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Abstract. In this paper, a series of experimental
methods are presented explaining a new approach
towards active foveated Computer Vision (CV). This
is a collaborative effort between researchers at
CONICET Mendoza Technological Scientific Center
from Argentina, Argonne National Laboratory (ANL),
and Loyola University Chicago from the US. The
aim is to advance new CV approaches more in
line with those found in biological agents in order
to bring novel solutions to the main problems faced
by current CV applications. Basically this work
enhance Self-supervised (SS) learning, incorporating
foveated vision plus saccadic behavior in order to
improve training and computational efficiency without
reducing performance significantly. This paper includes
a compendium of methods’ explanations, and since
this is a work that is currently in progress, only
preliminary results are provided. We also make our code
fully available.1

1https://github.com/dariodematties/Multimodal-Active-AI

Keywords. Foveated computer vision, saccadic be-
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1 Introduction

1.1 About the Collaboration

We begin by highlighting some aspects of
international collaboration. This work is an
extended version of a talk presented in the
Americas HPC Collaboration Workshop, part of
the CARLA 2021 Latin America High Performance
Computing Conference.

Our scope aligns particularly well with the
aims of the workshop, especially “partnerships
formed between researchers and entities across
the Americas, from Patagonia to Alaska” 2.

2See http://carla2021.org/callforworkshops
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We are a geographically-distributed team of
investigators hailing from research and educa-
tional institutions in Argentina and the United
States. We collaborate by leveraging leadership
supercomputing resources in our research, and
state-of-the-art tools for remote collaboration,
which are discussed below.

Throughout years of successful collaboration,
we have advised and graduated a doctoral
student (Co-author, Dematties) and published in
prestigious journals [7, 6, 8]. As part of his
graduate education, Dr. Dematties attended
the Argonne Training Program for Extreme-Scale
Computing (ATPESC), where he acquired invalu-
able experience with common tools used in High
Performance Computing. Readers interested in
knowing more about the program are invited to visit
https://extremecomputingtraining.anl.gov/

This experience allowed Dr. Dematties to
port his software infrastructure to supercomputers,
leveraging hybrid OpenMP+MPI parallelism. A
Director’s Discretionary allocation was granted
at the Argonne Leadership Computing Facility,
providing the foundation to perform large-scale
computational experiments.

This collaboration makes extensive use of
tools such as Zoom videoconferencing, GitHub
for collaborative development, and Zenodo for
publishing datasets and results.

Our work continues well past Dr. Dematties
earning his Ph.D. We would especially like to
mention our participation in the CyberColombia
2020 conference, where we presented a
tutorial at the HPC Summer School, which
covered the science behind bio-inspired models,
working with supercomputers, and software
engineering. See https://figshare.com/articles/
presentation/Towards High-End Scalability on
Bio-Inspired Computational Models/12762260 for
the tutorial materials.

1.2 About the Research

The difficulty linked to CV comes from its hardware
limitations as well as its data set shortages
for training. In some cases, CV applications
could depend on near real-time video processing,
demanding Artificial Intelligence (AI) solutions on

edge computing devices 3 which appear as the
only way to overcome the latency limitations of
centralized computing.

Fitting CV models on edge devices is not an
easy task, given the complexity of such models.
In other applications–such as in 3D medical
imaging–the computational demands could be
prohibitively expensive and the data sets collection
could require extremely skillful staff resulting in
prevalent scarcity.

Facing such challenges requires new ideas in
this area. For instance, the exorbitant demands
on labeled data sets could be alleviated using new
SS strategies while the excessive computational
demands imposed by these algorithms could be
reduced utilizing inspiration from visual systems
found in biological agents.

We humans as well as other higher mammals
do not sense visual information as we perceive
images. The retina, a specific organ located in
the posterior hemisphere of the eye ball has the
function of transforming rays of light entering the
eye into electric signals which are later processed
by the brain [25].

Yet, the perception of an image is not only a
matter of the information coming from outside.
We also affect our visual field perception with the
architecture of our visual system and our behavior.

