
3-D Interface for Humanoid Robot Operation
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Abstract. The study of human body motions, especially
upper and lower limbs motions, help to understand
how the human body works. This paper presents
a method to obtain the human limb angles through
a kinematic model depicted by Roll-Pitch-Yaw rotation
matrix and subsequently control the humanoid robot
motions. The main advantage of this model is the
detailed representation of each joint motion expressed
in the coordinate axes (x, y, z). The estimation of human
limb angles is performed with information obtained by
algorithms of artificial vision and artificial intelligence. In
order to reduce the latency between the human motion
capture and robot motions, a fuzzy logic controller is
implemented to control each robot joint due the less
complexity of these kind of algorithms. The final robot
limbs angles are compared with the human limbs angles
to obtain a final error between those measurements.
This method shows a similar results on the arms posture
regarding previous works.

Keywords. Fuzzy control, human body, kinematics,
modelling, NAO robot, roll-pitch-yaw.

1 Introduction

The knowledge of human limb motion has an
important relevance in robotics when a robot is
wanted to perform human-like behaviours. The
robotic teleoperation is the action to control a robot
at a distance.

One of the most important method to teleoperate
robots is through haptic devices. These devices
can be joysticks or special suits like gloves
or full-body suits that are equip with inertial
measurement unit (IMU) and are able to transfer
force and positions to a robot in order to perform
an specific motion [15, 14, 12, 9, 19, 10, 1, 16, 18].

The disadvantage of these methods is the
sensors noise that can carry out low precision on
the final motion of the robot. Other remarkable
disadvantage is the suits are made for a fixed size
and not all person can use them.

Another method is capture specific points of
the body through artificial vision and artificial
intelligence, afterwards use them as the set-points
for the robot. The motion capture can be with
an algorithm that search for a specific color in an
image, for example a mark on person’s clothes.

Also, the augmented reality, that is the
combination of real word images and information
generated by a computer, in combination with
haptic devices improves the teleoperation
capabilities [8, 17, 11].

In Health Sciences, the robots teleoperation is
applied to rehabilitation and therapy techniques
such as therapies for children with autism [3, 5, 4].
In the present paper, a method to mimic the human
limbs motions using three-dimensional kinematic
model and a fuzzy logic control algorithm.

The kinematic model receives as input the
points array from an artificial intelligence algorithm
[2] which correspond to the locations of human
joint, this array contains the points obtained by
three-dimensional analysis of 4 plain images that
are taken from 4 different points of view (front,
back, right side, left side) instead of a 3-D
approximation from a single point of view of a
bi-dimensional image [20].

Then, the angles of limbs are obtained by three
equations which are derived from kinematic model.
These angles correspond to the motions that
human limbs can perform on the different axis and
are the set point of the fuzzy control algorithms of
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Fig. 1. NAO robot teleoperation method

Fig. 2. Upper and lower limb joints
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Fig. 3. Key points of human body

the robot. The fuzzy logic algorithms are Mamdani
fuzzy inference systems with ”if, else” rules engine.

On the Fig. 1 is depicted a general flow diagram
of this method. The artificial intelligence algorithm
[2] obtains the information of four cameras
equipped with two different sensors, RGB sensor
and depth sensor.

The images captured by the 4 RGB sensors are
processed with a Convolutional Neural Network
which creates feature maps of input image and
infers 2-D key points for person in the image. The
2-D key points are the locations of person’s joints.
After that, the 3-D points are calculated making the
relation between four set of 2-D points.

Two depth sensors work as security system that
activate the RGB data acquisition till the person
is in the middle of cameras array. This system
ensures that person position in the images is
similar in order to minimize error when the 3-D
points are calculated.

The artificial intelligence algorithm [2] provides a
robust method to detect the joint’s location. The
measurements are not affected by the lighting
changes and it was not necessary to use special
equipment on the body, that is the main advantage
of the algorithm.

