௦௦ is the number of classes,

then are created
௡೎೗ೌೞೞ∗(௡೎೗ೌೞೞିଵ)

ଶ
 classifiers and two

classes are trained for each of them.
Equations used in this algorithm are shown in

equation 4, where given the training vectors 𝑥௜ ∈
𝑅௣, 𝑖 = 1, . . . , 𝑛, in two classes, and a vector 𝑦 ∈
{1, −1}௡, SVM solves the primal problem:

𝑥௜ ∈ 𝑅௣, 𝑖 = 1, … , 𝑛𝑦 ∈ 1, −1௡

𝑚𝑖𝑛௪,௕,఍
ଵ

ଶ
𝑤்𝑤 + 𝐶𝛴௜ୀଵ

௡ 𝜁௜. (4)

Subject to 𝑦௜(𝑤்𝜙(𝑥௜) + 𝑏) ≥ 1 − 𝜁௜ , 𝜁 ≥ 0, 𝑖 =
1, . . . , 𝑛.

Its dual is:

𝑚𝑖𝑛ఈ
ଵ

ଶ
𝛼்𝑄𝛼 − 𝑒்𝛼 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦்𝛼 = 0. (5)

Subject to
𝑦்𝛼 = 0,

′ ≤ 𝛼௜ ≤ 𝐶, 𝑖 = 1, . . . , 𝑛,

where:

𝑒 is the vector of all ones,

𝐶 > 0 is the upper bound,

𝑄 is a 𝑛 by 𝑛 positive semidefinite matrix:

𝑄௜௝ ≡ 𝑦௜𝑦௝𝐾൫𝑥௜ , 𝑥௝൯,

𝐾൫𝑥௜ , 𝑥௝൯ = 𝜙(𝑥௜)்𝜙൫𝑥௝൯ is the kernel.

The decision function was:
𝑠𝑔𝑛(∑௡

௜ୀଵ 𝑦௜𝛼௜𝐾(𝑥௜ , 𝑥) + 𝜌).

Table 7 shows the confusion matrix for SVM,
with NAT, Protocol Scrubber, and Hardened
samples.

Accuracy was calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝛴௜ୀଵ
௡ ஺௜௜

ఀ೔సభ
೙ 𝛴௃ୀଵ

௡ 𝐴𝑖𝐽 =
ଵସ

ଵହ
= 0.93. (6)

Using the confusion matrix, was computed the
evaluation metrics for SVM and are showed in
Table 8, where the number of classification errors
was almost zero. Therefore, the accuracy of this
algorithm was high.

4.4 KNN

K nearest neighbors is a classifier that stores all
available cases and classifies new ones based on
similarity measures. Equations used in this
research are shown in equation 7.

Table 5. Confusion Matrix for Naive Bayes

 NAT Protocol
Scrubber

Hardened
Host

Unknown

NAT 1 1 1

Protocol
Scrubber

 3 1

Hardened
Host

 5 1

Table 6. Evaluations metrics for Naive Bayes

 Recovery Precision

NAT 0.8 1

Protocol Scrubber 0.75 0.75

Hardened Host 0.83 1

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Identification of Static and Dynamic Security Controls Using Machine Learning 587

ISSN 2007-9737

The dataset integrates few samples with a large
amount of data in each of them, in this sense, 𝐾
was assigned as 2, and due to the optimal choice
of the value 𝑘 is highly data dependent. In general,
a larger 𝑘 suppresses the effects of noise, but
makes the classification boundaries less distinct, in
this case, there are three classes, therefore, if 𝐾 >
2 KNN fails more when classifying the
security controls.

The total of samples for NAT networks were 10,
using 5 for training and 5 for testing; 8 as a total of
samples for protocol scrubbers, having 4 for
training and 4 for testing, and finally a total of 12
samples for hardened hosts, having 6 for training
and 6 for testing.

𝑑 = ඥ(𝑥ଵ − 𝑥ଵ)ଶ + (𝑥ଶ − 𝑦ଶ)ଶ + ⋯ + (𝑥௡ − 𝑦௡)ଶ, (7)

where:
𝑥௜ is the feature in the database,
𝑦௜ is the input feature to classify,
𝑑 is the distance that represents how

different are the input and the database items.
Table 9 shows the confusion matrix for KNN,

with NAT, Protocol Scrubber, and
Hardened samples.

Accuracy was calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝛴௜ୀଵ
௡ ஺௜௜

ఀ೔సభ
೙ 𝛴௃ୀଵ

௡ 𝐴𝑖𝐽 =
ଵ଴

ଵହ
= 0.66. (8)

The evaluation metrics for NAT, protocol
scrubber, and hardened hosts are shown in Table
10. Results observed were not as expected.