From an architectural point of view, our retina
samples the visual field with a very high resolution
in a tiny portion called fovea and with very low
resolution in the periphery of such a structure (Fig.
1). From a behavioral point of view, our saccadic
behavior determines where, when and how long
we fixates. This significantly affects the way in
which we sense and perceive the world around us.

Evidently, foveated vision reduces computational
(metabolic) cost, since it is not necessary for the
brain to process all the scene at high resolution.
Yet, this strategy brings an undeniable cost in a lost
of information. What remains is only an appropriate
saccadic behavior in order to make information

3Edge computing is a distributed computing paradigm that
brings computation and data storage closer to the sources
of data. This is expected to improve response times and
save bandwidth. Source: https://en.wikipedia.org/wiki/Edge
computing
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processing more efficient for reproduction and
survival in certain niche.

In this manuscript we report our current
endeavor towards solving some of the major
challenges faced by CV by means of active
foveated strategies. Basically, the complete system
depicted in Fig. 2 aims to palliate data sets scarcity
and the prohibitive computational demands found
in CV models.

We first developed a foveated system which
pre-processes a batch of images. This foveated
system is based on the physiology of the
visual system and not on psychological aspects
of vision as is the case in other works [1,
11]. We addressed foveated vision utilizing its
properties as a natural augmentation approach for
self-supervised learning.

Fig. 2 A shows how we advanced a strategy
utilized in SimCLR [4], where a new approach
to contrastive self-supervised learning algorithm
is proposed.

A network is taught to discriminate images dis-
regarding several augmentations–i.e crop-resize,
Gaussian blur, Gaussian Noise, Color distortions,
flipping, rotations, cutouts, etc. In our work
we propose that such augmentations could be
obtained in a more biologically inspired strategy by
means of our foveated system.

A similar rationale is conducted in [11]. Basically
we implemented a SimCLR like algorithm in which
we teach a Residual Neural Network (ResNet)
architecture to distinguish foveated fixations that
come from the same image from those coming
from different images.

We also incorporated additional augmentations
such as color distortion, crop and resize, Gaussian
noise and flipping. We tested the learned
representations by means of a linear classifier–as
is the standard protocol used in SimCLR.

Fig. 2 B shows how we also incorporated a
transformer architecture utilizing our pre-trained
ResNet network as a backbone. To that
end we adapted an architecture developed by
Facebook AI Research Group called DEtection
TRansformer (DETR) [3]. In DETR a new method
is developed that conceives object detection as a
direct–end-to-end–prediction problem.

Transformers are usually employed in Seq2Seq
modelling approaches especially in language
models. In DETR, such an architecture is used
encoding an image pixel by pixel–instead of word
by word as in Natural Language Processing (NLP).
In our case we adapted the original architecture
eliminating several losses concerning detection,
keeping only losses concerned with classification.

We also adapted the positional encoding
mechanisms of the network and instead of
encoding the position of every component from
the ResNet backbone output we encoded the
position of each fixation from our pre-trained
ResNet backbone.

Self-attention has a quadratic complexity and
in a patch by patch scenario–as is the case
in image Transformers–this situation represents
a great obstacle in the implementation of this
kind of architectures when trying to process high
resolution images. We address this by changing
the strategy of giving each patch a position.

We instead give each fixation a position in
the network. The number of fixations will be
considerable smaller than the number of patches
in an image. This is a huge advantage in
computational load terms, especially when the use
transformers brings to the scene a complexity of n2

where n is the length of the sequence.

Finally, as shown in Fig. 2 C, we incorporated
a RL mechanism in our model with the aim of
learning an effective saccadic behavior. Basically
we trained a DQN, which treated the dynamic of
the Transformer classifier as the environment.

