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Abstract. This paper presents a prototype of an
automobile driver assistance system based on YOLOv3.
The system detects car types, traffic signs, and traffic
lights in real-time and warns the driver accordingly. In
the learning phase of the YOLO algorithm, the standard
weights are learned first, followed by transfer learning to
the objects of interest. The retraining phase uses 2,800
images obtained from the Internet of three countries
of the real-life, and the testing phase uses real-time
videos of Mexico City roads. In the validation phase,
the proposed system achieves 95%, 37%, and 40%
performance on the compiled dataset for the detection
of road elements. The results obtained are comparable
and in some cases better than those reported in previous
works. Using a Raspberry Pi 4, the prototype was tested
in real-life, generating visual and audible warnings for
the driver, with an object recognition rate of 0.4 fps.
A mean average precision (mAP) of 53% was reached
by the proposed system. The experiments showed
that the prototype achieved a poor recognition rate
and required high computational processing for object
recognition. However, YOLO is a model that can have
good performance on low-resource hardware.

Keywords. YOLOv3, automobile detection assistance,
object recognition, deep learning.

1 Introduction

Motor vehicle accidents have a significant impact
on the mortality rate in the Latin America and
Caribbean (LAC) region.

In 2020, more than 100,000 deaths and 5
million people were injured due to car accidents
in the region. Worldwide, it is estimated that
approximately 1.3 million people die as a result
of car accidents per year and these accidents are
the leading cause of death for people between the
ages of 5 and 29, according to a study carried out
by the World Health Organization in the year 2021.

In the same year, Mexico ranked seventh in
the world in the number of deaths from traffic
accidents [10]. There are several causes that can
lead a vehicle to suffer an accident. These causes
are called risk factors.

Examples of risk factors include mechanical
failure, weather conditions, poor road infrastructure
and others. Human error is the risk factor
that contributes most to accidents. Taking this
into account, it has been suggested that driver
assistance systems could reduce the percentage
of accidents caused by this risk factor [21].

One active area of research is vehicle
automation. This area seeks to develop vehicles
that are capable of performing various actions
without the need for human intervention, for
example, the automatic driving of the vehicle [3].

The Society of Automotive Engineers (SAE)
proposes a taxonomy for Driving Automation
Systems, which has been adopted as a reference
for the development of prototypes.
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Fig. 1. Road environment of Mexico City

The taxonomy defines 6 levels to classify the
driving automation, ranging from level 0 (driving
without automation) to level 5 (fully automated
driving) [2]. A key element in the early levels of
the taxonomy is the Advanced Driver Assistance
System (ADAS), which helps to the driver avoid
collisions and maintain control of the vehicle by
emitting warning signals to the driver or performing
specific actions when necessary.

An ADAS uses various sensors to perceive
the environment around the vehicle, including
cameras, ultrasonic sensors, radar, and
others [11]. However, it is important to consider
that most vehicles on the road do not have
cameras or powerful on-board electronics to
integrate an ADAS system.

This paper describes a prototype ADAS based
on a machine learning approach using the You
Only Look Once (YOLO) algorithm for object
detection. The system detects some of the most
important elements in a road environment (cars,
traffic signals and traffic lights) and warns the driver
of the presence of these objects in real-time.

The main contributions of this work are: 1)
to recognize a set of photographs of some road
environments in Mexico City, 2) to manually label
certain road elements of interest (cars, signs and
traffic lights), and 3) to evaluate the use of the
YOLO road element recognition algorithm using a
Raspberry Pi 4 microcomputer.

The rest of the article is organized as follows.
Section 2 presents an overview of the sensors
used in ADAS systems, Section 3 describes
related works, Section 4 contains description of

the proposed method, Section 5 describes the
experiments performed and the results obtained,
Section 6 contains discussion of the results
and conclusions.

2 Overview of ADAS Sensors

Vehicle automation is a filed of research and
development that involves different stakeholders.
The vehicle manufacturing industry, drivers, and
organizations all have an interest in the use of this
technology to reduce accidents and improve driver
safety [13].

Systems that aid safe driving as part of a vehicle
can be classified into two categories: passive
systems that prevent injuries to vehicle occupants
(airbags, seat belts, etc.) and active systems that
control the vehicle to avoid accidents (automatic
braking, lane following, etc.) [5].

The latter category includes ADAS systems.
ADAS provides additional information from the
environment around the vehicle to support the
driver and assist in the execution of critical actions.
The synchronization of a driver actions and
environmental information is critical to the efficient
performance of the various ADAS applications [20].

An ADAS system typically includes three
essential functions: 1) low latency to enable timely
hazard detection and warning, 2) high accuracy to
reduce false alarms that distract the driver, and 3)
high robustness to handle complex and challenging
environments [17].

