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Departamento de Automática y Computación,

Cuba

2 Universidad Politécnica Salesiana,
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Abstract. The Industry 4.0 paradigm aims to obtain high
levels of productivity and efficiency, more competitive
final products and compliance with the demanding
regulations related to industrial safety. To achieve these
objectives, the industrial systems must be equipped
with condition monitoring systems for early detection,
isolation, and location of faults. The paper presents a
proposal for a condition monitoring system characterized
by its robustness in presence of noise and missing
variables in the measurements. The proposal combines
the use of simple and effective imputation algorithms
with a fuzzy classification kernel algorithm based on
the use of the non-standard Pythagorean fuzzy sets.
The proposed scheme was validated using the known
DAMADICS test problem with excellent results.

Keywords. Robust condition monitoring, Pythagorean
fuzzy sets, missing information, noise.

1 Introduction

Currently, terms such as smart industry and
Industry 4.0 paradigm are very common in the
scientific literature related to the automation of
industrial plants. They aim to obtain high
productivity levels, more competitive final products,
and excellent compliance of the industrial safety
standards. To achieve these objectives, the
industrial systems must be equipped with condition
monitoring systems for early detection, isolation,

and location of faults that cause safety problems,
economic loss, and environmental effects. This
goal has guided a large amount of research on the
topic of condition monitoring in industrial plants in
the last twenty years [10, 25].

The methodologies for condition monitoring are
divided into two groups [25]. The first group
encompasses the methods based on the process
models [6, 8].

The successful use of these methodologies
depends on a deep understanding of the process,
its operational parameters, and operating modes.
However, this is very difficult to achieve due to the
high complexity of current industrial systems.

The second group includes the data-driven
methods, which do not need an accurate
mathematical model, and initial deep knowledge of
the process parameters [15].

Among the most used techniques in this group
are the computational intelligence tools based on:
fuzzy logic [9], clustering [19, 22], statistical tools
[24] and artificial neural networks [17, 18] just to
mention some of them.

The data-driven methodologies are seriously
affected by noise and missing variables in
measurements, which is usual to find in
industrial plants. This indicates the necessity
to consider these factors for obtaining satisfactory
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Fig. 1. Classification scheme for condition monitoring with noise and missing variables in the measurements

Algorithm 1: Kernel Pythagorean Fuzzy
C-Means algorithm (KPyFCM)
Data: l, γ > 0, m > 1, δ, Itrmax (maximum

number of iterations)
Result: fuzzy partition U, class centers V

1 Initialize U to random fuzzy partition;
2 Itr ← 1 ;
3 repeat
4 Update the class centers V according to

(17);
5 Calculate the distances according to

(13);
6 Update U according to (16).;
7 Itr ← Itr + 1;
8 until ∥Ut − Ut−1∥ < γ ∧ Itr ≥ Itrmax;

performances of the condition monitoring systems
[12, 13]. A review of the scientific literature shows
that in most papers the robustness versus noise
and missing variables in the observations are not
analyzed together.

Missing data in the observations can be due to
several causes as sensor faults and problems in
the operation of the data acquisition systems, just
to mention some of them.

Missing data can be very important to find
deviations not allowed in the operation of an
industrial process.

For this reason, it is recommended to use
imputation methods for their treatment [2, 12].
The non-standard Pythagorean fuzzy sets were
presented in [27, 26], where it is shown
that the space of Pythagorean membership
grades is greater than the space of intuitionistic
membership grades.

This represents an important advantage
in condition monitoring because it allows the
insertion of the uncertainty in the specification
of membership degrees as result of noisy
measurements and the data imputation.

The aim of this paper is to propose a robust
condition monitoring scheme versus noise and
missing variables in the observations obtained
from an industrial plant. For this, it is presented
a hybrid scheme that combines simple and
effective imputation algorithms with Pythagorean
fuzzy set tools.

In the methodology, the imputation of the
missing variables in the observation obtained
from the industrial plant is performed online to
later get classified. The Pythagorean Fuzzy
C-Mean algorithm (PyFCM), and its kernel version
(KPyFCM) are used.