The observation of the state of the environment
was the output from our foveated system, the
actions taken by our network were the coordinates
of the next fixation which gave rise to the next
state from our foveator. Finally the classification
performance from DETR was taken as the reward
in this RL scenario.
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Fig. 1. Foveation in biological agents is a phenomenon in which the density of photoreceptors located on the eye’s
retina varies in a way that there is acutely more density near the fovea, while such a density decreases drastically in
the fovea’s vicinity. The fovea, is a small fraction of the retina which corresponds to the center of fixation in the sight.
The consequence is that the perceptual detail regarded by the agent varies across the image according to the current
fixation point, which confers the highest resolution region of the image to the center of the eye’s retina, (i.e. the fovea)

2 Related Work

In a recent work [5], without using foveation,
but in lines with saving computational effort and
retaining fine details in CV tasks, a method based
on a differentiable Top-K operator to select the
most relevant parts of high resolution images
was introduced.

In regards to foveation, in [13], a foveated vision
system was introduced for face reconstruction al-
gorithms.

In [9] a foveated model to provide clutter
measures was introduced4. In regards to
object detection, in [1] a foveated object detector
was introduced.

Later, in [10] NeuroFovea was proposed as a
model to generate visual metamerism in images
5. In [18], it was investigated quantitatively how

4Clutter perception is the typically negative visual perception
effect that emerges from the disordered organization of an
excessive number of objects in a visual scene

5Metamers are stimuli that are physically distinct but that are
perceived to be the same by a human observer
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Fig. 2. Global strategic scheme to solve CV problems such as the labeled data sets scarcity and the high computational
complexity demanded by the models implementation. (A) Self-supervised contrastive learning approach using foveated
vision as an additional biologically-inspired augmentation strategy. With this strategy we aim to mitigate labeled data sets
scarcity. (B) A transformer architecture processing a sequence of outputs from a pre-trained backbone which process
foveated fixations. Positional embeddings are determined by individual fixations and not by image patches which saves
great computing power demands from the transformer architecture perspective. (C) A Reinforcement Learning (RL)
architecture–a Deep Q Network (DQN)–is added to the architecture to learn the saccadic behavior which is supposed
to generate more effective fixation coordinates in order to increment the classification performance from the transformer

detection, recognition and processing speed in a
Convolutional Neural Network (CNN) were affected
by reducing image size using a foveated transfor-
mation.

In [20] images were compressed in videos ap-
plying foveation, gradually reducing the resolution
in the periphery.

Afterwards images were reconstructed utilizing
generative adversarial approaches. In [11] it was
found that a CNN trained on foveated inputs with
texture-like encoding on the peripheral information
has similar scene classification performance to a
matched resource CNN without foveated inputs.

Finally in [19] a foveated Transformer model
was proposed.

None of the previous research analysed
foveation utilizing computational hypotheses
based on a developmental approach.

As is the case for this study, foveation has been
applied following a developmental appeal from a
SS learning strategy, passing through a Seq2Seq
scheme–with random fixations–to finally end up
employing a RL policy, learning the saccadic
behavior of the agent.
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3 Computational Hypotheses

3.1 Image Foveator

In Fig. 3 we have sketched the foveation process.
First of all, we resize all the images in the batch to
the same specific size (640 x 640). Then we apply
a series of successive crop and resize operations.
All crop operations are resized to a resolution of
30 x 30 pixels. In the first row in Fig. 3, there is
not crop operation, we only resize the complete
640 x 640 span to a 30 x 30 pixels resolution.
Successive crop operations are illustrated with
corresponding yellow squares. Such operations
reduce the complete 640 x 640 span to 400 x 400,
240 x 240, 100 x 100 and finally to 30 x 30 pixels.

We use NVIDIA DALI library for the process of
foveation6. This library is utilized for data loading
and pre-processing accelerating Deep Learning
(DL) workflows.

Even though the foveation operation is–in
itself–an augmentation operation, we also apply
additional augmentations to the batch. The
pipelines also apply operations of random resize
plus crop before foveation. The random area in the
cropping operation ranges from 10% to 100% of
the span. The location of the cropping operation is
also random.