2 Method

2.1 Kinematic Model

The kinematic model was based on the five basic
motions that the NAO robot [6] and humans
can perform [13, 7]. These movements are
described below:

– Flexion. It is angle decrease at one joint.

– Extension. It is angle increase at one joint.

– Abduction. It is the motion of a limb away from
the midline of the body.

– Adduction. It is the motion of a limb toward to
the midline of the body.

– Rotation. It is the motion around a longitudinal
axis of a bone, it can be internal or external.
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The motions of upper limbs parts considered in
this method were shoulders and elbow motions;
the shoulders motions are Flexion / Extension (y),
Abduction / Adduction (z) and Rotation (x).

The elbows motions are Flexion / Extension
(z). Similarly, the motions of lower limbs are hips
motions and knees motions.

The hips motions are Flexion / Extension (y),
Abduction / Adduction (z) and Rotation (x). The
knees motions are Flexion / Extension (y) as is
shown on the Fig. 2.

The Roll, Yaw and Pith rotations matrixes were
selected to describe the previous motions. The
Equation 1 is the rotation matrix on the (z)
axis (Yaw) and the Equation 2 is the rotation
matrix (y) (Pitch), these equations are used to
represent the elbows, knees, shoulders and hips
Abduction / Adduction and Flexion / Extension
motions respectively.

The Equation 3 is the rotation matrix on the (x)
axis (Roll) and represents the Rotation motions
performed by the shoulders and hips:

Rz =

 Cφ −Sφ 0

Sφ Cφ 0

0 0 1

 , (1)

Ry =

 Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ

 , (2)

Rx =

 1 0 0

0 Cψ −Sψ
0 Sψ Cψ

 , (3)

where Cφ, Cθ and Cψ represent cosφ, cos θ and
cosψ respectively and Sφ, Sθ and Sψ represent
sinφ, sin θ and sinψ respectively. The angles φ,
θ and ψ are the rotation angles on the axis (z), (y)
and (x) respectively.

Due the shoulders and hips are able to perform
rotations on the 3 axis, the 3 previous equations
were multiplied to obtain a single rotation matrix,
equation 4:

Rxyz =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (4)

Table 1. Comfort angles of right limbs

Part Movement Axis ID Angle Range

shoulder
flex / ext Y q1 -150° to 40°
abd / add Z q2 -150° to 20°
rotation X q3 -70° to 60°

elbow flex / ext Z q4 10° to 150°

hip
flex / ext Y q6 -130° to 15°
abd / add Z q8 -45° to 20°
rotation X q7 -50° to 45°

knee flex / ext Y q8 0° to 155°

Table 2. Comfort angles of left limbs

Part Movement Axis ID Angle Range

shoulder
flex / ext Y q9 -150° to 40°
abd / add Z q10 -20° to 150°
rotation X q11 -70° to 60°

elbow flex / ext Z q12 -150° to 10°

hip
flex / ext Y q13 -130° to 15°
abd / add Z q14 -20° to 45°
rotation X q15 -50° to 45°

knee flex /ext Y q16 0° to 155°
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Fig. 4. Error membership functions

where:

A11 = CφCθ,
A12 = CφSθSψ − SφCψ,
A13 = SφSψ + CφSθCψ,
A21 = SφCθ,
A22 = CφCψ + SφSθSψ,
A23 = −CφSψ + SφSθCψ,
A31 = Sθ,
A32 = CθSψ,
A33 = CθCψ.
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Fig. 5. ∆Error membership functions
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Fig. 6. Output memberships functions

Table 3. Fuzzy inference rules

e / ∆e eng enb ec epb epg
eng vmx va vm va vmx
enb va vm vb vm va
ec vm vb vc vb vm
epb va vm vb vm va
epg vmx va vm va vmx

The artificial intelligence algorithm [2] is able to
locate 15 key points. Three of these key points
were used as reference point (0, 1, 14) and the
others key points were used to estimate the joints
angles. These key points are shown on the Fig. 3.

