
An Alternative Definition of Stable
Models Via Łukasiewicz Logic

Mauricio Osorio1, Aldo Figallo-Orellano2, Diego Huerta1

1 Universidad de las Américas Puebla,
Departamento de Actuarı́a, Fı́sica y Matemáticas,

Mexico

2 Universidade Federal do Rio Grande do Norte,
Departamento de Informática e Matemática Aplicada,

Brazil

{mauricioj.osorio, diego.huertaoa}@udlap.mx,
aldofigallo@gmail.com

Abstract. Extensions of G3 (3-valued Gödel logic)
were studied as tools for knowledge representation and
nonmonotonic reasoning. One of these extensions was
studied and baptized as G′

3 by Osorio et al. as a tool
to define semantics of logic programming. In this work,
we will explore the possibility to use another fuzzy logic
for knowledge representation. In particular, we show that
Łukasiewicz 3-valued logic (for short, Ł3) can be used for
knowledge representation based on logic programming.
Firstly, we prove that the definition of stable model for Ł3

is equivalent to the obtained through G3 for augmented
programs, but when we consider more general programs
we obtain more answers for stable models on Ł3 than G3.
Finally, we present and explore a new definition of stable
model based on Lukasiewicz n-valued logic via the use
of Monteiro-Baaz ∆ operator.

Keywords. Knowledge representation, stable seman-
tics, Łukasiewicz logic.

1 Introduction

Answer set programming (ASP) is a form of declar-
ative programming based on the stable model
(answer set) semantics of logic programming.

Recall that stable semantics allows us to handle
problems with default knowledge and produce non-
monotonic reasoning using the concept of negation
as failure.

It was originally defined for the class of theories
called normal programs [11]. Currently, ASP

is robust and mature enough, offering many
important language constructs like aggregation,
(weak) constraints, different types of negations,
and optimization statements to mention a few, as
high-performance solvers do.

An example of a state-of-the-art and award-
winning ASP solver is clasp [9] demonstrating
its competitiveness and versatility, by winning first
places at various solver contests since 2011 (e.g.,
ASP, CASC, MISC, PB, and SAT competitions).

The efficiency of such programs has increased
the list of practical applications in the areas of
planning, logical agents and artificial intelligence.

On the other hand, the term fuzzy logic emerged
in the development of the theory of fuzzy sets by
Zadeh in 1965, [14, 24].

Although the concept of uncertainty had been
studied by philosophers, the significance of
Zadeh’s work was that it challenged not only prob-
ability theory, as the sole agent for uncertainty, but
also the very foundations upon which probability
theory is based: Aristotelian two-valued logic.

When A is a fuzzy-set and x is a relevant
object, the proposition “x is a member of A” is
not necessarily either true or false, as required
by two-valued logic, but it may be true to some
degree, the degree at which x is actually a
member of A [15].

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

ISSN 2007-9737

Furthermore, fuzzy logic was introduced to study
the question of uncertainty from a foundational
point of view based on many-valued logics. In
this sense, fuzzy logic can be considered as a
degree-based approach to uncertainty.

Some systems like Łukasiewicz, product and
Gödel logics are, just like fuzzy sets, valued over
the real interval [0,1]. This supports the idea
of fuzzy logic being as a kind of foundational
counterpart of fuzzy set theory which is a discipline
mainly devoted to engineering applications.

In particular, the infinite-valued Lukasiewicz logic
Ł, introduced for philosophical reasons by Jan
Lukasiewicz, is among the most important and
widely studied of all non-classical logics. Later,
MV -algebras were introduced by C. Chang in
order to prove completeness with respect to the
calculus Ł, see for instance, [3].

The logic Ł was introduced taking in mind that if
statements about future events are already true or
false, then the future is as much determined as the
past and differs from the past only in so far as it has
not yet come to pass.

In order to avoid the situations in which further
development is impossible, it was proposed to
reject the law of Excluded Middle, that is,
the assumption that every proposition is true or
false. The n-valued Łukasiewicz logic (Łn) was
axiomatizated by Grigolia in 1977 in [12].

It is worth mentioning that initially Łukasiewicz
proposed the 3-valued version of Ł that today is
called Ł3. Afterwards, Lukasiewicz generalized
his three-valued logic to n values and also to an
infinite-valued system.

In this paper, we consider the Ł3 logic in
order to show a non-standard application of fuzzy
logic. Firstly, we show how Łukasiewicz logic can
be used for knowledge representation based on
logic programming.

In particular, we present a definition of
stable propositional Łukasiewicz models using the
{∧,∨,→,¬,□} connectives of Łukasiewicz logic.
Secondly, we show that our definition is equivalent
to the standard definition of stable models for
augmented programs, due to Lifschitz et al. [16].

Moreover, we show that this equivalence fails
when we consider the proposed definition of stable
models for arbitrary propositional theories given in

[23], see Remark 1. However, it is possible to
reduce any propositional theory into the class of
augmented programs [20].

