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Abstract. One problem of fuzzy systems for classifica-
tion tasks is the exponential growth of rule generation,
which translates into excessively long processing times.
Different proposals in the literature address this problem
through exhaustive rule reduction techniques, which
achieve competitive results compared to conventional
classifiers by reducing their computational complexity
as well. This paper proposes a methodology that is
comprised of two stages: (1) a clustering technique
that helps identify the structure of an initial low-accurate
classifier and (2) a differential evolution parameter
identification stage that takes that low-accurate classifier
and refines it to obtain a high-accurate classifier. In this
way, a comparative analysis among several clustering
methods is performed, allowing the users to select
a reduced rule set and avoid the use of traditional
rule search algorithms. The results show that the
Gaussian Mixture Model is the most suitable clustering
technique to identify the structure of fuzzy classifiers,
since it provides the corresponding fuzzy model with
highly competitive classification performance compared
to other state-of-the-art methods.

Keywords. Fuzzy classifiers simplification, clustering
algorithm, differential evolution, structure identification,
parameter identification.

1 Introduction

Recently, fuzzy logic has been used in fields such
as modeling, control, clustering, and classification,
obtaining successful results that have shown its
feasibility [22]. However, fuzzy classification has
not been widely explored, even though fuzzy
associative classifiers (FAC) have proven to be
effective in different applications [20]. One of

the main reasons for this is that the learning
process of these systems becomes a complex task
to solve since the number of rules to generate
and the number of parameters to estimate grow
exponentially [19].

Additionally, the curse of dimensionality on fuzzy
systems negatively impacts the processing times
needed to infer an output [22].

For this reason, several works have proposed
solutions that allow reducing the exponential
generation of rules.

One of the commonly used methods is the
Wang-Mendel algorithm [23], which generates
data-based fuzzy rules and has been widely used
due to its simplicity, in addition to having a good
performance [6].

Other approaches generate rules from the
combination of all fuzzy sets and subsequently the
rules that are considered redundant are eliminated;
later, a similarity analysis is applied in which the
most similar fuzzy sets are merged to produce new
sets [14, 17]. Other methods have been proposed
to reduce the complexity of fuzzy classifiers.

Two approaches are contrasted in this paper:
those that use decision tree learning, e.g., the
FURIA algorithm [10] that uses the RIPPER
algorithm to exploit rules or the method proposed
for Zaman et al. [25]; and those that use
evolutionary techniques, e.g., FARC-HD [2],
ADABOOST [3], ILGA [9], and HGBML [11].

More recently, other heuristic solutions [8]
have been proposed to reduce fuzzy rules using
techniques such as the Quine McCluskey method.
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From the point of view of unsupervised learning,
the use of clustering methods have helped to
obtain the underlying structure of data to build
classifiers [15].

However, there is no analysis in the literature
that determines the performance of clustering
methods as structure identifiers in an evolutionary
parameter identification environment.

In this context, this paper presents a comparative
analysis between different clustering algorithms
to select the most suitable algorithm for carrying
out the structure identification for a low-accurate
fuzzy classifier.

To achieve this, a search for the most
appropriate number of clusters for each clustering
method is carried out and, based on the
obtained low-accurate classifier, the differential
evolution algorithm is applied to obtain the optimal
high-accurate fuzzy classifier for each data set.

Results suggest that the rule selection should
not be such an exhaustive process, but rather a
process guided by the premise that the number of
rules should not be too large, for example, starting
the search from the number of available classes in
a data set.

2 Methods

The following paragraphs briefly describes the
methods used in the integration of our proposal
presented in Section 3, such as some clustering
algorithms as well as the differential evolution al-
gorithm.

Two well-known clustering categories are the
hierarchical and partitional algorithms. The main
difference between them is that the hierarchical
methods produce nested series of partitions similar
to a dendrogram, while the partitional methods
produce only a partition scheme [13].

The clustering algorithms presented here have
been selected taking into account that users can
request a certain number of clusters, which is
important for obtaining a simplified structure.

In addition, this paper exploits a shared feature
of partitional clustering with fuzzy partitioning
through the scatter partitioning method.

This partitioning allows our proposal to split
the feature space into a reduced number of
intervals and therefore create few regions formed
by the intersection.

Below are some of the main clustering algo-
rithms known in the literature that are used in this
paper.

2.1 K-means

Among the partitional algorithms we find K-means
(KMM) algorithm, which is one of the most used
clustering algorithms. It groups data points into
a predefined number of clusters based on data
set features.

The clustering is performed by minimizing the
sum of distances between each sample and
the centroid of each cluster [1]. Its procedure
is as follows:

– Select k points in feature space, which represent
the centroids of initial clusters.