The final size of the image after the random crop
plus resize is 640 x 640 pixels. Flipping, Gaussian
noise, color distortion and grid mask operations
are also applied randomly. Both, flipping as well
as color augmentations are applied with a 50%
chance. When applied, color augmentation has
several components such as brightness, contrast,
hue and saturation which are also generated
randomly. Grid mask is applied with a 10% chance.
When applied, this has two components which are
generated randomly too (i.e. ratio, tile). The ratio
indicates the quotient between occluded and free
space in the image, whilst the tile sets the size of
the grid inside the image.

6https://docs.nvidia.com/deeplearning/dali/user-guide/docs/

Fig. 3. Foveator. To simulate the foveation process found
in some biological agents such as some mammals, we
generate 5 spans from the same image around a fixation
point. All the spans have the same number of pixels (30
x 30) but some of them sub-sample the complete original
image while others sub-sample smaller regions of it.
The smaller the region spanned the better the resolution
captured by the (30 x 30) span. On the left hand side
column we show the spans extracted from the original
portions of the image. On the right hand side column
we show the 30 x 30 spans returned by the foveator.
From top to bottom rows we have bigger spans with less
resolution to smaller spans with higher resolution. Yellow
squares show the following span proportion respecting
the previous span

3.2 Self-Supervised Approach

SS methods do not rely on human created
labels but on intrinsic characteristics immersed in
the statistical structure of data sets. Yet, SS
learning does not only confers advantages from
saving large and expensive labeled data sets. It
delivers much richer representations which are not
constrained to loss functions supported only by
human provided labels, but by diverse features
hidden in the statistical structure of the data sets.
Human provided labels are instead subjective and
limited. The pre-training phases in SS learning
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make the networks to acquire relevant information
through loss functions based on pretext tasks.

In vision, pretext tasks are very diverse. In
this work we will concentrate our attention in
Contrastive Learning (CL), specifically, in the
research conducted by T. Chen et al. [4]. In
CL the pretext task consists on teaching a model
to classify different augmented versions of an
image as coming from the same image and to
discriminate such augmentations when coming
from different images. In this way the model learns
image features with invariant properties to the
different augmentations applied. The hypothesis
is that the more augmentations one adds to the
inputs, the more robust are the features acquired.

In CL, a batch of images is augmented
applying diverse augmentations such as crop and
resize, flipping, color distortions, rotations, cutouts,
Gaussian noise, Gaussian blur and filtering among
others. Generally a batch of images is augmented
twice, providing two augmented versions of the
batch. Afterwards a Neural Network (NN) is trained
to maximize agreement between representations
produced by augmentations coming from the same
image and minimize such an agreement between
augmentations coming from different images.

In [4] the NN is composed by two stages–i.e.
f(·) and g(·). f(·) is called the base encoder
network, while g(·) is called the projection head.
After training, the projection head is removed using
only the output from f(·) for any downstream task.

We approached this same strategy utilizing
augmentations coming from our foveated system.
We humans perceive visual information as static
and well defined scenes even when we do several
saccades per second. This means that at each
second our retina is receiving information from very
different versions of the same perceived scene.
In some way, our visual system is considering
such different representations provided by different
fixations as coming from the same source of
information. As a result we see a static scene.

We hypothesize that our propioceptive system,
in tandem with our saccades, inform our visual
system that we are watching at the same image.
Maybe the best way to survive and reproduce is
that–under such circumstances–our visual system

learned 7 to produce a representation that we
perceive as a static and well defined scene.
Moving our gaze to another location is reported
by our propioceptive system and the information
aproaching our retina could be considered as
coming from a different source.

Inspired by this biological rationale we applied
the method developed in [4] but producing the
augmented images by means of different fixations
coming from our foveator. We only used 4 of the 5
spans showed in Fig. 3. We discarded the first
complete span and used instead only the spans
from 2 to 5. We also implemented f(·) utilizing
a ResNet 50 and g(·) by means of a MultiLayer
perceptron (MLP) as in the original implementation.

Additionally we incorporated further augmen-
tations in advance to the foveation process,
for instance, we added crop and resize, color
distortion, Gaussian noise and grid mask. Such
additional augmentation improved representations
considerably. Some aspects related to the quality
of the representations will be addressed in the
following section.