The kinematic model for the upper and lower
limbs is described by the following equations:

#       »

PMD = Rz
#   »

P34 + Rxyz
#   »

P23 +
# »

P2, (5)
#     »

PMI = Rz
#   »

P67 + Rxyz
#   »

P56 +
# »

P5, (6)
#     »

PTD = Ry
#      »

P910 + Rxyz
#   »

P89 +
# »

P8, (7)
#    »

PTI = Ry
#        »

P1213 +Rxyz
#        »

P1112 +
#   »

P11, (8)

where the Equation 5 describes the final position
of the right arm with the vector

#       »

PMD. The equation
is composed of a translation

# »

P2 from the point 0,
P0 = [0 0 0]T , to the point 2.

A second translation from the point 2 to the point
3 creates the vector

#   »

P23. This second vector has a
rotation described by the matrix Rxyz.

Finally, the vector
#   »

P34 and the matrix Rz
represents the translation from the point 3 to the
point 4 and his rotation, respectively.

This procedure was applied to the other limbs,
where Equation 6 corresponds to the left arm,
Equation 7 to the right leg and Equation 8 to the
left leg.

In Tables 1 and 2 are shown the maximum angle
that human limbs can perform before get injured.
These angles are know as comfort angles [13, 7].
The vector value of each limb was calculated by the
Equation 9:

#    »

Vext =


(Xe −X0)

(Ye − Y0)

(Ze − Z0)

 =


Xext

Yext

Zext

 , (9)

where (X0,Y0,Z0) are the limb origin points and
(Xe,Ye,Ze) are the end points. For example, the
forearm origin point is the elbow an the end point
is the wrist, hence

#    »

Vext is the final vector with the
point (Xext , Yext , Zext ).

To obtain each motion angle, the directional
cosines were selected to estimate the rotation
angles qn on the different axis, where qn is the ID
of angles shown in the Tables 1 and 2.

The director cosine for the rotation angle at
the (x) axis is the the Equation 10 and for the
(y) and the (z) axis are the Equations 11 and
12 respectively:
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Fig. 8. Control surface

qn = cos−1

 Yext∣∣∣ #    »

Vext

∣∣∣
 , (10)

qn = cos−1

 Zext∣∣∣ #    »

Vext

∣∣∣
 , (11)

qn = cos−1

 Xext∣∣∣ #    »

Vext

∣∣∣
 , (12)

where Yext corresponds to the (y) point from the
vector

#    »

Vext and
∣∣∣ #    »

Vext

∣∣∣ is magnitude of that vector.
In the same way, Xext and Zext correspond to the
(x) and (z) points from vector

#    »

Vext respectively and∣∣∣ #    »

Vext

∣∣∣ is magnitude of that vector.

2.2 Control Algorithm

The control algorithm used to control the robot’s
joint speed was a Fuzzy PD (Proportional
Derivative) controller.
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This controller is a Mamdani Fuzzy Inference
System which is based on ”if-else” inference
engine. For this application, the hip rotations were
excluded due the NAO robot [6] is not able to
perform this motion.

The controller’s set-points were bounded to the
angles values in the Tables 1 and 2 in order to
prevent a damage at the robot joints. In the
first step, the controller, Fig. 7, assigned fuzzy
values to error and differential error through input
membership function.

The error was estimated subtracting the
set-point and the angle measured by the sensors
in robot’s joints at an instance of time (e(t)) and the
differential error is the error is ∆e(t) = e(t)−e(t−1).

Then, the fuzzy values from the inputs were
processed by an inference engine. Finally, the
crisp values, that controls the robot’s joints, were
estimated by the defuzzification block and sent
them to robot’s actuators.

The error and the differential error were in radian
and could be positive and negative, due this, five
triangular memberships functions were assigned.
For example, the membership functions from the
right shoulder are shown on the Fig 4 and 5 .

Each motion angle have five triangular
memberships functions for the error and other
five for the differential error. The name assigned to
the membership functions are the follow:

– eng. Big Negative Error.

– enb. Low Negative Error.