Gelfond showed that the perfect models of
stratified logic programs can be characterized
in terms of extensions of the corresponding
autoepistemic theory [10] . His characterization is
based on the interpretation of not a as ¬□a, where
□ is Monteiro-Baaz operator.

In this paper, ¬ a is interpreted as □¬a, where
both operators ¬ and □ are the standard operators
in Łukasiewicz logics. Some connections between
Łukasiewicz logics and the stable semantics were
recognized in [18, 22] but all results in this paper
are new, to the best of our knowledge. Our paper
is structured as follows.

In section 2, we summarize some definitions,
logics and semantics necessary to understand this
work. Besides, we present a characterization of the
stable models semantics for augmented programs
in terms of the intermediate logic G3.

Then, in section 3, we present our results;
namely, we introduce the notion of Ł3-stable
models. We show its correspondence with
standard stable models for the class of augmented
programs. Later on, we generalize theses results
to many-valued Łukasiewicz logics. Finally, in
section 4 we present some conclusions.

2 Background

In this section, we summarize some basic concepts
and definitions necessary to understand this paper.

2.1 Logic Programs

A signature L is a finite set of elements that we call
atoms, or propositional symbols. The language of
a propositional logic has an alphabet consisting of:

– propositional symbols: p0, p1, . . .
– constant symbols: ⊥, ⊤.
– binary connectives: ∧, ∨,←.
– unary connectives: ¬, ∼G3

, ∼L3
.

– auxiliary symbols: (,).

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

Mauricio Osorio, Aldo Figallo-Orellano, Diego Huerta304

ISSN 2007-9737

where ∧, ∨,← are 2-place connectives and ¬,∼G3

,∼L3
are 1-place connectives. Theories and

formulas are built up as usual in logic.

If x is any particular unary connective, we write
Tx to denote a theory in which the unique unary
connective allowed is x.

A program is a finite theory and by default,
we assume that our formulas and programs are
constructed using the ¬ connective, unless stated
otherwise. In the following, we will say that:

A literal is either an atom a, called positive
literal; or the negation of an atom ¬a, called
negative literal.

A {∨,∧,¬}-formula is a formula built using only
the connectives in {∨,∧,¬}.

An augmented clause is a formula of the
form: H ← B, where both H and B are
{∨,∧,¬}-formulas.

Besides, we call H the head of the formula and
B the body of the formula. H ← B corresponds to
the standard formula B → H.

We define an augmented program P , as a finite
set of augmented clauses.

The body of an augmented formula could be just
the ⊤ constant, in which case the formula is known
as an extended fact and can be denoted just by the
head formula H.

We write LP , to denote the set of atoms that
appear in the clauses of P .

Given a set of atoms M and a signature L, we
define ¬M̃ = {¬b | b ∈ L \ M}, and ¬¬M =
{¬¬a | a ∈M}.

Given a program P and a set of atoms M , we
write < P ,M > to denote the program: P ∪ ¬M̃ ∪
¬¬M .

Given the unary connective ∼G3
and the

program < P ,M >, we write < P ,M >∼G3
to

the denote the theory obtained from < P ,M > by
replacing the connective ¬ by the connective ∼G3 .

Furthermore, it is worth observing that< P ,M >
is also an augmented program. Now, let us
consider the following example:

Example 1. Let P be the following program:

{a← ¬b, b← ¬a} , (1)

And let M = {a}, then < P ,M > is
{a← ¬b, b← ¬a} ∪ {¬b} ∪ {¬¬a}. So, <
P ,M >∼G3

= {a←∼G3
b, b←∼G3

a} ∪ {∼G3
b} ∪

{∼G3
∼G3

a}.

2.2 Logics

Now, we will review some logics that are relevant
to this paper to characterize different semantics of
normal and more general programs.

Moreover, we present definitions in terms of true
values as well as Hilbert style definitions for most
of these logics. The logics considered here have
the modus ponens as a unique inference rule.

2.2.1 Łukasiewicz’s Logic

Łukasiewicz logic is presented in the language
{→,¬}, further connectives are definable from
→ and ¬ as follows:

– ϕ⊕ ψ := ¬ϕ→ ψ.

– ϕ⊗ ψ := ¬(¬ϕ⊕ ¬ψ).

– ϕ ∨ ψ := (ϕ→ ψ)→ ϕ.

– ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ).

– φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

The truth constants are defined as follows:
⊤ := ϕ → ϕ and ⊥ := ¬⊤. So, it is possible to
define the following for every positive integer k:

– (k + 1)ϕ := kϕ⊕ ϕ.

– ϕ(k+1) := ϕk ⊗ ϕ.

When k = 0 we have kϕ = ϕk = ⊤. It was
originally defined as a three-valued Łukasiewicz
logic, denoted by Ł3.

Afterwards, Łukasiewicz generalized his three-
valued logic to n values and also to an
infinite-valued system.

Recall that the propositional Łukasiewicz logic
is defined as the following Hilbert style system of
axioms and rule ([13, 3]):

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

An Alternative Definition of Stable Models Via Łukasiewicz Logic 305

ISSN 2007-9737

– (Ł1) ϕ→ (ψ → ϕ).