3.3 Supervised Approaches

3.3.1 Linear Evaluation

With the aim of evaluating the learned represen-
tations in f(·), we followed the linear evaluation
protocol utilized in [4]. To that end we trained a
linear classifier on top of the frozen base network
f(·), and then tested the accuracy of the linear
classifier using it as a proxy for representation
quality.

In our case we generated n fixations from our
foveator and passed them through our frozen base
network f(·). We then collected the n outputs from
f(·) and merged then in a unique vector which
we used as input for the linear classifier. The n
fixations were produced randomly, i.e. no pattern
was followed to cover the image in any conceivable
way with the fixation locations.

7When we talk about learn here we mean phylogenetic and
ontogenetic processes
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3.3.2 Processing Sequences of Fixations with
a Transformer Architecture

Attention mechanisms–predominantly
self–attention–came to the scene playing a more
important role in deep feature representation in CV.
This strategy captures long-range dependencies
within a single sample [29].

Nevertheless, self-attention has a quadratic
complexity which could make its implementation
difficult, especially in high resolution images
with maybe millions of pixels. With the
aim of circumventing this problem, alternative
architectures are implemented for substituting
self-attention [14, 23, 28].

In our approach we propose a different strategy.
Instead of encoding positions for each pixel–or
patch–in an image, we encode positions for each
fixation in the visual field.

The number of fixations executed by our foveator
will–logically–tend to be considerably smaller than
the number of pixels–or maybe patches–found in
an image. For instance, for humans only two
fixations suffice to recognize faces [16].

We used the learned representations in our
base network f(·) fine-tuning it by means of
the architecture showed in Fig. 2 B. We
fed a Transformer with a series of learned
representations from a sequence of fixations.
We used the main organization and strategy
introduced by N. Carion et al. [3].

We used a random number of fixations which
ranged from 2 to 9. We also used 10 prediction
queries which ended up being 10 image class
predictions which in a way voted for the different
classes in imagenet.

3.4 Reinforcement Learning for the Acquisition
of Saccadic Behavior

In the system shown in Fig. 2 B, not only the
number but also the locations of the successive
fixations in an image were chosen at random.

Yet the behavioral patterns found in saccades of
biological systems are far from random [26, 22, 27,
2]. Which are the optimization mechanisms behind
the oculomotor behavior emergence in biological
systems? Compelling research shows that there
are links between the dopaminergic reward system

and the saccadic behavior of some mammals [21,
15, 17]. Hence, RL in saccadic behavior is amply
supported by these data.

Thus, in Fig. 2 C we show the application of RL
to our model. As can be seen in the figure, we
use a Deep Q Learning strategy to optimize the
saccadic behavior of the system to achieve better
performance [24].

We use a ResNet-50 architecture which takes
the model in Fig. 2 B as the part of the environment
that produces rewards in response to changes in
its states.

4 Implementation

Regarding the High Performance Computing
(HPC) system We used ThetaGPU, which is an
extension of Theta supercomputer at the Argonne
Leadership Computing Facility (ALCF). ThetaGPU
is composed of 24 NVIDIA DGX A100 nodes.

Each DGX A100 node comprises eight NVIDIA
A100 Tensor Core Graphical Processing Units
(GPUs) that provide 320 gigabytes of GPU mem-
ory for running Machine Learning (ML) workflows.

Regarding ML framework and model paral-
lelization All the implementations have been
done utilizing the Pytorch ML framework. Dis-
tributedDataParallel from Pytorch and mpi4py were
used to manage dataset parallel processing.
Basically we distributed 8 Message Passing
Interface (MPI) processes in 8 GPUs.

MPI manages the communication among pro-
cesses. DistributedDataParallel strategy–on the
other hand–is to replicate the whole model in each
MPI process.