– ec. Zero Error.

– epg. Big Positive Error.

– epb. Low Positive Error.

The robot’s speed motion was controlled with
values from 0 to 1, which 0 is zero speed and 1 is
the maximum speed. Five triangular membership
functions were defined in this range.

On the Fig 6 is shown an example from the
right shoulder. Similarly to the input, each motion
angle has five output membership functions. The
name assigned to the membership functions are
the follow:

Table 4. First stable posture errors

Part Right ID
P-R

Error (%)
Left ID

P-R
Error (%)

shoulder
Yq1 − k1

17.3301 Yq9 − k9
12.9054

Zq2 − k2
7.4301 Zq10 − k10

53.0586

Xq3 − k3
5.9549 Xq11 − k11

19.4928

elbow Zq4 − k4
8.4112 Yq12 − k12

11.8060

hip
Yq5 − k5

22.4334 Yq13 − k13
14.4368

Zq6 − k6
19.2864 Zq14 − k14

42.8673

knee Zq8 − k8
8.3355 Yq16 − k16

18.6414

Fig. 9. Key points locations on human

– vc. Zero Speed.
– vb. Low Speed.
– vm. Medium Speed.
– va. High Speed.
– vmx. Maximum Speed.

The inference engine was defined with the rules
shown in the Table 3. The fuzzy rules were
designed to smoothly decrease the speed when
the joint approaches to the set point. These
behaviour is shown on the control surface in Fig. 8.

Finally, the crisp value that was sent to the
robot was estimated with Center of Gravity (CoG)
method. This defuzzification method is shown in
the Equation 13:

x =

n∑
i=1

µc̄(xi) · xi
n∑
i=1

µc̄(xi)
, (13)
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Fig. 10. 3-D Skeleton

Fig. 11. Robot’s final posture

where x is the crisp value, µc̄ is the membership
function and xi output variable.

3 Results

The tests were divided into two: stable posture
tests and unstable posture test. When the body’s
center of mass is located at the support base is
called as stable posture.

The human is able to perform this kind of posture
without loss the balance. If the body’s center of
mass is not located at the support base, then it
is an unstable posture. For this test, the unstable
posture was divided into free unstable posture and
intervened unstable posture.

When a person lifts the robot in order to avoid
the feet touch the ground is an intervened unstable
posture, if the robot’s feet touch the ground is a
free unstable posture. The errors were estimated
subtracting the final angle for each joint of the
human limbs and robot limbs. These angles are
shown in the Tables 1 and 2:

ERMA(n) =

∣∣∣∣kn − qn
1− |qn|

∣∣∣∣ , (14)

ERTP =
ERMA(1) + · · ·+ ERMA(14)

14
. (15)

The Equation 14 is the Relative Angle Error
ERMA(n) and the Equation 15 is the Total Position
Error ERTP . At the Equation 14, kn is the angle
from robot’s joints and qn is the angle from the
human’s joints. The Equation 15 is the average
of each Relative Angle Error ERMA(n) from the 14
key point.

On the fists test, the person performed an stable
posture. The person only extended his arms and
did not move the legs. The Table 4 contains the
errors from each limb’s angle, in this Table P-R is
refereed to Person-Robot.

In the Fig. 9, Fig. 10 and Fig. 11 are show
examples of the approximated location of human’s
key points, the skeleton created by the artificial
intelligence algorithm [2] and the final robot’s
posture, respectively.

The second test was a stable posture too. But in
this case, the person extended his arms completely
in order to perform a “T” posture, the legs remained
at the same position of the previous posture.

The Table 5 contains the errors from each
limb’s angle, in this Table P-R is refereed to
Person-Robot. On the third test, the person raised
one leg and extend the arms slightly and the
robot stayed on the ground because it was a free
unstable posture.
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The robot’s anti-fall safety system located at the
at the feet was activated automatically lowering the
legs to the ground in order to avoid a fall. The Table
6 contains the errors from each limb’s angle, in this
Table P-R is refereed to Person-Robot.