– (Ł2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)).

– (Ł3) (ϕ→ ψ)→ (¬ψ → ¬ϕ).

– (Ł4) (ϕ ∨ ψ)→ (ψ ∨ ϕ).

– (MP) The rule of modus ponens:
ϕ, ϕ→ ψ

ψ
.

Now, for every integer n ≥ 2, the n-valued
Łukasiewicz logic (for short, Łn) is defined as an
extension of Ł by means of adding the following
axioms ([12, 13]):

– (Ł1) (n− 1)ϕ↔ nϕ,

– (Ł2) (tϕ(t−1))n ↔ (nϕ)t, for every
t = 2, 3, · · · , (n − 2) such that t does not
divide n− 1.

A matrix for Łn, with n − 1 as the unique
designated value, is MVn-algebra ⟨{0, 1, 2, · · · , (n−
1)},⊕,¬, 0⟩ where x ⊕ y := min(n − 1,x + y) and
¬x := (n − 1) − x, see [12, Examples pag. 4] and
[3, Definition 1.1.1].

It is well-known that the class of MV-algebras is
semantics for Łukasiewicz logic and its extension
Łn has the class of MVn-algebras as algebraic
semantics. For more details about the theory of
MVn-algebras the reader can consult the book [3,
Section 8.5].

2.2.2 Łukasiewicz’s 3-Valued Logic

The polish logician and philosopher Łukasiewicz
began to create systems of multivalued logics in
1920. He developed, in particular, a system with a
third value to denote “possible” that could be used
to express the modalities “it is necessary that” and
“it is possible that”.

To construct this logic, denoted by Ł3, we
first have to modify the syntax of our formulas to
allow only as primitive connectives: the constant
(0-place connective) ⊥ (false) and the 2-place
connective→ (implication).

These connectives operate over a domain
D = {0, 1, 2}, with 2 as the unique designated
value, and are defined as follows:

x→ y = min(2, 2− x+ y). (2)

Table 1. Truth tables of connectives in Ł3

x ∼L3
x □x ♢x

0 2 0 0
1 1 0 2
2 0 2 2

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 1 2

Other connectives in Ł3 are introduced in terms
of ⊥ and→ as follows:

– ∼L3
A := A→⊥.

– ⊤ :=∼L3
⊥.

– A ∨B := (A→B)→B.
– A ∧B :=∼L3

(∼L3
A∨ ∼L3

B.
– □A :=∼L3

(A→ ∼L3
A).

– ♢A :=∼L3
A→A.

The truth tables of most connectives are
shown in Table 1, the conjunction and disjunction
connectives (not shown) coincide with the min and
max functions respectively.

A syntactic characterization of the modal content
of Ł3 is studied in [17], where the behavior of modal
operators is checked against some of the relevant
modal principles.

It is important to note that the algebra
⟨{0, 1, 2},⊕,∼L3

, 0⟩ is an MV-algebra in terms of
[3, Definition 1.1.1], where ϕ⊕ ψ := ¬ϕ→ ψ using
Table 1.

For more general results in Łukasiewicz logics,
the reader can be referred to [3]. Another
observation worth mentioning is that the modal
operators □ and ♢ where considered in the context
of Łukasiewicz logic by Cignoli, [2].

Furthermore, these operators was considered
on Gödel-Dummmett logic by Baaz, [1]. Indeed,
Baaz baptized this operator with ∆ and it is known
in the literature as Monteiro-Baaz operator.

This operator was studied on fuzzy logics by
Esteva, Godo, Hájek, Montagna and others. These
authors presented an algebraic study of these
modals operators over certain fuzzy logics, see for
instance [6, 7].

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

Mauricio Osorio, Aldo Figallo-Orellano, Diego Huerta306

ISSN 2007-9737

Table 2. Truth tables: connectives in G3

x ∼G3
x

0 2
1 0
2 0

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

2.2.3 Gn Logic or Gödel n-Valued Logic

Gödel defined, in fact, a family of many-valued
logics Gn with truth values over the domain
D = {0, 1, . . . ,n− 1} and with n − 1 as the
unique designated value. Logic connectives are
defined as:

– x ∧ y := min(x, y); x ∨ y = max(x, y),

– x→ y := n− 1 if x ≤ y and y otherwise,

– ∼Gn
x = x→ 0.

Table 2 illustrates the implication and negation
connective for G3. Notice that ∼G3 x can be
expressed using Ł3:

∼G3
x := □ ∼L3

x. (3)

2.3 Semantics

We assume that the reader is familiar with the
notions of interpretations, models, and logical
consequence in the usual way. Recall that our
interest is in the above non classical logics.

Both have only 2 as the only designated value.
Hence a model of a theory P is an interpretation
I, such that I(P) = 2. Given a logic X, we use
the notation |=X α to indicate that the formula α is
tautology in X.

With respect to Logic Programming, we adopt
the following conventions. Given a set of atoms
M and a signature L, we define the interpretation
IM based on M as: IM (x) = 2 if x ∈ M , and
IM (x) = 0 otherwise, namely when x ∈ L \M .