The proposal presents a high performance in
presence of noise and the possible deviations
that can be introduced in the imputation of the
missing data.
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Table 1. Operation modes and measured variables in DAMADICS

Operation
Mode Description Variable Description
NO Normal Operation CV Process control external signal
F1 Valve clogging P1 Pressure on inlet valve
F7 Critical flow P2 Pressure on outlet valve
F12 Electro-pneumatic transducer fault X Valve plug displacement
F15 Positioner spring fault F Main pipeline flow rat
F19 Flow rate sensor fault PV Process value

Table 2. Characteristics of the training database

Parameter Description Quantity
l Operation Modes (Classes) 6
p Measured Variables 6
k Number of Observations per class 1000
n Number of Observation in the training database 6000

2 Materials and Methods

2.1 Missing Data Imputation

The information loss has been modeled according
to three main mechanisms: Missing Completely at
Random (MCAR), Missing at Random (MAR), and
Missing Not at Random (MNAR)[11].

In this paper will be used MCAR mechanism
which is the one mainly occurring in industrial
plants [12].

In the scientific information, several
techniques for data imputation have been
presented [2].

However, all of them make the imputation
using the entire data set or part of it without
considering time requirements. In most control
loops in industrial plants, the time requirements are
very important.

For this reason, the imputation of the
missing variables must be done online for each
observation obtained from the plant satisfying
strict time requirements.

Furthermore, it is necessary to take into account
the noise that affects the measurements in most
industrial processes.

The imputation methods used in this paper
are the arithmetic mean and the mode [11].
Their effectiveness and easy implementation were
considered for their selection.

2.2 General Characteristics of the Pythagorean
Fuzzy Sets (PFS)

In [27, 26], the PFS were introduced. The
membership grades associated with the PFS will
be called Pythagorean membership grades (PMG)
and they can be expressed as follow:

– Two values, r(z) and d(z), are assigned for
each z ∈ Z.

– If r(z) ∈ [0, 1], it is called strength of
commitment at z

– If d(z) ∈ [0, 1], it is called direction of
commitment at z.

– HY (z) is a membership grade which indicates
the support for membership of z in H.

– HN (z) is a membership grade which indicates
the support against membership of z in H.
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Fig. 2. Faults classification (%) for DAMADICS process (Without missing variables)

Fig. 3. Faults classification (%) for DAMADICS process (1 randomly missing variable, imputation with mean values)

– HY (z) and HN (z) are defined as:

HY (z) = r(z) cos(φ(z)), (1)

HN (z) = r(z) sin(φ(z)), (2)

where:
φ(z) = (1− d(z))

π

2
, (3)

and φ(z) ∈ [0, π
2 ] is expressed in radians.

Lemma: HY (z) and HN (z) are Pythagorean
complements with respect to r(z).

Proof: Squaring Eqs. (1) and (2).

H2
Y (z) = r2(z) cos2(φ(z)), (4)

H2
N (z) = r2(z) sin2(φ(z)), (5)

and, by adding both equations:

H2
Y (z) +H2

N (z) = r2(z)(cos2(φ) + sin2(φ)). (6)

From the Pythagorean theorem, it is known that
cos2(φ) + sin2(φ) = 1. So that:

H2
Y (z) +H2

N (z) = r2(z) (cos2(φ) + sin2(φ))︸ ︷︷ ︸
1

, (7)

and hence:

H2
Y (z) = r2(z)−H2

N (z). (8)

Thus, it is evident that HY and HN are
Pythagorean complements with respect to r(z) ♢

In a general form, a PMG is represented by a
pair of values (e, f) such that e, f ∈ [0, 1] and
e2 + f2 ≤ 1.
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Fig. 4. Faults classification (%) for DAMADICS process (Random number of missing variables between 0 and 2,
imputation with mean values)

Fig. 5. Faults classification (%) for DAMADICS process (1 randomly missing variable, imputation with mode values)

In this case, e = HY (z), indicates the degree
of support for membership of z in H and,
f = HN (z) indicates the degree of support against
membership of z in H.

Considering the pair (e, f), the equation (6) can
be expressed as e2 + f2 = r2.

This indicates that a PMG is a point of a circle of
radius r. Intuitionistic membership grades are also
represented by a pair (e, f) which satisfies e, f ∈
[0, 1] and e+ f ≤ 1 [3].

Theorem: The set of Pythagorean membership
grades is greater than the set of intuitionistics
membership grades.