4.5 Decision Tree

Decision tree as a predictive model lets a target
variable take a discrete set of values, represent
class labels, and represent conjunctions of
features as branches that lead to class labels.

The equation used in this research is shown in
Equation 9:

(𝑥, 𝑌) = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . , 𝑥௞ , 𝑌), (9)

where:
𝑌 is the dependent variable to classify,
𝑥 is a vector of features 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . 𝑥௡.

Fore training and testing, 50% of the samples
were used. Using five samples for training and four
for testing NAT networks.

Four samples for training and four samples for
testing protocol scrubbers. Finally, six samples for
training and six for testing hardening hosts.

Table 11 shows the confusion matrix for NAT,
protocol scrubber, and hardened classification by
a decision tree algorithm.

Accuracy for decision tree classifying NAT
networks, protocol scrubbers, and hardened hosts
was calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝛴௜ୀଵ
௡

𝐴𝑖𝑖

𝛴௜ୀଵ
௡ 𝛴௃ୀଵ

௡ 𝐴𝑖𝐽 =
8

15
= 0.53. (10)

Table 7. Confusion Matrix for SVM

 NAT Protocol
Scrubber

Hardened
Host

Unknown

NAT 4 1

Protocol
Scrubber

 4

Hardened
Host

 6

Table 8. Evaluations metrics for SVM

 Recovery Precision

NAT 0.8 1

Protocol Scrubber 1 1

Hardened Host 1 1

Table 9. Confusion Matrix for KNN

 NAT Protocol
Scrubber

Hardened
Host

Unknown

NAT 3 2 1

Protocol
Scrubber

 3 1

Hardened
Host

 1 4 1

Table 10. Evaluations metrics for KNN

 Recovery Precision

NAT 0.6 1

Protocol Scrubber 0.75 0.5

Hardened Host 0.66 0.8

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Florencio J. González, Eleazar Aguirre-Anaya, Moisés Salinas-Rosales, et al.588

ISSN 2007-9737

It is worth mentioning that the decision tree
algorithm presented lower results to identification
samples did not use in the dataset as described in
Table 12. However, this property could be useful to
identify specific hardened hosts, NAT networks, or
protocol scrubbers.

4.6 ADA Boost

Once we analyzed the individual results for each
classifier, it was identified that each of them has
good results when used for specific purposes. In
this sense, it was proposed to integrate them
together with ADABoost, an algorithm for
constructing a “strong” classifier as a linear
combination of other classifiers referenced as
“weak”, the mathematical model is represented by
Equation 11:

𝑓(𝑥) = ∑ 𝛼௧ℎ௧(𝑥)்
௧ୀଵ , (11)

where:
ℎ௧(𝑥) is a “weak” classifier
𝛼 is an assigned weight for each instance in
the training dataset.

Each weighted prediction made by a weak
classifier goes through a strong classifier, which
weights as “alpha values” the previous predictions.
Finally, each alpha value is summed up in the circle
that processes the result, as Figure 3 shows.

For this research, weak classifiers were Naive
Bayes, KNN, SVM, and Decision Tree, that
classified NAT networks, protocol scrubbers,
hardened hosts and weighted after the
classification process. The expected result of ADA
Boost is a representative output of the identified
security control.

The research methodology was experimental,
and it is shown in Figure 4. As it can be seen, some
inputs required to be preprocessed, due there are
vectors with a big number of values describing an
IP address, TCP ports and IP IDs.

To identify a set of values with similar ranges of
values, there was used K-means clustering
algorithm. We identified that the TCP port
assignment and IP IDs maintain a range of values
established by each type of operating system,
letting us analyze whether there is more than one
operating system behind an IP address. Such
information made it possible to identify NAT
networks and distinguish between them and
protocol scrubbers.

It was found that the protocol scrubber also
changes the TTL values in operating systems, for
one or more values, causing that OS Fingerprinting
was not able to identify the OS. Same pattern was
found in different sets of TTLs.

Although, once we analyzed the number of
different TTLs generated by an IP address
(meaning the existence of more hosts behind), we
were able to verify consistency between them and
the number of operating systems masked by an IP
address based on IP ID and TCP port analysis.

Ranges of values were found in NAT network
traffic samples through experimentation scenarios.
IP IDs and TCP ports range of different operating
systems was identified and was set as the
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 as shown in Table 13.