An ADAS uses various sensors in order to obtain
information from its environment and to provide
driving assistance. Some of the sensors that have
been used in the proposed ADAS architectures are
mentioned below.

Digital cameras are used to capture images
that are further processed to detect and track
objects on the road. Cameras can be monocular
(for detection of pedestrians, traffic signs, lanes),
stereoscopic (for estimating the proximity to
another object, lane keeping), or infrared (for use
in dark scenarios) [18, 6].

The LIDAR sensor uses lasers to determine how
close the vehicle is to other objects and is able to
obtain high-resolution 3D images from a greater
distance than cameras.
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Fig. 2. Assisted driving assistance

LIDAR sensor has been used for object
detection, automatic braking and collision
avoidance [7]. Radar systems use electromagnetic
waves to determine the proximity of objects
around the vehicle and the speed at which they
are moving.

The detection range offered by radar is greater
than that of LIDAR sensors or digital cameras [5].
Some of the applications of radar are blind spot
assistance, cross-traffic alert, parking and braking
assistance [14, 15]. The ultrasonic sensor or sonar
sensor uses sound waves to detect objects close
to the vehicle.

An ultrasonic sensor is effective in detecting
objects at a short distance from the vehicle. This
sensor is used in vehicle parking assistance and
near object detection.

3 Vision-based ADAS Related Works

Previous work has proposed various technologies
and techniques for environmental sensing and
decision making. Computer vision-based ADAS
use methods that extract information from images
captured by cameras.

The vision-based approach offers the advantage
that the devices required for its implementation
(cameras and image processing devices) are
more affordable compared to technologies such
as LIDAR or sonar [9] and has demonstrated
efficiency comparable to that obtained by other
architectures for specific tasks [6].

Vision-based approach has been used to detect
and track obstacles (vehicles, pedestrians, road
damage) in front of the vehicle to prevent collisions.
The work [6] proposes an ADS that focuses on
three actions: lane change detection, collision
warning and overtaking vehicle identification.

The proposal uses two monocular cameras to
obtain images in both the front and rear view
of the vehicle, a digital video recorder (DVR) to
store the image sequences and a PC with 4.0
GHz Intel i7 CPU, and Nvidia GTX 1080 GPU for
image processing.

Prior to image processing, a heuristic is used
to define the adaptive region of interest (ROI)
and a CFD-based verification is performed. For
overtaking vehicles detection, the CaffeNet [4]
is used as the convolutional neural network
architecture to identify the objects around
the vehicle.

Experiments were conducted on highways and
in the city under daylight and night conditions.
The article [9] describes a system based on the
You Only Look Once (YOLO) model for detecting
and marking obstacles. To train the model, video
sequences were manually captured while driving
on the roads of Tamil Nadu in India.

The videos were collected while driving in the
city and on the highway both in the morning and
at night. The videos were captured using an 8MP
camera connected to a Raspberry Pi and have a
format of 640×480 pixels at a rate of 24 frames
per second.
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Fig. 3. System called ADAS

Fig. 4. The window of the wizard mode for
real-time detection

The resulting images were then manually
annotated to identify 2- and 4-wheeled vehicles,
pedestrians, animals, speed breakers, road
damage and barricades. The system alerts the
driver with a buzzer and a visual alert on a
mobile application.

The paper evaluates the efficiency of YOLOv3
and YOLOv5 and concludes that YOLOv3 performs
better in scenarios where training data is limited
and pre-trained weights are not available.

The vision-based approach has also been used
for traffic signal and traffic light detection. A
prototype for traffic light detection and classification
using YOLOv4 is presented in [8]. The prototype
additionally alerts the driver if the vehicle does not
stop at a red light.

The system was trained using the LISA dataset
(images of the streets of California, USA) and
tested using images of the streets of Cairo
in Egypt.

The proposal uses transfer learning and
achieves over 90% in average precision for the
three states (green, yellow and red) of the traffic
light. The paper [1] describes a deep learning
based method for traffic sign detection.

The approach takes an image as input and
returns two outputs: the location of the traffic sign
in the image and the class to which the traffic sign
belongs. A convolutional neural network called
Mobile Net is used to perform this task.

To train the network, a dataset of 10,500
images covering 73 types of traffic sign classes
was collected from Chinese roads. Testing was
performed on a hybrid system consisting of an Intel
CPU and an Nvidia GPU with approximately the
same performance as an Nvidia AGx module. The
proposal achieved an average accuracy of 84.22%.

4 Proposed Method

The ADAS proposal uses a convolutional
neural network (CNN) called YOLO-V3, which
incorporates the Darknet 53 neural framework.
This network received its first training with
the pre-training weights downloaded from the
repository in [12].