Proof: See [1].

The most significant consequence of this result
is the possibility of using Pythagorean fuzzy
sets in more situations than intuitionistics fuzzy
sets. For condition monitoring applications, this
characteristic of the PFS is very important for
reducing classification errors.
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Fig. 6. Faults classification (%) for DAMADICS process (Random number of missing variables between 0 and 2,
imputation with mode values)

Table 3. Values of TP, FN, TN and FP for each of the analyzed faults (random number of missing variables between 0
and 2; imputation with mean value

Whithout noise 2% Noise Level 5% Noise Level
Fault TP FN TN FP TP FN TN FP TP FN TN FP
1 193 7 785 0 186 14 754 4 183 17 737 9
7 198 2 780 6 193 7 747 10 188 12 732 15
12 198 2 780 3 191 9 749 6 185 15 735 10
15 192 8 786 9 180 20 760 23 177 23 743 27
19 197 3 781 4 190 10 750 16 187 13 733 20

2.3 Pythagorean Fuzzy C-Means Algorithm
(PyFCM)

Considering the theory of PFS, the objective
function on the PyFCM algorithm is similar to the
one obtained for the Intuitionistic Fuzzy C-Means
algorithm (IFCM) [3] according to the equation:

JPyFCM =

l∑
i=1

N∑
k=1

u∗m
ik d2ik +

l∑
i=1

π∗
i e

1−π∗
, (9)

where m > 1 is the fuzziness regulation factor of
the partition [21] , l is the number of classes, N is
the number of observations.
u∗
ik = um

ik + πik. u∗
ik denotes the pythagorean

fuzzy membership, uik represents the typical fuzzy
membership of the kth observation in the ith

class, and πik is the hesitation degree, which
is defined as:

πik = 1− u2
ik − (1− uα

ik)
2/α,α > 0, (10)

and

π∗
i =

1

N

N∑
k=1

πik, k ∈ [1,N ]. (11)

2.4 Kernel Pythagorean Fuzzy
C-Means Algorithm

Kernel functions are used for mapping
non-linear data from the input space to a
higher-dimensional space.
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Table 4. Results in % of the Sensitivity and (1-Specificity)

Whithout noise 2% Noise Level 5% Noise Level
Fault Sensitivity 1-Specificity Sensitivity 1-Specificity Sensitivity 1-Specificity

1 96.50 0 93 0.53 91.50 1.21
7 99.00 0.76 96.50 1.32 94.00 2.01

12 99.00 0.38 95.50 0.79 92.50 1.34
15 96.00 1.13 90.00 2.94 88.50 3.51
19 98.50 0.51 95.00 2.09 93.50 2.66

This is very useful in classification tasks because
it allows to achieve greater separability among
classes, and reduce the classification errors.

In order to enhance the classification process,
the kernel version of the PyFCM (KPyFCM) is
obtained. In the KPyFCM algorithm the following
objective function is minimized:

JKPyFCM =

l∑
i=1

N∑
k=1

u∗m
ik ∥Ψ(zk)−Ψ(vi)∥2

+

l∑
i=1

π∗
i e

1−π∗
, (12)

where ∥Ψ(zk)−Ψ(vi)∥2 is the square of the
distance between Ψ(zk) and Ψ(vi). The distance
in the feature space is calculated through the
kernel in the input space as follows:

∥Ψ(zk)−Ψ(vi)∥2 = K(zk, zk)− 2K(zk,vi)

+K(vi,vi). (13)

It is possible to find many different kernel
functions in the scientific information. Nonetheless,
the Gaussian kernel is one of the most popular.

In general, the choice of a function kernel
depends on the application [5, 16]. If the Gaussian
kernel function is used, then K(z, z) = 1 and
∥Ψ(zk)−Ψ(vi)∥2 = 2 (1−K(zk,vi)). So, Eq.
(12) can be expressed as:

JKPyFCM = 2

l∑
i=1

N∑
k=1

u∗m
ik ∥1−K(zk,vi)∥2

+

l∑
i=1

π∗
i e

1−π∗
, (14)

where
K(zk,vi) = e−∥zk−vi∥2/δ2 , (15)

where δ is the bandwidth which indicates the
smoothness degree of the Gaussian kernel
function [21]. Minimizing Eq. (14), yields:

u∗
ik =

1∑l
j=1

(
1−K(zk,vi)
1−K(zk,vj)

)1/(m−1)
, (16)

vi =

∑N
k=1 (u

∗m
ik K(zk,vi)zk)∑N

k=1 u
∗m
ik K(zk,vi)

. (17)

KPyFCM algorithm is displayed in Algorithm 1.