Notice that the values in {0, 2} behave as
in classical logic in our both non-classical logic
considered in our paper. Hence IM models a
theory P in G3 iff IM models P in L3.

Given a program P and a set of atoms M , the
expression P ⊩X M will mean (in this paper) that
IM is a model of P and for every formula α ∈M , α
is a logical consequence of P in logic X.

By abuse of the language we may sometimes
say that M is a model of P if IM models a theory
P . By our last considerations, we do not have to
refer to any specific logic.

A very important remark on notation is the
following. When we write any of the following
statements: |=X α, or α is a tautology in X, or
Q ⊩X M etc, it is understood that the behaviour
of the connectives in our formulas correspond the
standard connectives in logic X.

For instance |=G3 {¬a → b} assumes that ¬
and → are the connectives of G3 logic. Similarly
|= L3

{¬a → b} assumes that ¬ and → are the
connectives of L3 logic.

However, if one makes a particular connective
such as ∼G3

in |= L3
{∼G3

a→ b} explicit then of
course, it is understood that → is our implication
operator of L3 logic, but ∼G3

is the negation
operator in G3 logic.

But, after all, it is also a non-primitive operator in
 L3 logic constructed using the primitive operators
of the same logic.

2.4 Expressing Stable Semantics based on G3

We present a general characterization of stable
models in terms of G3 logic. It is important to
observe that in the following result we can use
intuitionistic logic instead of G3 logic.

This characterization allows us to understand
what stable models are without having to appeal
to the original definition.

Theorem 1. [21] Given a general logic program P ,
a set of atoms M ⊆ LP is a stable model of P if
and only if < P ,M >∼G3

⊩G3 M .

Example 2. Let P be the following program:

{a← ¬b} , (4)

And let M1 = {a} and M2 = {b}. According to
the definition of stable semantics, since P ∪ {∼G3

b} ∪ {∼G3
∼G3

a} ⊩G3
{a}, then M1 is a stable

model of P .

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

An Alternative Definition of Stable Models Via Łukasiewicz Logic 307

ISSN 2007-9737

However, it is false that P ∪ {∼G3
a} ∪ {∼G3

∼G3

b} ⊩G3
{b}, hence M2 is not a stable model of P

as the reader can easily check. In fact, M1 is the
unique stable model of P.

Recall that in our programs we write ¬, but in the
notation < P ,M >∼G3

, ¬ is substituted by ∼G3 .

Example 3. Let P be the following program:

{a← ¬b, b← ¬a} . (5)

And let M1 = {a} and M2 = {b}. According to
the definition of stable semantics, since P ∪ {∼G3

b} ∪ {∼G3
∼G3

a} ⊩G3
{a} and P ∪ {∼G3

a} ∪
{∼G3

∼G3
b} ⊩G3

{b}, then M1 and M2 are stable
models of P as the reader can easily check.

2.5 Some Examples

We now provide some examples of augmented
programs and their stable models. This with the
purpose that the reader could check the models
and thus verify if the previously presented theory
has been well understood.

– Program (example)

– a ∨ b ∨ ¬e← ⊤,

– e← ⊤,

– c← a ∧ e ∧ ¬b ∧ ¬a,

– ¬b← d ∧ ¬e.

Stable models: {{b, e}, {a, e}}

– Program (example)

– d ∨ c← a ∧ b,

– ¬e← c ∧ e ∧ ¬d,

– b ∨ d ∨ ¬b← a,

– c← ¬a ∧ ¬b,

– e ∨ ¬b← e ∧ d.

Stable models : {{c}}

– Program (example)

– a ∨ d← ¬c,

– ¬e← b,

– ¬a← e ∧ c.

Stable models : {{d}, {a}}

– Program (example)

– b ∨ c← a ∧ c ∧ ¬e ∧ ¬a,

– ¬d← b.

Stable models : {{}}

– Program (example)

– ⊥ ← ¬e,

– c ∨ ¬d← c.

Stable models : {}

– Program (example)

– c ∨ e ∨ ¬a← ¬b,

– b ∨ a ∨ ¬b← ¬c,

– a ∨ ¬a← c ∧ ¬d,

– d ∨ a← e ∧ ¬d.

Stable models : {{}, {b}, {a, e}, {a, c}}.

3 Stable Models in Łukasiewicz’s
Logic Ł3

In this section, we present our main results,
namely, we introduce Ł3-stable models and we
show their correspondence with standard stable
models. Then we generalize this results to
consider many-valued logics.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

Mauricio Osorio, Aldo Figallo-Orellano, Diego Huerta308

ISSN 2007-9737

3.1 3-Valued Logics

Theorem 2. Given an augmented theory P and a
3-valued interpretation I, I models P in G3 logic iff
I models P∼G3

in Ł3 logic.

Proof. It is enough to take an augmented clause C
to prove the theorem. So, we have to see that for
every 3-valued interpretation I, I models C in G3

logic iff I models C∼G3
in Ł3 logic.

Now, let C be an augmented clause and I
a 3-valued interpretation. By definition, C has
the form H ← B, where both H and B are
{∨,∧,¬}-formulas.