Each model replica processes a different part
of the dataset. Gradients computed during
the backward pass in each model replica are
communicated, averaged and used to conduct
weight adjustments in each model.
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In regards to dataset and pre-processing The
dataset used in this work is imagenet ILSVRC
2012. The foveator is implemented using NVIDIA
DALI library. With NVIDIA DALI we load, decode,
foveate and augment the images from the dataset.
DALI takes care of splitting the dataset in different
shards in each epoch. Therefore, each network
replica in each MPI rank takes care of a part of
the dataset which corresponds to such a process
in a given epoch. From one epoch to another, the
assignment of shards to specific processes rotates
in order to provide variation to the training process.

Regarding software compatibility To run our
ML workflow, we used Singularity containerization.
Singularity is a container system specifically
designed for HPC that allowed us to define
our own environment making our work portable
and reproducible on any HPC that supports it.
Therefore we proceeded to install all the necessary
software in a singularity container and afterward we
could use such a container to run our models in
ThetaGPU.

5 Preliminary Results

The preliminary results of our experiments are
shown in Table 1. Here we show results
of contrastive accuracy while training the base
network f(·), the linear evaluation of the frozen
base network, the classification performance
of the transformer architecture and finally the
performance of the same transformer when
successive fixations are guided by a DQN.

To train the base network we used a mini
batch size of 128 images in 8 GPUs (i.e. batch
size of 1024 images). This pre-training phase
took 300 epochs, with adam optimizer, with a
linear decaying learning rate schedule and with 5
warm-up epochs. The base network utilized was
a ResNet 50. With a global batch size of 1024
images we end up with 2048 augmented fixations,
each fixation has one positive example and 2046
negative examples in the CL approach.

For the linear evaluation we used the base
network (i.e. our pre-trained ResNet 50) with its
weights frozen and added a linear classifier at the
top. We used 5 fixations for each image, without

any augmentation. We applied a mini batch size
of 512 images in 8 GPUs (i.e. batch size of 4096
images). The total number of epochs was 500 with
5 warm-up epochs. We used the same learning
rate schedule used for the CL task.

For the Transformer training process we used
the base network as a pre-trained backbone
fine-tuning its weights with reduced learning-rate.
We used a random number of fixations for each
image which ranged from 2 to 9. We applied a mini
batch of 64 images in 8 GPUs (i.e. batch size of
512 images). The total number of epochs was 68
without learning-rate scaling schedule.

6 Conclusion and Future Work

In this paper we compiled a series of methods
aimed to find solutions to CV challenges by
bio-inspired strategies. Our focus is in the
application of foveation and saccadic behavior–in
a developmental fashion–to achieve data set
and computational savings in CV tasks without
diminishing performance significantly. Although
foveation provides notorious computational sav-
ings in the information processing flow, during ex-
perimentation we noticed that it also compromised
performance in downstream CV tasks considerably
(see Tab. 1).

One important aspect that could be causing this
decline is the fact of considering only one positional
location per fixation in section 3.3.2. Inside
each fixation, there exist much more information
corresponding to the complete foveation. From a
tiny fraction of the visual field to almost its complete
range, one foveation spans almost the entire image
from low resolution wide spans to higher resolution
acute spans at the center of fixation (Fig. 3).

Incorporating such information to the processing
flow of the Transformer in the system could
drastically improve the model’s performance.
Hence, a suitable strategy to follow is the one
implemented by Jonnalagadda et al. [19]. In
such a model, 11 Transformer blocks (0 to
10) process single fixations. Each of these
blocks uses positional embeddings inside each
foveation. That is, each foveation comprise all the
positional information.
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Table 1. Performance in contrastive learning when training the base network f(·), in the linear evaluation of the frozen
base network and finally in the classification using a Transformer architecture

Top-1 Acc. Contrastive acc. Linear evaluation Transformer class. DQL class.
All augmentations 0.7696 0.2093 0.0937 0.0561
Without grid mask 0.8601 0.2502 0.1289 ——

Then, the last Transformer block in this
set (Transformer block number 10) provides
its attention weights to chose the coordinates
of the best next fixation location. A final
Transformer block (Transformer 11) collects the
successive outputs, corresponding to each fixation
(as a sequence of fixations). The output from
Transformer block 11 is used to classify the image.
As we can see, in this model, positional information
is managed inside each fixation (foveation).