The fourth test was an intervened unstable
posture, hence a second person lifted the robot
in order prevent the activation of robot’s anti-fall
safety system.

The first person raised one leg, flexed one arm
and raised the same arm in order to locate the wrist
near to the chest. The Table 7 contains the errors
from each limb’s angle, in this Table P-R is refereed
to Person-Robot.

On the final test the fist person raised one leg
and both arms and the robot stayed lifted by the
other person in order to perform an intervened
unstable posture. The Table 8 contains the errors
from each limb’s angle, in this Table P-R is refereed
to Person-Robot.

Finally the Average Relative Errors for each test
was calculated and shown in the Table 9.

Only the Average Relative Errors of the arms
was used to compared with the results of the state
of the art, due the total error of the posture was not
included as a result on the referenced paper. Both
results are shown on the Table 10.

4 Conclusion and Future Work

With the detailed information of limbs motions
provided by the kinematic model was possible
to estimate the joint angles without complex
equations. These angles were used as control
system’s set points that controls the joint’s
motion speed.

The maximum and minimum joint’s angles from
human and robots are slightly different, due the
maximum angles that the robot can perform were
lower than the angles that a human can perform.

Even with this difference, the final posture errors
resulted only 1% different than the result obtained
in a similar work of the state of the art. The
method proposed on the state of art [20] used a
standard library to locate the human joints based
on the information of the RGB sensor and the
depth sensor.

Table 5. Second stable posture errors

Part Right ID
P-R

Error (%)
Left ID

P-R

Error (%)

shoulder
Yq1 − k1

15.3593 Yq9 − k9 3.6016

Zq2 − k2
13.1042 Zq10 − k10

16.9010

Xq3 − k3
4.2484 Xq11 − k11

1.9413

elbow Zq4 − k4
9.4681 Yq12 − k12

13.2249

hip
Yq5 − k5

32.2980 Yq13 − k13
19.3410

Zq6 − k6
33.6234 Zq14 − k14

26.9505

knee Zq8 − k8
4.5920 Yq16 − k16

16.5909

Table 6. Unstable posture errors

Part Right ID
P-R

Error (%)
Left ID

P-R

Error (%)

shoulder
Yq1 − k1

22.5545 Yq9 − k9
31.8723

Zq2 − k2
15.2686 Zq10 − k10

53.1763

Xq3 − k3
25.7007 Xq11 − k11

21.2021

elbow Zq4 − k4
17.3055 Yq12 − k12

63.7488

hip
Yq5 − k5

27.9923 Yq13 − k13
56.8126

Zq6 − k6
44.0163 Zq14 − k14

96.9256

knee Zq8 − k8
30.0295 Yq16 − k16

98.2249

Table 7. First intervened unstable posture errors

Part Right ID
P-R

Error (%)
Left ID

P-R

Error (%)

shoulder
Yq1 − k1

7.5838 Yq9 − k9
37.0683

Zq2 − k2
30.6896 Zq10 − k10

16.7383

Xq3 − k3
9.9927 Xq11 − k11

30.1306

elbow Zq4 − k4
24.8028 Yq12 − k12

6.7421

hip
Yq5 − k5

8.1788 Yq13 − k13
14.6641

Zq6 − k6
8.2292 Zq14 − k14

21.3018

knee Zq8 − k8
88.5699 Yq16 − k16

19.5520

The 3-D location of the joints were estimated
only with one plane image. This is the main
disadvantage of the method due the algorithm
cannot estimate the 3-D position of a joint if the
depth sensor cannot measure the complete body
of the person, for example, if the RGB sensor and
the depth sensor can only measure the left side
of the human body, the 3-D location of the joint
and the teleoperation cannot be performed due the
information of the missing parts cannot be inferred.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 1015–1025
doi: 10.13053/CyS-27-4-4554