Then I(H) and I(B) do not change their value
when considering the two different logics. The only
possible difference in C is in the implication: 1→
0 = 0 in G3 logic and 1→ 0 = 1 in L3 logic.

But in neither of these two possibilities, the
valuation takes true-valued 2. Consequently, if I
models C in one logic, then I models C in the other.
Thus, since P is a finite set of augmented clauses,
we have I models P in G3 logic iff I models P∼G3

in Ł3 logic.
We have showed that Łukasiewicz 3-valued logic

can be used for knowledge representation based
on logic programming. Now, consider again our
example 2:

Suppose that both implication and negation
correspond to Łukasiewicz’s logic Ł3. Then clearly
M2 would be a stable model of P , which fails
the very basic notion of negation as failure in
Logic Programming.

It is well accepted to consider negation as a
failure a kind of modality operator, see for instance
[19], which is considered as follows: ∼G3

x :=
□ ∼L3

x. We adopt this negation operator (∼G3
)

in the following definition.

Definition 1. Given a logic program P , we define
a set of atoms M ⊆ LP to be a Ł3-stable model of
P if < P ,M >∼G3

⊩ L3
M .

Here, we assume the use of Ł3 implication
which behaves differently to the one of G3 logic.
Furthermore, we will present a simple example that
shows that in general the Ł3-stables model of P do
not correspond to the standard stable models. To
see this, we will display the following Remark:

Remark 1. Let us start by considering the following
program Q = {∼G3 (a→⊥)}. Then, it is not hard
to see that Q does not have stable models in G3

logic. In contrast, {a} is a Ł3-stable model of Q.

Theorem 3. Given an augmented logic program P
and a set of atoms M ⊆ LP . M is a stable model
of P iff M is a Ł3-stable model of P .

Proof. Recall that M is a stable model of P iff <
P ,M >⊩G3

M iff IM is a model of < P ,M > in G3

logic and M is a logical consequence of < P ,M >
in G3.

On the other hand, M is a Ł3-stable model of
P iff < P ,M >∼G3

⊩ L3
M iff IM is a model of <

P ,M > in L3 logic and M is a logical consequence
of < P ,M >∼G3

in L3.

We have already noticed that IM is a model of
< P ,M > in G3 logic iff IM is a model of <
P ,M >∼G3

in L3 logic, this is thanks to Theorem 2.

Moreover, M is a logical consequence of <
P ,M > in G3 iff < P ,M >∼G3

is a logical
consequence of in L3. Hence, M is a stable model
of P iff M is a Ł3-stable model of P as desired.

Notice that in the examples provided in
Section 2.5, the theories belong to the class
of augmented programs and therefore the stable
models correspond to the Ł3-stable models.

Lemma 1. Let I be a 3-valued interpretation and
S = {α ∈ L : I(α) = 1}. Let IS be a 3-valued
interpretation defined as:

IS(α) =

{
I(α) if x /∈ S,

2 if x ∈ S (6)

Then, IS(β) = I(∼G3
∼G3

β) for every {∨,∧,¬}-
formula β.

Proof. We will give the proof by induction on β.
Indeed, let β be an atom. So, notice that if I(β) ∈
{0, 2}, then IS(β) = I(β) and if I(β) = 1, then
IS(β) = 2. Therefore IS(β) = I(∼G3

∼G3
β).

Now, let us suppose IS(βi) = I(∼G3
∼G3

βi) as
induction hypothesis. Let β be β1#β2 where # can
represent ∧ or ∨. Then, IS(β) = IS(β1#β2) =
IS(β1)#IS(β2).

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

An Alternative Definition of Stable Models Via Łukasiewicz Logic 309

ISSN 2007-9737

So, due to the induction hypothesis we have
that IS(β1)#IS(β2) = I(∼G3

∼G3
β1)#I(∼G3

∼G3

β2) = I(∼G3∼G3 β1# ∼G3∼G3 β2) = I(∼G3∼G3

(β1#β2)) = I(∼G3∼G3 β). Therefore, IS(β) =
I(∼G3

∼G3
β).

Finally, let β be ∼G3
β1, then we have that

IS(β) = IS(∼G3 β1) =∼G3 IS(β1) =∼G3

I(∼G3∼G3 β1) = I(∼G3∼G3∼G3 β1) = I(∼G3∼G3

β). Therefore, IS(β) = I(∼G3
∼G3

β) and the proof
is completed.

Theorem 4. Given an augmented logic program P
and a set of atoms M ⊆ LP . M is a stable model
of P iff for every 3-valued interpretation I:

I
(∧

< P ,M >∼G3

)
= I

(∧(
M∪ ∼G3 M̃

))
, (7)

where the connective of implication used in the
above expression could be any of the two defined
in our 3-valued logics considered in this paper.

Proof. For this proof, we will consider the
connective of implication of Ł3 logic and let P and
M ⊆ LP be under the conditions of the hypothesis.