The weights include the recognition of 80
real-world objects that help learn the road
environment, such objects correspond to person,
bicycle, car, motorbike, aeroplane, bus, train, truck,
boat, traffic light, fire hydrant, stop sign, parking
meter, bench, bird, cat, dog, horse, sheep, cow,
elephant, bear, zebra, giraffe, backpack, umbrella,
handbag, tie, suitcase, frisbee, skis, snowboard,
sports ball, kite, baseball bat, baseball glove,
skateboard, surfboard, tennis racket, bottle, wine
glass, cup, fork, knife, spoon, bowl, banana,
apple, sandwich, orange, broccoli, carrot, hot
dog, pizza, donut, cake, chair, sofa, pottedplant,
bed, diningtable, toilet, tvmonitor, laptop, mouse,
remote, keyboard, cell phone, microwave, oven,
toaster, sink, refrigerator, book, clock, vase,
scissors, teddy bear, hair drier, toothbrush.

The CNN’s learning was reinforced by a transfer
learning process using 2,800 training images of the
road environment downloaded from the Internet.
Because of the high performance computing
required by YOLO, the re-training was done in
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Fig. 5. The loss function versus the mean average precision of each class

Google Colab. For training, 2,800 images of the
road environment retrieved from the Internet from
different cities around of the world, such as the
United States, Chinese, and CDMX of Mexico.

The images included traffic lights (red,
yellow and green), traffic signals (preventive,
restrictive and informative), and vehicles such as
conventional cars, family cars, sports cars, buses,
trucks, and trailers.

A tool called Labelimg1 was used to label each
image of the retraining database. In the training
phase, 80% of the images were used for retraining
and the remaining 20% were used to validate the
YOLO learning.

1github.com/heartexlabs/labelImg

For testing the model created with YOLO,
we tested it with several videos of the road
environment of Mexico City (Fig. 1).

For the YOLO configuration, we proceeded to
use 6,000 iterations, which indicates obtaining
better training of the network that determines a
value less than 1 of the total loss function.

Another parameter is the number of batches,
which is predefined by default in the network
and it should not be lower than the number of
labeled images.

Additionally, the number of steps per iteration
was equal to the steps obtained by the max
batches, which means considering a maximum
number of steps between a percentage of 80%
and 90%.
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The retrained neural network was implemented
in the small Raspberry on-board computer. The
prototype alerts the driver to the road environment
through audio-visual perception.

A webcam connected to the Raspberry via the
USB port is used to capture the road environment.

The video of the road environment is processed
by the hardware and software system (ADAS)
implemented in the Raspberry to identify the
images, and then the driver receives an audiovisual
notification of his road environment (Fig. 2).

For ADAS detection, the Raspberry Pi executes
the YOLO algorithm in real time and displays the
detection result in an audiovisual notification. This
ADAS system was divided into two phases.

The first phase consists of an interface of
a window that displays the ADAS presentation,
where the assistant mode performs the detection in
the background while the user interface displays a
template that contains the elements to be detected
in the road environment.

The second phase involved the detection of road
elements and audiovisual notifications to prevent
the drier (Fig. 3 and Fig. 4).

5 Experiments

When retraining started, the total loss function
parameter was high due to the first iterations.
However, as the iterations progressed, the loss
function decreased, indicating that the network
learning was the best.

In the learning process of the YOLO network,
the network stores the weights every 100 iterations
until the end of the learning process. The average
accuracy of the weights was frozen with the best
performance during the retraining process.

The total retraining time was about 9 hours at
Google Colab. When the retraining is finished,
the evaluation of YOLOv3 is done based on the
mean average precision and the Intersection over
Union (IoU).

In this sense, the value of the mean average
precision of each class such as car, traffic
signs, and traffic light is 84.92%, 90.76%, and
62.72%, respectively.

Fig. 6. Assembly of ADAS

Fig. 7. Installation of ADAS in a car

Also, the value of the IoU threshold was 50%. At
the end of retraining, YOLO learning is reflected in
the plot of the loss function (blue) versus the mean
average precision (red) of each class (Fig. 5).

The ADAS was assembled and installed in an
automotive system for real-time testing (Fig. 6 and
Fig. 7). To control the ADAS, an external computer
was remotely connected to the Raspberry.

After that, the YOLOv3 network was
implemented to detect the classes using the
Tensorflow tools and to acquire the road
environment of the CDMX city from the USB
camera in real-time.

Although the retraining of YOLO obtained a
performance of the detection of objects such as
cars, traffic signs, and traffic lights of the 84.92%,
90.76%, and 62.72%, respectively. In the validation
phase, the system achieved 95%, 37%, and
40% recognition of traffic signs, cars, and traffic
lights, respectively.
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Fig. 8. ADAS recognition in real-time

Fig. 9. ADAS recognition in real-time

Considering that the rate of each detection is
about 0.4 frames per second. However, it was
observed that YOLO hardly detected small images.