Jacobo E. Cruz-Silva, J. Yaljá Montiel-Pérez, J. Humberto Sossa-Azuela1022

ISSN 2007-9737



Table 8. Second Intervened unstable posture errors

Part Right ID
P-R

Error (%)
Left ID

P-R

Error (%)

shoulder

Yq1 − k1
13.1688 Yq9 − k9

12.4269

Zq2 − k2
26.2602 Zq10 − k10

22.1812

Xq3 − k3
16.9042 Xq11 − k11

2.5673

elbow Zq4 − k4
12.7722 Yq12 − k12

10.7212

hip
Yq5 − k5

11.5340 Yq13 − k13
1.6981

Zq6 − k6
6.2620 Zq14 − k14

9.1534

knee Zq8 − k8
68.4082 Yq16 − k16

28.0653

Table 9. Relative Errors for Real Posture – NAO Robot

Test
Average Relative Errors

Person Robot (%)

Test 1 18.74

Test 2 15.08

Test 3 43.20

Test 4 23.16

Test 5 17.43

Table 10. Results of the state of the art

Test Arms average errors (%)

Method [20] 18

Proposed method 19

Additionally, the OpenNI library requires a
special illumination because the location of the
joints cannot be estimated if the RGB image does
not have a specific range of colors.

The proposed method in this paper, the 3-D
analysis of the person posture was made with the
information of 4 plain images from different points
of view. Hence, the 3-D location of the joints
are more reliable than the method where the 3-D
location is estimates using only one image.

Furthermore, the limitation which the person’s
joints must be located in front of 2 sensor was
eliminated. The artificial intelligence algorithm
[2] provided the joints location no matter where
the person was located on the range of the 4
cameras. The measurements were not affected by
the lighting changes due the artificial intelligence

algorithm was trained with different kind of images,
those images included bright and dark images.
The robot’s final posture from Test 3 was affected
by the anti-fall safety system programmed by the
manufacturer. This can be seen in the error values
from the hip and knee.

Thank of the human intervention, the robot
could perform a complex posture avoiding the
anti-fall safety system activation getting better
errors values of the hip and knee. The human body
can keep the balance naturally and unconsciously,
but the robot cannot do it. That it is the main
reason why the manufacturer included the anti-fall
safety system.

The fuzzy control algorithm had a favourable
performance moving smoothly the robot’s limbs to
the set-points. The joints speed was decreased
when the angle measured by the joint sensor got
close to the set-point.

The fuzzy membership functions were correctly
set due the maximum operation range and the
speed configuration of the NAO limbs were knew
that are included in the technical documentation of
the manufacturer.

The future research will be focused on test
and develop new deep learning models and fuzzy
control algorithms to improve the measurement of
human limbs and motion control, also the hands
and finger motion will be included on the future 3-D
models. The main application to focus will be the
medicine and mining.

For medicine, the application to focus will be
the surgeon robotics. Nowadays, the surgeon
robots are teleoperated through haptic devices and
specialist surgeons require many training hours to
properly operate it. The motion capture through
computer vision to teleoperate a robot will reduce
the training time, due the surgeons will need only
move their hands as they normally do at surgeon
procedure, the haptic devices are not going to be
required anymore.

For mining, the research will be focus to
eliminate the risk to get injured or dead at work
or explore a mine. The labor will teleoperate a
robot from a safe distance, the robot in the mine will
mimic the labor’s movements. If the mine collapse,
explode or has a water leak, the human life will be
safe and the only lost will be the robot.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 1015–1025
doi: 10.13053/CyS-27-4-4554

3-D Interface for Humanoid Robot Operation 1023

ISSN 2007-9737



References

1. Alquisiris-Quecha, O., Maldonado-Reyes,
A. E., Morales, E. F., Sucar, L. E. (2018).
Teleoperation and control of a humanoid robot
NAO through body gestures. Seventeenth
Mexican International Conference on Artificial
Intelligence, IEEE, pp. 88–94. DOI: 10.1109/
micai46078.2018.00022.

2. Cruz-Silva, J. E., Montiel-Pérez,
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