From left-to-right, let us suppose that M is
a stable model of P . So, we have to prove
that every 3-valued interpretation I fulfills that
I(
∧
< P ,M >∼G3

) = I(
∧

(M∪ ∼G3
M̃)).

In the following, we will consider an arbitrary, but
fixed 3-valued interpretation I, and suppose that:

– I(
∧

(M∪ ∼G3 M̃)) = 0:

Then, I(
∧

(M)) = 0, or I(
∧

(∼G3
M̃)) = 0. If

I(
∧

(∼G3 M̃)) = 0, then automatically I(
∧

<
P ,M >∼G3

) = 0. Moreover, if I(
∧

(M)) = 0,
then ∃α ∈ M : I(α) = 0. So, ∃α ∈ M :
I(∼G3

∼G3
α) = 0 and then I(

∧
(∼G3

∼G3
M)) =

0. Consequently, I(
∧
< P ,M >∼G3

) = 0.

– I(
∧

(M∪ ∼G3 M̃)) = 1:

Notice that ∄α ∈ LP : I(∼G3
α) = 1, then

it must happen that I(
∧

(∼G3 M̃)) = 2 and
I(
∧

(M)) = 1. Thus, ∀α ∈ M we have that
I(α) = 1, or I(α) = 2 and then, ∃α ∈ M such
that I(α) = 1. Consequently, ∀α ∈ M we have
that I(∼G3

∼G3
α) = 2 and then I(

∧
(∼G3

∼G3

M)) = 2. Furthermore, ∀α ∈ LP \M : I(∼G3

α) = 2 then ∀α ∈ LP \M : I(α) = 0.

Recall the interpretation IM previously defined
as: IM (x) = 2 if x ∈ M , and IM (x) = 0 if x ∈
LP \M . Now, let us consider the interpretation
IS defined in Lemma 1, notice that IS = IM .

Since M is a stable model of P , IM is a model of
< P ,M >∼G3

, then ∀p ∈ P : IM (p) = 2. Recall
that P is a set of augmented clauses and an
augmented clause has the form H ← B, where
H and B are {∨,∧,¬}-formulas.

Consider an augmented clause p ∈ P of the form
Hp ← Bp such that I(p) = 0, then I(Hp) = 0 and
I(Bp) = 2, therefore IM (Hp) = IS(Hp) = 0 and
IM (Bp) = IS(Bp) = 2, then IM (p) = 0 which is
a contradiction. Therefore ∄p ∈ P : I(p) = 0 and
then I(

∧
(P)) ̸= 0.

In this setting, we also have that I(
∧

(P)) ̸=
2 because if I(

∧
(P)) = 2, then I(

∧
<

P ,M >∼G3
) = 2, and M is a stable model of

P then I(
∧

(M)) = 2 which is a contradiction.
Consequently, I(

∧
(P)) = 1 and therefore I(

∧
<

P ,M >∼G3
) = 1.

– I(
∧

(M∪ ∼G3 M̃)) = 2:

Then, I(
∧

(M)) = 2 and I(
∧

(∼G3
M̃)) = 2.

Consequently, ∀α ∈ M : I(α) = 2, and also
∀α ∈ Lp \M : I(∼G3

α) = 2 then ∀α ∈ Lp \M :
I(α) = 0. Thus, I = IM . Besides, M is a stable
model of P , then IM is a model of < P ,M >∼G3

.
As a result, I(

∧
< P ,M >∼G3

) = 2.

Therefore, every 3-valued interpretation main-
tains the desired equality. Then, the first
condition is proved.

Now, let us prove the right-to-left direction. First,
let I be an arbitrary 3-valued interpretation such
that I(

∧
< P ,M >∼G3

) = I(
∧

(M∪ ∼G3 M̃)).
Thus, we have to prove that M is a stable model
of P . Indeed, consider the interpretation IM .

The value of the conjunction of all elements of M
under IM is 2, that is, IM (

∧
(M)) = 2. Moreover,

the value of all the atoms that are not elements of
M under IM is 0, then the value of their negation
under IM is 2, that is, IM (

∧
(∼G3

M̃)) = 2.

Consequently, IM (
∧

(M∪ ∼G3 M̃)) = 2, and
then IM (

∧
< P ,M >∼G3

) = 2. Therefore, IM
is a model of < P ,M >∼G3

.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

Mauricio Osorio, Aldo Figallo-Orellano, Diego Huerta310

ISSN 2007-9737

Let I be a model of < P ,M >∼G3
, namely, let

I be a 3-valued interpretation such that I(
∧

<
P ,M >∼G3

) = 2. Consequently, I(
∧

(M∪ ∼G3

M̃)) = 2 and then I(
∧

(M)) = 2.

This means that every formula α ∈M is a logical
consequence of< P ,M >∼G3

. Therefore, we have
that < P ,M >∼G3

⊩ M , thus M is a stable model
of P . Hence, the second condition and the theorem
have been proved.