Nevertheless, it achieved an mAP of 53% (Fig.
8 and Fig. 9). In the art state, the work [1]
uses MobileNet, a convolutional neural network
that is developed as a lightweight size model due
to its efficiency in saving and combining the output
features maps of depthwise convolutions.

The network obtains pointwise convolutions in
depthwise separable convolution blocks, which
inherently implies the speed (2 s per image) of
the network, achieving 84.22% of mAP based on
10,500 images from 73 traffic signs classes.

Conversely, other networks with regular
convolution layers do not produce
pointwise convolutions. As a result, this type
of network consumes more computing time in the
convolution layers.

YOLO has an identification time of 0.02 seconds
per image, but its performance may be low due to
its difficulty recognizing small objects, as well as its
difficulty localizing objects close to one another.

In the work of [19], made improvements to the
YOLOv2 algorithm, considering it an end-to-end
convolutional network involving intermediate
convolution layers for obtaining a finer feature
map at the top of the layers, and to reduce
computational complexity, the network decreases
convolutional layers at the top of the layers.

Detection of Chinese traffic signs with a speed of
0.017 seconds per image and a precision of 98%.
The work of [16] stated that recognition of traffic
signals depends on the network’s learning strategy
and the real-world environment.

They proposed an end-to-end-deep network with
a detection speed of 1.9-1.7x and an accuracy rate
of 94 percent. In [9] compares two versions of
YOLOv5/YOLOv3 for road environments, including
pedestrians, vehicles, animals, speed breakers,
and road signs damage.

They implemented the best weights of the
networks in an Android Studio device. Based
on 5945 images, YOLOv3 achieved 75.5 % and
YOLOv5 achieved 72.63%.

6 Discussion and Conclusion

There are two main modes of ADAS: detection and
driver assistance. In the first case, the system
recognizes objects, while in the second case, the
driver assistance provides audiovisual information
about the road environment.

To do this, we program in parallel, using
threads that perform different functions such
as image reading, input model implementation,
object detection, and audiovisual outputs for driver
assistance in the road environment in real-time.

Although the efficiency and effectiveness of
YOLO are good, considering the recognition of
45 frames per second, the best generalization of
objects, as well as being a freely available resource
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that is constantly updated. Experiments conducted
in the present work obtained recognition of 0.4
frames per second from the ADAS system, which is
a poor recognition and requires high computational
processing for object recognition.

However, YOLO is a model that can have
a good performance in low-resource hardware.
The recognition process became difficult because
the Raspberry Pi 4 generated high temperatures
because it does not have a sufficiently acceptable
graphics unit, which made it difficult to recognize a
large number of objects.

To obtain a better result for the Raspberry Pi, we
perform an overclocked it to 2 GHz. This involved
the installation of a cooling system and a heat sink
to prevent the temperature from exceeding the limit
and disabling the system.

Several factors affect object detection, including
the lighting conditions, the camera’s focus, and
the quality of the image. A variety of network
structures may also influence research results,
such as traditional network models, deep learning
models, and improved deep learning models.

According to the state of the art, some works
report good results in their experiments [1, 19,
16, 9]. However, experimental results depend on
the quality and quantity of the data sets used
in the experiments, as well as of the strategy
implemented in the data modeling., and also of the
rules of learning implemented in the convolution
algorithms., as well as of the real-time environment
in which the experiments are made.

Nevertheless, they do not test a driving
assistance system on a small-board computer that
detects traffic signals in real-time. It except in
the work [9] where they compare two versions
of YOLOv3 and YOLOv5 for road environments
recognition, where the models were developed
using 5945 images implemented on an Android
Studio device, obtaining a performance of 74.5%
for YOLOv3 and 72.65% for YOLOv5.

However, it is important to mention that our
model was trained with 2,800 images, proving in
time real without manipulating an appropriate road
environment. Also these works do not consider
a complete ADAS system of driver assistance in
real-time that detects and displays the result in
audiovisual notifications [1, 19, 16, 9].

Nevertheless, our ADAS system considers
audiovisual notifications as ADAS driver assistance
in real-time.
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Estudio de derecho comparado. , pp. 1–273DOI:
10.2307/j.ctv20hctng.

Article received on 06/02/2023; accepted on 25/07/2023.
Corresponding author is Juan Pablo Francisco Posadas-Durán.

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 643–651
doi: 10.13053/CyS-27-3-4508

Automatic Detection of Vehicular Traffic Elements based on Deep Learning for ... 651

ISSN 2007-9737