Table 11. Confusion Matrix for Decision Tree

 NAT Protocol
Scrubber

Hardened
Host

Unknown

NAT 2 3

Protocol
Scrubber

 1 1 2

Hardened
Host

 5 1

Table 12. Evaluations metrics for Decision Tree

 Recovery Precision

NAT 0.66 1

Protocol Scrubber 0.25 1

Hardened Host 0.83 0.83

Fig. 3. ADA Boost model

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Identification of Static and Dynamic Security Controls Using Machine Learning 589

ISSN 2007-9737

The K-means result allowed us to determine the
different sets of TTLs numbers based on number
of clusters. The output was a vector represented
with such clusters that was the input for the
classifiers as is shown in Table 14, where “{}”
represents a set and, “#” the set cardinality.

Figure 4 shows the proposed model to join
weak classifiers with a strong one and include
clustering algorithms for the data preprocessing.

Based on the same metrics used for weak
algorithms, ADA Boost was trained for each
sample and the confusion matrix obtained is shown
in Table 15.

Accuracy for ADA Boost classifying was
calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝛴௜ୀଵ
௡ ஺௜௜

ఀ೔సభ
೙ 𝛴௃ୀଵ

௡ 𝐴𝑖𝐽 =
ଵସ

ଵହ
= 0.93. (12)

The obtained results for ADA Boost are
described in Table 16.

5 Results and Discussion

The evaluation metrics for each algorithm were the
main indicator regarding the functionality of such
techniques to identify the security controls. We
compared individual results and how ADA Boost
improved them.

The metrics for Bayes show that the NAT
network is sometimes confused with protocol
scrubbers, expected behavior since there exists a
variety of TTLs, IDs, and ports. Properties that
were essential to identify a NAT network with
different operating systems masked, so the study
of the ranges was crucial to differentiate them.

Self-properties like the fact that some protocol
scrubbers change the default value for multiples.
SVM evaluation metrics show that few inputs were
classified incorrectly, and compared with other
algorithms, accuracy was high. The prediction
results presented by SVM were the best over the
rest of the classifiers, which indicates that it
achieved an excellent separation margin between
the hyperplanes.

In the KNN case, the distances between the
features of the security controls identified in all
cases are not significantly different, causing the
classifier to confuse them. For example, NAT
networks with protocol scrubbers, or protocol
scrubbers with Hardened hosts. It is because not
all protocol scrubbers change default values using
a set of proposed values, some of them change the
fields all the time. On the other hand, hardened
implementations are changed only on time during

Table 13. Normal difference between Max-Min IP ID /
TCP Ports values for an Operating System

 IP ID TCP Ports

Max-Min 30,000 1,500 -15,000

Table 14. Format Inputs for classifiers

Protocol PDU fields modified by Protocol
Scrubber

TCP {SrcPort}{WinSize}{SACK}{NOPOption}
{WinScale}{MSS}{OptionsOrder}

UDP {TTL}{ID}

ICMP Length, Payload

IP #SynAckRetries # RTT

Fig. 4. NAT network, Protocol Scrubber, and Hardened
hosts identification

Table 15. Confusion Matrix for ADA Boost

 NAT Protocol
Scrubber

Hardened
Host

Unknown

NAT 5

Protocol
Scrubber

1 3

Hardened
Host

 6

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Florencio J. González, Eleazar Aguirre-Anaya, Moisés Salinas-Rosales, et al.590

ISSN 2007-9737

the hardening process, positively impacting the
KNN classification.

Finally, for the decision tree classifier, the best
results are when features are in the training
dataset. This research took advantage of such
property, it was possible to study open-source
security controls and extract their features to add
them to the data for training, letting to identify most
of the devices using a proper database. Even when
the classifiers made some mistakes, the accuracy
was high when incorporated into the ADA Boost
decision stage. Pointing out that ADA Boost did not
classify as unknown any sample.

Each classifier has advantages and
disadvantages, as can be seen in the evaluation
metrics in Table 17. The proposed model using a
strong classifier based on weak ones was to
improve the results. Even when the precision of
ADA Boost was the same as that of the best weak
SVM classifier, it is expected that for unknown
samples, the responses from using only SVM to
using all four classifiers through one strong
classifier would not be similar.

The confusion matrix for ADA Boost shows that
the algorithm never considers an unknown output
for real devices features, a feature that any
classifier did during the testing phase.

6 Conclusions

The individual results of the implemented machine
learning algorithms had good accuracy but only for
identifying security controls with specific
characteristics. However, a model with a strong
classifier was proposed based on weak classifiers,
obtaining better results when working together, a
proposal made in this research to make an
identification considering different
classification approaches.

Manual and deep study over all possible
parameters that can be modified to obfuscate
network protocols let this research extract
appropriated network fields to classify each
security control. Some inputs that were initially
considered direct input for each classifier had to be
pre-processed to be able to work with
proposed classifiers.

For example, during the analysis of the ID field
in IP protocol, we made sets of values based on

the hypothesis that existed some possible hosts
masked by one IP address, such information
offered information about the behavior of the
network implementation in a device, but there were
many data to analyze before starting the
classification process.