2.5 Proposed Methodology

Figure 1 displays the proposed scheme in this
paper for condition monitoring, which has two
stages. The first stage is developed offline and the
second one online.

In the off-line stage, the fuzzy classifier is trained
by using a training database with historical data
representative of the l operation modes or classes
of the process (normal operation and faults).

Also, the mean vectors (ObCl
) and the mode

vectors (ObMCl
) of these classes are calculated.

The training database must be preprocessed
before its use to eliminate the outliers which affect
the satisfactory obtaining of the mean vectors.

In the online stage, each received observation is
analyzed to determine if it has missing variables.

In negative case, the classification process of the
observation is carried out.

In affirmative case, the imputation process is
executed and then the observation is classified.
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Fig. 7. Analysis of the ROC curve

Imputation process: If an observation with
missing variables is received, the online imputation
process is executed in the following form:

– An observation Ob ∈ R1×p ( p: number
of measured variables), arrives with r
lost variables. The missing variables in
the observation and in the mean vectors
(ObCl

) are excluded.

The Euclidean distances from the observation
Ǒb ∈ R1×p−r to the mean vectors ǑbCl

∈
R1×p−r(dl = Ǒb− ǑbCl

) are calculated.

The observation is assigned to the class that
corresponds to the minimum distance (min(dl)).
If considered, other types of distance measures
can be used.

– The imputation process is executed.

Classification process: If the observation has
no missing variables or when the missing variables
have been estimated, it is assigned to a class

by the classification algorithm of the condition
monitoring system.

If the degree of overlap among some classes
is high, it is possible that the observation with the
estimated variables will be classified in a different
class than the one used for the imputation.

For the classification by using statistical
classifiers, each observation is compared with
the center of each class by using a measure of
similitude to determine the class to which the
observation belongs.

When fuzzy classification algorithms are used,
the classification is made by using Eq. (18):

Ci = {i : max {u∗
ik} ,∀i, k} . (18)

3 Study Case and Experimental Design

3.1 Case study: DAMADICS

To validate the proposed methodology, the
DAMADICS (Development and Application of
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Fig. 8. Faults classification (%) for the DAMADICS process

Methods for Actuator Diagnosis in Industrial
Control Systems) test problem will be used.

It represents an intelligent electro-pneumatic
actuator widely used in industries [4].

The information and the data sets related to
this benchmark can be found in the URL1. Table
1 shows the operation modes evaluated in the
actuator and the measured variables used.

Selected faults occur in different parts of the
actuator. In the case of faults F15 and F19,
their patterns overlap, which makes difficult the
satisfactory classification.

3.2 Design of Experiments

Table 2 shows the characteristics of the training
database used, which is free of outliers, noise and
missing variables.

K-cross-validation method was used in the
training and validation. K = 5 was selected (800
observations for training and 200 for validation).

The database used for the experiments related
to the online stage had 400 new observations of
each operation mode which were not used in the
training for a total of 2400 observations.

1http://diag.mchtr.pw.edu.pl/damadics/

Each experiment was repeated 100 times to
ensure repeatability of results. The average of 100
results was considered as final result.

The data sets used in the experiments
to evaluate the performance of the
condition monitoring system had the
following characteristics:

– Data set without missing information.

– Data set with 1 randomly missing variable
per observation.

– Data set with a random number of missing
variables between 0 and 2.

In addition, experiments for a) Observations
without noise, b) Observations with 2 % of white
noise and zero mean, and c) Observations with 5
% of white noise and zero mean were developed in
each variant.

The values of the parameters used for the
applied algorithms were: Number of iterations =
100, ϵ = 10−5, m = 2, σ = 50. This parameters were
selected according to the experience in previous
works [20].
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4 Results and Discussion

4.1 Online Recognition Stage

It is very important to analyze the quality and the
performance of a condition monitoring system. A
widely used tool for this purpose is the confusion
matrix (CM), which permits the analysis of the
performance of classification algorithms.