Let us observe that in the proof of Theorem 4,
the implication of Ł3 logic has been considered.
The following Corollary is an immediate conse-
quence of the last Theorem:

Corollary 1. Given an augmented logic program P
and a set of atoms M ⊆ LP . M is a stable model
of P iff:∧

< P ,M >∼G3
↔

∧
(M∪ ∼G3 M̃). (8)

Is a tautology in any of our 3-valued logics
considered in this paper.

3.2 Generalization

In this subsection, we will work on the family of
logics Gn and Łn, for n ≥ 3, see [5, 3, 13].

Recall that in the logic Łn, it is possible to define
the binary operators ⊕ and ⊗ as follows:

x⊕ y = ¬x→ y, (9)
x⊗ y = ¬(¬x⊕ ¬y). (10)

Furthermore, we can define the operator □ for
the n-valued logic Łn recursively as follows:

□x = x(n+1). (11)

It is not hard to see that ∼Gn
x = □ ∼Ln

x.
We again adopt this negation operator (∼Gn) in
Definition 2.

Theorem 5. Given an augmented theory P and an
n-valued interpretation I, I models P in Gn logic iff
I models P∼Gn

in Łn logic.

Proof. Let C be an augmented clause and I an
n-valued interpretation. By hypothesis, we have
that C has the form H ← B, where both H and
B are {∨,∧,¬}-formulas. Then, I(H) and I(B) do
not change their value when considering the two
different logics.

Since I is an n-valued interpretation and n− 1 is
the unique designated value, let us assume that I
models C in Gn logic. So, B→H = n− 1 in Gn.

From the latter and the order defined through the
implication on Gn, we have that I(B) ≤ I(H). So,
we have that:

– 0 ≤ I(H)− I(B).

– n− 1 ≤ n− 1 + I(H)− I(B).

– min(n− 1,n− 1− I(B) + I(H)) = n− 1.

Therefore, we can infer that that B→H = n− 1
in Łn logic. Thus, I models C∼Gn

in Łn logic if I
models C in Gn logic as desired.

Conversely, by an analogous argument but now
using the definition of the implication on Gn

and the order relation given through Łukasiewicz
implication, we have I models C in Gn logic
every time that I models C∼Gn

in Łn logic, which
completes the proof.

Now, we are in conditions to define the notion
Łn-stable model via the following definition in which
the use of Łn implication is involved. Indeed:

Definition 2. Given a logic program P , we define
a set of atoms M ⊆ LP to be a Łn-stable model of
P if < P ,M >∼Gn

⊩ Ln M .

Here, we assume the use of Łn implication,
which behaves differently to the one of Gn.

Theorem 6. Given an augmented logic program P
and a set of atoms M ⊆ LP . M is a stable model
of P iff M is a Łn-stable model of P .

Proof. Having in mind Theorem 1, we know that M
is a stable model of P iff < P ,M >⊩Gn

M iff IM is
a model of < P ,M > in Gn logic and M is a logical
consequence of < P ,M > in Gn.

By Definition 2, we have that M is an Łn-stable
model of P iff < P ,M >∼Gn

⊩ Ln
M iff IM is a

model of < P ,M > in Ln logic and M is a logical
consequence of < P ,M >∼G3

in Ln.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

An Alternative Definition of Stable Models Via Łukasiewicz Logic 311

ISSN 2007-9737

Taking into account Theorem 5, we obtain that
IM is a model of < P ,M > in Gn logic iff IM is
a model of < P ,M >∼Gn

in Ln logic. Thus, M
is a logical consequence of < P ,M > in Gn iff
< P ,M >∼Gn

is a logical consequence of in Ln,
which completes the proof.

4 Conclusion and Future Work

ASP has proven to be a powerful tool to
encode and solve problems in both academia and
industry, becoming one of the most attractive KRR
frameworks [8].

Therefore, ASP has applications in many fields,
and it is widely used for knowledge representation
due to its effectiveness.

In this paper, we have shown that Łukasiewicz
logic can be used for knowledge representation
based on logic programming.

Furthermore, we have also presented an
alternative definition of stable models for general
programs in terms of Ł3 logic and we have studied
the circumstances in which they are equivalent to
the standard stable models.

We have taken advantage of the fact that on
Łukasiewicz’s logic Ł3 is possible to express the
negation on G3 logic via the use an specific modal
operators. Finally, we have defined Łn-stable
models and we have generalized the results
previously obtained to many-valued logics.

As future work, we will focus on the study of the
correspondence of standard state models and Ł3

stable models when the theories do not belong to
the class of augmented programs.

Remark 1 shows us that if we take more
general programs, we can obtain more answers on
Ł3. Moreover, a generalization of Theorem 4 for
multivalued logics will also be studied.

Besides, the theory presented in this paper will
be studied further with the aim of extending our
characterization to model preferences in a natural
way, following the work presented in [4].

Another important point that we are interested
in is giving a notion of stable semantics in terms
of MVn-algebras which would imply translating the
result given here for generating algebra for a more
general setting.

References

1. Baaz, M. (1996). Infinite-valued Gödel logics with
0-1-projections and relativizations. Lecture Notes
Logic, pp. 23–33.