Based on the analysis of security controls
implementations that obfuscate information, the
problem of identifying obfuscation security controls
was solved using classification algorithms and
features from passive and active information
gathering. Main contributions were on the
experimental feature extraction for security
controls proposed to be identified in this research.

Machine learning algorithms were tested to
identify obfuscation devices and the results
allowed designing a proposal for a complementary
structure to layers. Clustering models stand out in
first layer, set of three models based on machine
learning in second one, which are reinforced in a
third layer by a strong classifier for the
decision stage.

Acknowledgments

The authors gratefully acknowledge the use of the
services and facilities of the Centro de
Investigación en Computación (CIC) and Instituto
Politécnico Nacional (IPN). To Escuela Superior de
Cómputo (ESCOM) for supporting the samples
collection process. To Consejo Nacional de
Ciencia y Tecnología (CONACYT) for supporting
through a scholarship in Mexico and Japan and
their Manuscript Writing Training Team (CEMAI for
its Spanish acronym) for their help with the
structure, reviews, and constructive criticism of this
research paper. Finally, there is a special
acknowledgement to Osaka University, in
particular to Miyaji Lab, for supporting an exchange
for the development of this research.

Table 16. Evaluations metrics for ADA Boost

 Recovery Precision

NAT 1 0.83

Protocol Scrubber 0.75 1

Hardened Host 1 1

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Identification of Static and Dynamic Security Controls Using Machine Learning 591

ISSN 2007-9737

References

1. Smith, M., Hint, R. (2002). Network security
using NAT and NAPT. Proceedings 10th IEEE
International Conference on Networks (ICON
2002), Towards Network Superiority (Cat.
No.02EX588), pp. 355–360. DOI: 10.1109/
ICON.2002.1033337.

2. Watson, D., Smart, M., Malan, R., Jahanian,
F. (2004). Protocol scrubber: Network security
through transparent flow modification.
IEEE/ACM Trans. Netw., Vol. 12, No. 2, pp.
261–273. DOI: 10.1109/TNET.2003.822645.

3. Jajodia, S., Ghosh, A. K., Swarup, V., Wang,
C., Wang, X. S. (2011). Moving target defense:
Creating asymmetric uncertainty for cyber
threats. Springer. DOI: 10.1007/ 978-1-4614-
0977-9.

4. Mongkolluksamee, S., Fukuda, K.,
Pongpaibool, P. (2012). Counting NATted
hosts by observing TCP/IP field behaviors.
IEEE International Conference on
Communications (ICC), pp. 1265–1270. DOI:
10.1109/ICC.2012.6364596.

5. Gujar, S. N., Gupta, S. R., Ali, M. S. (2010).
Protocol scrubbing: Network security through
transparent flow modification using active real
time database. Proceedings of the
International Conference and Workshop on
Emerging Trends in Technology (ICWET '10),
Association for Computing Machinery, New
York, NY, USA, pp. 345–350. DOI:
10.1145/1741906.1741982.

6. Smart, M., Malan, G. R., Jahanian, F. (2000).
Defeating TCP/IP stack fingerprinting.
Proceedings of the 9th conference on USENIX
Security Symposium, Vol. 9.

7. Kaur, R., Singh, M. (2009). Hardening OS
identity by customised masking techniques.
Proceedings of 2009 Indo US Workshop and
Conference on Cyber Security, Cyber Crime
and Cyber Forensics.

8. ISO/IEC. (2005). ISO/IEC 27001:2005
Information technology, Security techniques –
Specification for an Information Security
Management System.

9. Bittman, T. (2017). Gartner retires the magic
quadrant for x86 server virtualization
infrastructure. Gartner Inc, https://www.gar
tner.com/document/3642418?ref=ddrec&refva
l=3400418.

10. Roualland, G., Saffroy, J. M. (2001). IP
Personality, http://ippersonality.sourcefor
ge.net.

11. Jadhav, A., Baghel, N., Rani, R., Sonavane,
R. (2013). Protocol scrubber proyect.
http://scrub-tech.sourceforge.net.

12. McCabe, R., (2001). IPLog proyect.
http://ojnk.sourceforge.net/stuff/iplog.readme.

13. Milgram, J., Cheriet, M., Sabourin, R. (2006).
“One against one” or “One against all”: which
one is better for handwriting recognition with
SVMs? Technical Report.

Article received on 07/10/2022; accepted on 14/12/2022.
Corresponding author is Eleazar Aguirre-Anaya.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 581–592
doi: 10.13053/CyS-27-2-4429

Florencio J. González, Eleazar Aguirre-Anaya, Moisés Salinas-Rosales, et al.592

ISSN 2007-9737