The values CMrs for r ̸= s in the CM show
the number of observations of the operation mode
r that the classifier algorithm misclassifies in the
operation mode s.

Then, all the necessary information to analyze
the performance of a condition monitoring system
can be obtained from the confusion matrix. In the
paper, the metrics shown in the Eqs. (19), and
(20) are used for studying the robustness of the
proposed condition monitoring system:

Sensitivity =
TP

TP+FN
, (19)

Specificity =
TN

FP+TN
, (20)

where TP-true positive rate (%), FN - False
Negative rate (%), TN- True Negative rate (%), and
FP- False positive rate (%).

Sensitivity is the proportion of observations
of positive class (NOC) that are classified as
positive (TP) and the Specificity is the proportion
of observations with the negative class (AOC),
classified as negative (TN).

The Receiver Operating Characteristic (ROC)
curve is the graphical way of representing these
values at a variety of thresholds. It shows
the relation Sensitivity vs. (1-Specificity), in a
two-dimensional graph.

The area under a ROC curve is greater when
the separability among the classes is satisfactory.
If the confusion among classes increases, the area
under a ROC curve (AUC) decreases.

Figures 2-6 show the classification results for the
faults 1, 7, 12, 15 and 19 by using the KPyFCM
algorithm for DAMADICS process. They show a
global classification percentage obtained for each
data set.

Table 5. Result of the comparison between
the experiments

Algorithm No.Wins Ranking

KFCM 0 3

KIFCM 1 2

KPyFCM 2 1

On the other hand, from the values of TP,
FN, TN, and FP shown in Table 3, it is
possible to obtain the results of the Sensitivity
and (1-Specificity) for observations with a random
number of missing variables between 0 and 2 using
imputation with mean values.

The values displayed in the Table 4 are used
to build the ROC curves associated to the
analyzed faults.

The combination of high values of the Sensitivity
metric and low values of the (1-Specificity) metric
demonstrate a successful performance. Fig. 7
displays an example of the ROC curves for faults
1, 7, 12, and 15.

The excellent results obtained demonstrate the
high robustness and validity of the proposed
condition monitoring scheme, even when the
process is disturbed by noise in the measurements
and missing data.

4.2 Comparison with Other Similar Algorithms

Figure 8 shows the classification results by using
the KFCM [21], KIFCM [23] and KPyFCM
algorithms, considering a random number
of missing variables between 0 and 2 using
imputation with mean values and 5% of noise.

To establish if there are significant differences
among the results of various algorithms, it is
necessary to use statistical tests [7, 14].
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4.2.1 Statistical Tests

First, the Friedman statistical test was applied,
and as a result, the null hypothesis was rejected.
This result indicates that at least one algorithm
achieves results that are significantly different from
the rest. Subsequently, the Wilcoxon test for a level
of significance α = 0.05 was applied. The result
is shown in Table 5 where it is evident that the
KPyFCM algorithm is the winning algorithm.

5 Conclusions

This paper has presented a condition monitoring
scheme for industrial plants characterized for its
robustness versus noise and missing variables in
the measurements.

In the experiments, different noise levels and
distinct quantities of missing variables in the
measurements obtained from the plant were
combined. The high performance obtained in
the classification shows the high robustness grade
of the analyzed scheme. Another advantage of
the proposal is to execute online the imputation
process for each observation obtained from the
plant that has missing variables.

This is a distinctive characteristic with respect
to most proposals present in the scientific
bibliography, which need to accumulate a group of
observations before executing the imputation.

The implemented imputation methods are very
simple so they have low computational complexity.
This allows for their use in processes with
short sampling times, which represents another
advantage of the proposal.

For the classification process, the KPyFCM
algorithm was implemented. In this algorithm, the
capacity of the function kernel to achieve greater
separability among the classes was combined with
the possibility of the Pythagorean membership
functions for using a larger set of numeric
values for assigning the membership degree
to an observation.

This provided an algorithm with high robustness
that allowed the condition monitoring scheme
to obtain high-performance levels versus noisy
observations and with missing variables.

The proposed condition monitoring scheme
was validated using the DAMADICS process
benchmark where it obtained a high performance.
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