In our model instead, we collapse all the informa-
tion corresponding to one fixation in one position
and use the positional information corresponding to
the centers of the fixations. Our strategy provides
an enormous computational saving regarding the
quadratic complexity concerning Transformers but
it could also be the source in the lost of information
that is producing a sharp performance decline in
our system. Future applications will take into
account this issue, incorporating in some way
positional information inside each fixation.

In regards to the acquisition of the saccadic
behavior proposed in section 3.4, the RL
mechanism ”sees” the classifier introduced in
section 3.3.2 as its environment. The RL algorithm
receives the successive outputs from the foveator
as the states of the environment and the reward
is the classification performance of the Seq2Seq
classifier. As expected, the actions produced by
the system control the next fixation coordinates.

The problem that instantaneously arise in the
approach is that the classifier–which is considered
as the environment by the RL system–is highly
dynamic. The classifier’s behavior changes
continuously as a result of its training. This
circumstance makes extremely difficult for the RL
algorithm to learn the environment behavior and
can in this way ”catch” a good policy at time of
generating future fixations.

Several possible solution strategies arise in
such regard, one is to alternatively freeze the

classifier (the environment) and the RL mechanism
as training proceeds. We could freeze the RL
algorithm during one epoch and the classifier
during the next one or maybe use several frozen
epochs alternatively to promote stabilization in
each algorithm.

In our case, we train the two networks
together. In the first epoch we give a preliminary
training to the Seq2Seq classifier using random
fixation coordinates. In this first epoch, data
is accumulated in a memory which collects
information regarding states, actions, next states
and rewards. This memory is used in the meantime
to train the RL algorithm. At each batch the
RL algorithm is trained at random, consuming
the memory.

Next, in the subsequent epochs the training
process of the classifier continues but the
sequence of fixations is chosen by following
actions accordingly to an epsilon greedy policy
from the DQN. Briefly, sometimes we use our
DQN to choose the action, and sometimes we just
sample one randomly. The probability of choosing
a random action starts high at the beginning and
decays exponentially towards as training proceeds
epoch by epoch.

This strategy is not returning good results
either (Tab. 1). The dynamic character of the
classifier makes us think in the application of
more sophisticated RL strategies. Unexpected
perturbations or unseen situations in RL scenarios
cause proficient but specialized policies to fail at
test time. Here our main problem is that the
learning process in RL requires a huge number
of trials every time the environment is modified.
Animals instead learn new tasks in only a few
trials, exploiting their prior knowledge about the
world. We need a RL system that could adapt
quickly to the changes produced in the classifier
(our environment in this case). Several groups
have tackled such a challenge [12].
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In the next steps of our research we will
inspire our model in the work produced in
[19], incorporating positional information inside
foveation in some way. There are many ways to
do that, but we have to try to find the best way
given the semantic behind images and foveation.
In a second stage we will inspire our RL strategy
trying to incorporate meta-RL to adapt rapidly
the changes of the environment (our Seq2Seq
classifier) [12].

7 Conclusions

CV as a sub-field of ML is a specific discipline
in which humans prepare machines, making them
able to autonomously do some of the visual task
we do routinely. While humans and animals can
naturally solve some of the more challenging CV
tasks for machines, the possibility that machines
provide in terms of scalability is peerless by
biological agents in general. Therefore, it is
paramount to provide machines with such a natural
ability to solve routine CV problems at scale.

Yet, one of the far-reaching challenges in
CV is our inability to understand the human
visual system, which we think is cardinal for this
endeavour. In this paper we report a series of steps
devoted to solve some of the major challenges
faced by CV–i.e. data set scarcity and algorithmic
high computational demands–precisely, proposing
a compendium of methodologies inspired in the
visual system found in biological agents.

We fused SS learning with active foveated vision
with the aim of palliating excessive data set and
computational demands. We also noticed that the
implementation of such methods seriously degrade
performance in simple CV tasks. In this paper we
propose alternative solutions to be implemented in
future editions of this research.
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