– Assign each point to the nearest cluster.

– Whenever each point in the data set is
assigned to each cluster, compute the new k
cluster positions.

– Repeat steps 2 and 3 until centroids are no
longer modified.

2.2 Bisecting K-means

A derived version of K-means is the Bisecting
K-means (BKM) algorithm, which is a hierarchical
clustering algorithm that employs a partitional
approach, so users must specify how many
clusters they want to divide data set into.

First, each sample starts out belonging to a
cluster. Later, each feature is split recursively, as
long as the algorithm moves down the hierarchy
[1]. Its procedure is the following:

– While the number of clusters is lower than the
desired, continue; otherwise skip.

– Split dataset into two sub-clusters using the
basic K-means algorithm with K = 2 (bisecting).

– Select recursively one cluster of previous step
and go to step 1.
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Fig. 1. Methodology for fuzzy clasifier simplification

2.3 Gaussian Mixture Model

On the other hand, the Gaussian Mixture
Model algorithm (GMM) is a probabilistic model
in which samples are considered to follow a
probabilistic distribution.

Then, the entire data set is formed by
the combination of multiple normal distributions
(Gaussian components) [24].

It can be seen as a generalization of the K-
Means algorithm with which, instead of assigning
each sample to a single cluster, a probability
distribution of belonging to each one is obtained.

In order to estimate the GMM parameters with
a given number of k components, the algorithm
repeats two steps until convergence as follows:

– Expectation: given the current parameter
estimation, compute the expected similarity
value for each sample in order to assign it to a
GMM component.

– Maximization: given the expected similarity
values of the above step, update the parameters
to maximize the similarity of all data samples,
giving them values that maximize the probability
that the data will have the expected labels.

2.4 Agglomerative Clustering

The Agglomerative clustering algorithm (AGG) is
considered as a hierarchical clustering algorithm,
which starts with the construction of a single tree
at the top of the hierarchy that is considered as a
single cluster called a singleton.

At each step, this procedure consists of creating
a new cluster by merging the two closest
clusters [18].

In order to achieve this, the following procedure
should be executed:

– Set the number of desired clusters.

– Compute the similarity between pairs of clusters
in the data set.
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– Compute the link function for the closest clusters
in the entire dendrogram using the information
generated in the previous step.

– Split the dendrogram to form the desired clusters
from data set.

2.5 Fuzzy C-Means

The Fuzzy C-means algorithm was reported and
developed by Bezdek and Dunn in [5, 7].

This is inspired by the C-Means algorithm,
in which a membership function is used to
characterize each cluster [4] so that each sample
can be partially assigned to multiple clusters [12].

Assuming that each cluster can be modeled with
a fuzzy set, the algorithm starts with a µ fuzzy
matrix with n rows and c columns, where n is the
number of samples and c is the number of clusters.

This implies that each element µij indicates the
degree of membership that each sample has with
each fuzzy set. The degree of fuzziness m of the
generated fuzzy sets is proposed by the user [4].

The steps to follow are similar to the K-Means
algorithm and are as follows:

– Select m and initialize the values of the fuzzy
µ matrix.

– Compute the cluster centers.

– Compute the Euclidean distance between each
sample to each cluster.

– Update the fuzzy matrix using the new centers.

– Repeat from step 2 until convergence.

Table 1. Computer specifications

Item Description
Model Dell® Precision T7600
Memory 16 GB RDDR3
Storage 120 GB SSD
Processor Intel® Xeon® E5-26 de 2.00GHz x12

2.6 Differential Evolution

The Differential Evolution (DE) algorithm [21]
represents a heuristic approach used in global
optimization problems. It starts by randomly
generating a population of potential solutions.

It represents a very simple optimization algo-
rithm based on three main operations: mutation,
crossover, and selection.

It provides better convergence capabilities than
other optimization algorithms and requires few
hyper-parameters for its operation.

DE is a parallel direct search method which
utilizes NP D-dimensional parameter xi vectors as
an individual in the population (xi,G) described in
Equation 1, for the G-th generation [21]:

xi,G,∀i ∈ [1,NP ], (1)

The steps by which the DE algorithm performs the
optimization are described below.