2. Cignoli, R. (1982). Proper n-valued Lukasiewicz
algebras as s-algebras of Lukasiewicz n-valued
propositional calculi. Studia Logica, Vol. 41,
pp. 3–16.

3. Cignoli, R., D’Ottaviano, I., Mundici, D.
(2000). Algebraic Foundations of Many-Valued
Reasoning. Springer Netherlands. DOI:
10.1007/978-94-015-9480-6.

4. Confalonieri, R., Nieves, J. C., Osorio, M.,
Vázquez-Salceda, J. (2010). Possibilistic seman-
tics for logic programs with ordered disjunction.
Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 133–152. DOI: 10.1007/
978-3-642-11829-6 11.

5. Coniglio, M. E., Esteva, F., Godo, L. (2016). On
the set of intermediate logics between the truth- and
degree-preserving łukasiewicz logics. Logic Journal
of IGPL, Vol. 24, No. 3, pp. 288–320. DOI: 10.1093/
jigpal/jzw006.

6. Esteva, F., Godo, L., Hájek, P., Navara, M.
(2000). Residuated fuzzy logic with an involutive
negation. Archive for Mathematical Logic, Vol. 39,
pp. 103–124. DOI: 10.1007/s001530050006.

7. Esteva, F., Godo, L., Montagna, F. (2001). The ł∏
and ł

∏
1
2

logics: Two complete fuzzy systems
joining Lukasiewicz and product logics. Archive for
Mathematical Logic, Vol. 40, pp. 39–67.

8. Falkner, A., Friedrich, G., Schekotihin, K.,
Comploi-Taupe, R., Teppan, E. (2018). Industrial
applications of answer set programming. Künstliche
Intelligenz, Vol. 32, pp. 165–176. DOI: 10.1007/
s13218-018-0548-6.

9. Gebser, M., Kaufmann, B., Schaub, T. (2012).
Conflict-driven answer set solving: From theory to
practice. Artif. Intell., Vol. 187, pp. 52–89. DOI:
10.1016/j.artint.2012.04.001.

10. Gelfond, M. (1987). On stratified autoepistemic the-
ories. Proceedings of the 6th National Conference
on Artificial Intelligence. Seattle, WA, USA, July
1987, pp. 207–211.

11. Gelfond, M., Lifschitz, V. (1988). The Stable Model
Semantics for Logic Programming. 5th Conference
on Logic Programming, pp. 1070–1080.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

Mauricio Osorio, Aldo Figallo-Orellano, Diego Huerta312

ISSN 2007-9737

12. Grigolia, R. (1977). Algebraic analysis of
łukasiewicz-Tarski’s n-valued logic systems. In
Selected papers on Łukasiewicz sentencial calculi.
Ossolineum, Wroclaw, pp. 81–92.

13. Hájek, P. (1998). Metamathematics of fuzzy logic.

14. Hájek, P. (2006). Fuzzy logic. plato.stanford.edu/ent
ries/logic-fuzzy/#4.

15. Klir, G. J., Yuan, B. (1995). Fuzzy Sets and Fuzzy
Logic: Theory and Applications.

16. Lifschitz, V., Tang, L. R., Turner, H. (1999).
Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence, Vol. 25,
pp. 369–389.

17. Minari, P. (2003). A note on Łukasiewicz’s
three-valued logic. Annali del Dipartimento di
Filosofia dell’Università di Firenze, pp. 163–190.

18. Osorio, M., Carranza, J. L. C. (2020). An extension
of the stable semantics via łukasiewicz logic.
Electronic Notes in Theoretical Computer Science,
Vol. 354, pp. 141–155. DOI: 10.1016/j.entcs.2020.
10.011.

19. Osorio, M., Navarro, J., Arrazola, J., Borja, V.
(2005). Ground nonmonotonic modal logic S5: New

results. Journal of Logic and Computation, Vol. 15,
No. 5, pp. 787–813. DOI: 10.1093/logcom/exi042.

20. Osorio, M., Navarro, J. A., Arrazola, J. (2005).
Safe beliefs for propositional theories. Annals of
Pure and Applied Logic, Vol. 134, No. 1, pp. 63–82.

21. Osorio, M., Navarro Pérez, J. A., Arrazola,
J. (2005). Safe beliefs for propositional theories.
Annals of Pure and Applied Logic, Vol. 134, No. 1,
pp. 63–82.

22. Osorio, M., Zepeda, C., Carballido, J., López,
D. (2010). Yet another application of fuzzy logic.
20th International Conference on Electronics,
Communications and Computer, pp. 217–221. DOI:
10.1109/CONIELECOMP.2010.5440764.

23. Pearce, D. (1999). From Here to There: Stable
Negation in Logic Programming. In What Is
Negation? pp. 161–181.

24. Zadeh, L. A. (1965). Fuzzy sets. Information and
Control, Vol. 8, pp. 338–353.

Article received on 09/04/2022; accepted on 06/06/2022.
Corresponding author is Mauricio Osorio.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 303–313
doi: 10.13053/CyS-27-1-4541

An Alternative Definition of Stable Models Via Łukasiewicz Logic 313

ISSN 2007-9737