2.6.1 Mutation

For the mutation operation, an individual from the
population is taken as the target vector. By means
of three randomly-chosen individuals, a mutated
vector vi,G+1 is generated, according to Equation
2, as follows:

vi,G+1 = xr1,G + F × (xr2,G − xr3,G), (2)

where F is the amplification factor ∈ [0, 2] that
controls the influence of the differential variation
(xr2,G − xr3,G) [21].
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2.6.2 Crossover

The crossover operation allows for the generation
of a trial vector uji,G+1:

uji,G+1 = (u1i,G+1,u2i,G+1, ...,uDi,G+1), (3)

where j ∈ [1,D] represents the gene index. The
trial vector uji,G+1 that can be formed with the
following equation:

uji,G+1 =



if (randb(j) ≤ CR),
vji,G+1 or

j = rnbr(i),

if (randb(j) > CR),
xji,G and

j ̸= rnbr(i),

(4)

where randb(j) is a random number for the j-th
gene, which is defined in interval [0, 1]; CR is a
user-defined crossover rate in interval [0, 1]; and
rnbr(i) is a randomly chosen gene index in interval
[1,D], which ensures that at least one gene from
the target vector is mutated.

2.6.3 Selection

In order to determine if a trial vector should be part
of the new population, both target and trial vectors
must be evaluated in the fitness function.

Later, their corresponding fitness values must
be compared so that the best-scored vector is
preserved for the next generation.

3 Methodology

This paper proposes a methodology that is
comprised of two stages: the former is a
structure identification stage that is performed
with a clustering algorithm and the latter is a
parameter identification stage that is performed
with the DE algorithm.

With the structure identification stage, fuzzy set
distributions and a simplified rule set can be ob-
tained.

Subsequently with a DE parameter identification,
a refined data-based model can be obtained as it
is illustrated in Figure 1.

Using the generalized bell membership function
parameters, fuzzy systems characterization can be
effectivelly performed, which requires the following
parameters: the center (c) of the cluster (fuzzy
set core), the level of data dispersion by means
of its width (a) and finally the slope (m) that can
be used to characterize the way of how transitions
between membership and non-membership can be
performed (fuzziness or crispness).

The following methodology allows for the
selection of an appropriate clustering method
according to the analyzed data set that maximizes
classification accuracy.

3.1 Structure Identification Stage

Structure identification is a fundamental step for
fuzzy classifiers. In this proposal, a clustering
technique is used to find the structure of an initial
low-accurate classifier.

The labeling of samples is the main function
of clustering since it allows knowing a priori, not
only the possible class to which a sample belongs,
but also allows knowing the data distribution in
the feature space. For this purpose, the following
methodology is proposed:

– Set the number of desired clusters and the initial
slope value to be assigned to all fuzzy sets (see
Figure 1(a)).

– Calculate the centers of the clusters in all
dimensions by using a clustering method, as
shown in Figure 1(b).

– Calculate the data dispersion by estimating the
standard deviation for each center obtained.
These values represent the fuzzy set widths in
Figure 1(c).

– Create a fuzzy rule for each cluster generated
using the fuzzy intersection of the algebraic
product so that for each rule there is a constant
consequent (zero-order TSK fuzzy system),
which is established by the value that the
clustering method inferred for each sample,
which can be seen in Figure 1(h).
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This means that what is fed to the subsequent
DE parameter identification stage to the blocks of
Figure 1(f) are the labels obtained by the clustering
method using the unique function.

These values are the ones that initially enter the
low-accurate fuzzy classifier in Figure 1(d).

3.2 Parameter Identification Stage

Since the labels proposed by the clustering
technique represent the consequent coefficients of
some fuzzy rules of the low-accurate classifier, it
will only be able to correctly infer those labels that
match a target label.

However, not all of the labels proposed by
the clustering technique will match a target label,
so samples that did not match will eventually
be misclassified.

For this purpose, a DE parameter identifi-
cation stage is proposed, which starts from a
low-accurate classifier and adjust it to obtain a
high-accurate one.

As a consequence, the DE parameter iden-
tification affects only the following parameters:
a) the fuzzy set slopes and b) the rule
consequent coefficients.

The proposed chromosome model includes the
slope values that are initially proposed by users
and the consequent constants, generating an initial
population where the best individual is this model,
as shown in Figure 1(e,f).

The complementary methodology is as follows:

– Insert in the initial DE population the individual
(low-accurate classifier) formed by the values
obtained in steps 1-4 (of structure identification
stage) in the first iteration.

Notice how in Figure 1(g) that the first individual
in the DE algorithm is taken as the individual
formed in Figure 1(f).

– Start the parameter identification by means of
the DE optimization [21].

Table 2. Data set description

Data Set
Number

of elements

Number

of features

Number

of classes

Cryotherapy 90 6 2

Iris 150 4 3

Wine 178 13 3

Breast cancer

Wisconsin
683 9 2

Pima Indian

Diabetes
768 8 2

The block shown in Figure 1(g) represents
the DE optimization for loop that repeats
maxIter times.

Observe that, on the left side, the initial individual
(low-accurate classifier) enters the loop and on
the right side, the best individual (high-accurate
classifier) exits when the loop is broken, which
is used to create the fuzzy model that can make
predictions with testing data.

4 Results

4.1 Experimental Configuration

In order to carry out the experimentation, the Scala
version 2.12.10 programming language was used
on the JDK version 8 platform, using the Ubuntu
18.04 operating system.

In addition, the computer used for the experi-
ments is specified in Table 1.

On the other hand, the data sets used in this
paper have been used in several related works in
order to make the relevant comparisons.

They can be freely downloaded from the
UCI Machine Learning repository [16] and some
characteristics of them are described in Table 2.

Once the materials to be used in the experiments
have been described, several clustering methods
are considered for this comparative analysis in
order to build the low-accurate classifier, keeping
in mind that the selection of the number of clusters
is the key that allows users to propose a simplified
and efficient structure.
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(a) Iris (b) Wine

(c) Cryotherapy (d) Wisconsin

(e) Pima

Fig. 2. Classification accuracy results by using the proposed methodology
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Table 3. Performance comparison of maxima classification accuracy between the employed clustering methods and
data sets. The best results are in bold

Algorithm Iris Wine
Breast Cancer

Wisconsin
Cryotherapy

Pima Indian
Diabetes

N Acc N Acc N Acc N Acc N Acc

KM + DE 5 96.00% 9 92.30% 3 97.90% 5 88.88% 3 81.16%

BKM + DE 4 96.66% 6 86.48% 5 97.22% 5 90.90% 2 78.88%

GMM + DE 4 85.71% 3 96.87% 5 99.28% 7 100.00% 9 77.18%

AGG + DE 6 97.22% 5 95.00% 8 98.01% 6 100.00% 5 76.25%

FCM + DE 7 100.00% 3 87.87% 6 96.89% 4 92.85% 8 76.11%

The clustering methods used for experimen-
tation were described in Section 2, namely:
K-means, Bisecting K-means, Gaussian Mixture
Model, Agglomerative clustering and Fuzzy C-
means.

The proposed experiments involve the use
of each clustering algorithm and the data set
previously described, so that a search for
the number of clusters is performed in the
first stage of the proposed methodology to
find which offers the best clustering-structured
low-accurate fuzzy classifier.

In this case, experiments are carried out with
consecutive values of the number of clusters N
from 2 to 10.

For evaluation purposes, the performance
measure used in the second stage of the
methodology is the classification accuracy, which
helps to define the optimal individual that can be
obtained by the DE algorithm.

Moreover, data sets have been split to validate
the fuzzy model by means of a hold-out validation
with 20% for testing and 80% for training for
each experiment.

4.2 Results and Discussion

Since the objective of this paper is to discover
the most suitable low-accurate classifier that allows
simplifying the structure of the high-accurate
classifier, it is of special interest to find the smallest
set of rules that maximizes the classification
performance for each data set.

After experimentation, the results are shown in
Figures 2(a-e), which indicate the influence of the
number of clusters while obtaining the low-accurate
classifier. That is, the number of clusters allows
us to obtain competitive classification accuracies
after DE optimization according to the employed
clustering method and a given data set.

It is noticeable that outstanding accuracy values
are obtained even when the number of clusters is
low. This behavior is similar to that reported by
the main rule reduction techniques found in the
literature, in which the minimum number of rules
found is quite low [2, 3, 9, 10, 11].

On the other hand, it should be noted that,
when the number of clusters is less than
the number of classes, e.g., for the Iris and
Wine cases, high-accurate classifiers obtain very
low performance.

This is mainly because the DE algorithm
is unable to improve performance using the
structure proposed by the clustering method
(low-accurate classifier).

This behavior suggests that the search for the
number of clusters should start from the number of
existing classes in each data set.

Taking into consideration the maximum accuracy
values of Figures 2(a-e), Table 3 can be built. Note
that each data set is evaluated with each clustering
method listed in each row.

Observe that each column has two subheadings
that correspond to the number of clusters N used
and their corresponding accuracy Acc obtained
after performing the DE optimization.
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Table 4. Performance comparison between the employed clustering methods and other rule-search-based proposals in
the literature

Algorithm Iris Wine
Breast Cancer

Wisconsin
Pima Indians

Diabetes
N Acc N Acc N Acc N Acc

FARC-HD 4.0 96.00% 8.7 94.35% – – 22.7 75.66%
ADABOOST 9.8 95.33% 16.5 95.99% 12.92 96.64% 23.56 76.78%
ILGA 30 90.00% 30 88.57% 30 90.49% 30 72.93%
FURIA 4.4 94.76% 6.2 93.25% 12.2 95.68% 8.5 74.71%
HGBML 20 94.4% 20 94.89% 20 96.68 20 75.83%
GMM + DE 4 85.71% 3 96.87 % 5 99.28 % 9 77.18%
AGG + DE 6 97.22% 5 95.00% 8 98.01% 5 76.25%
FCM + DE 7 100% 3 87.87% 6 96.89% 8 76.11%
KM + DE 5 96.00% 9 92.30% 5 88.88% 3 81.16%
BKM + DE 4 96.15% 6 86.48% 5 97.22% 2 78.88%

It can be observed in Table 3 that the GMM,
AGG, and FCM algorithms obtained the best
results in general. In particular the GMM results
are better than the rest of the algorithms in three
out of five data sets.

This is due to the fact that the Gaussian
components generated with GMM resemble the
membership functions used for each fuzzy set.
This makes GMM a feasible algorithm to identify
the structure of low-accurate fuzzy classifiers.

In addition, Figures 2(a-e) reveal that, some-
times when using a smaller number of rules,
very competitive percentages of classification
accuracy can still be obtained. This situation
opens the discussion on whether accuracy
should be sacrificed for a smaller number of
rules since an increase in rules also increases
computational complexity.

In order to validate that results obtained by the
high-accurate classifiers are competitive, Table 4
is presented, in which these results are compared
against others rule-search-based methods such as
FARC-HD [2], ADABOOST [3], ILGA [9], FURIA
[10], and HGBML [11].

This comparison shows that the obtained classi-
fication accuracy of our proposed methodology is
competitive and even higher than the results of the
related literature reported in Table 4.

Regarding the number of rules, the use of
clustering methods to obtain the low-accurate
fuzzy classifier and as a consequence the
high-accurate classifier is also competitive since
they obtain even smaller rule sets than those
compared in Table 4.

The fact that the GMM components are suitable
for obtaining the low-accurate fuzzy classifier does
not mean that the rest the of algorithms obtain a
bad performance.

In fact, looking at the results, it is clear to see that
most of clustering algorithms in conjunction with
DE outperform the related techniques reported
in Table 4. Finally, it should be noted that the
use of a clustering method for fuzzy classifier
structure identification helps to skip the arduous
and complex search and rule reduction task
characteristic of fuzzy classifiers.

On the other hand, we can also add the observa-
tion that the use of a metaheuristic such as DE is
a necessary refinement step that allows achieving
high-accurate classifiers with optimal performance
at the cost of sacrificing processing time.

It is worth mentioning that the number of
experiments performed was sufficient to determine
the best clustering algorithm for this case study,
based on two important points:
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– The determination to search for the number
of clusters N in the interval [2, 10] for each
clustering algorithm is based on obtaining the
least number of clusters while maintaining the
maximum possible performance.

It is true that selecting a larger number of
clusters could also lead to a high-accurate fuzzy
model after parameter identification. Neverthe-
less, an extensive search could unnecessarily
increase the computational complexity and
decrease the interpretability of rules.

Therefore, performing the search in this interval
ensures reduced fuzzy models depending on the
data set used.

– Although in this paper a comparative analysis
among five well-known partitional clustering
algorithms is carried out, the proposed method-
ology allows evaluating any of the existing
partitional algorithms and selecting the most
appropriate number of clusters for each data set.

5 Conclusions

A comparative analysis between several clustering
methods to identify the structure of low-accurate
fuzzy classifiers was proposed in this paper, as
an alternative to exhaustive rule search, where the
low-accurate classifier is optimized subsequently
by the DE algorithm in order to obtain an optimal
high-accurate classifier.

The obtained results show that the clustering
methods can help identify the fuzzy classifier
structure, and therefore it is not necessary to
conduct an exhaustive rule search.

Moreover, it is important to emphasize that the
DE optimization carried out in the second stage is
essential to ensure high-accurate fuzzy classifiers
that can reach a competitive level.

Finally, two important aspects have been
discovered in this analysis. First, the search for
the number of clusters, regardless of the employed
clustering algorithm, should start from the number
of existing classes in each data set.

And secondly, although it has been observed
that the GMM algorithm is the most suitable for
most data sets, in reality any clustering algorithm

that provides better quality cluster values based
on data may lead to a low-accurate classifier that
can be succesfully refined by any meta-heuristic to
obtain a high-accurate classifier.

As future work, this paper should be extended to
the area of hierarchical fuzzy classifiers from the
point of view of distributed computing and using
large-scale high-dimensional data sets, in such
way that computational time can be reduced.
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