
Comparative Study for Text Chunking Using Deep Learning:
Case of Modern Standard Arabic

Nabil Khoufi1,*, Chafik Aloulou2

1 University of Sfax, ANLP Research Group, Sfax,
Tunisia

2 University of Sfax, MIRACL Lab, Sfax,
Tunisia

nabil.khoufi@outlook.com, chafik.aloulou@fsegs.usf.tne

Abstract. The task of chunking involves dividing a
sentence into smaller phrases by identifying a limited
amount of syntactic information. This process involves
grouping together consecutive words to form phrases,
also known as shallow parsing. Chunking does not
provide information on the relationships between these
phrases. This paper describes our approach to building
chunking models for Arabic text using deep learning
techniques. We evaluated several training models and
compared their results using a rich data set. The results
we obtained were highly encouraging when compared to
previous related studies.

Keywords. NLP, Arabic language, shallow parsing,
chunking, deep learning, GRU, LSTM, BILSTM, ATB,
Penn Arabic treebank.

1 Introduction

Text parsing is a critical aspect of natural language
processing (NLP) and has received significant
attention since the early days of NLP. The
information generated by parsing is valuable for
various NLP applications, such as automatic
summarization, author profiling and named entity
recognition [1]. Parsing can either be shallow or
deep. Shallow parsing, also known as chunking,
focuses on identifying the boundaries of larger
constituents or phrases, while deep parsing goes
further by identifying both the constituents and their
internal structure. The two types of parsing require
different amounts of information and produce
different results.

The chunking task can be approached through
two main methods: the grammar-based approach

and the machine learning approach [2] The former
uses a set of grammatical rules, while the latter
employs machine learning techniques and relies
on annotated data. This paper details our
experiments on chunking Arabic text using various
deep learning architectures. The structure of this
paper is as follows:

In Section 2, we outline the fundamental
concepts of the chunking task. Section 3 discusses
the syntactic ambiguities in Arabic. Section 4
reviews prior research on chunking in Arabic. In
Section 5, we describe our deep learning models
and approach to chunking Arabic text. Section 6
presents the evaluation process and results
obtained. Finally, in Section 7, we present our
conclusions and suggest avenues for
future research.

2 Chunking Task Background

In 1991, Steven Abney proposed an approach to
parsing that involves identifying groups of words
that are syntactically correlated [3]. He argued that
when we read, we do so in chunks, and therefore
chunking involves dividing a sentence into smaller
parts that are syntactically related. Chunking can
be seen as an intermediate step towards full
parsing as it provides part of the complete syntactic
structure of a sentence.

Initially, the chunking task focused on
recognizing noun phrases (NPs), which is known
as noun phrase chunking. Lance Ramshaw and
Mitch Marcus tackled NP-chunking using a

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

ISSN 2007-9737

machine learning method [4]. They recognized
various chunks but categorized every chunk that
was not a NP as a VP chunk.

This work inspired many other studies that have
investigated the application of learning methods to
noun phrase chunking. Later, researchers focused
on other constituents of sentences such as VP, PP,
ADJP, or ADVP to provide a more comprehensive
description of the sentence. The following example
shows a chunked Arabic sentence [5].

3 Sources of Ambiguity in Arabic
Language

Arabic, like all Semitic languages, has a complex
morphology and a vast vocabulary, making it more
challenging to parse than other natural languages
[6]. In addition to common linguistic features like
coordination, anaphora, and ellipsis found in Latin-
based languages, Arabic has unique
characteristics that pose difficulties in the parsing
process [7].

3.1 Unvocalisation

The lack of vowels in written words, known as
unvocalization, leads to grammatical ambiguity.
Words without vowels in their written
representation can't effectively differentiate
between different grammatical interpretations and
meanings, as a single word can have multiple
grammatical variations.

As a result, unvocalized text is more ambiguous
than text with vowels [8, 9]. According to Debili's
statistics (Debili et al., 2002), 74% of Arabic words
have more than one vocalization option.

The ambiguity rate for grammatical
interpretation is higher in unvocalized words, with
an average rate of 8.7, compared to an average
rate of 5.6 for vocalized words. Table 1 provides an
example of a single unvocalized word with its
various vocalized forms.

3.2 Agglutination

In Arabic, there is a distinct occurrence known as
agglutination, where words such as articles,
prepositions, pronouns, etc. can be attached to

adjectives, nouns, verbs, and particles that they
are associated with.

This leads to complex syntax, resulting in
unusual sentence structures. In fact, an
agglutinative form can even make up an entire
sentence, as demonstrated in table 2. In such
instances, specific processing is necessary to
determine the correct syntactic structure of
the sentence.

3.3 Words Order

The arrangement of words in Arabic is flexible.
Typically, the word that is intended to be
emphasized is placed at the beginning of the
sentence and the word with the most meaning or
tone is placed at the end. This freedom in word
order results in artificial syntactic confusion and
makes constructing grammar more difficult.

To account for all possible correct word
arrangements in a sentence, grammar rules must
include all combinations. Table 3 demonstrates the
impact of changing the order of words. The order
of words in this sentence can be rearranged,
resulting in the two structures shown in Table 4
and 5.

3.4 Recursive Structure

The frequent use of recursive structures is another
characteristic of Arabic texts. The presence of
nested structures is common in Arabic as well as
in other natural languages, but it occurs more
frequently in Arabic due to some propositions
being able to play a role within other propositions.
For example:

الشرطة هي التي قبضت على المجرم الذي ضل هارباً
ة طويلةمد .

(The police have arrested the criminal who
remained on the run for a long time).

Fig. 1. An instance of chunking in modern
standard Arabic

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Nabil Khoufi, Chafik Aloulou518

ISSN 2007-9737

It is a nominal sentence, while the proposition
 :is also a nominal sentence (خبر)

 هي التي قبضت على المجرم الذي ضل هارباً مدة طويلة

(Have arrested the criminal who remained on
the run for a long time).

In the aforementioned example, it is even
challenging to segment the text into sentences
because of the numerous propositions that are
interdependent and do not belong to the same
syntactic level. This lack of independence leads to
Arabic sentences being of unlimited length.

4 Related Works

Compared to the research conducted in English
and other languages, there is a scarcity of studies

on the Arabic chunking problem. Only four works
can be found that specifically address the Arabic
chunking task. In 2004, Mona Diab and colleagues
[11, 12] carried out tokenization, POS tagging, and
used an SVM-based method for Arabic
text chunking.

They utilized an existing SVM tool [13]. The
features used in their system were words and POS
annotations, along with a context window of -2/+2.
The system was evaluated on 400 sentences and
produced a chunking performance of 92.06%
precision, 92.09% recall, and 92.08 F-measure.
This research was the first of its kind. Diab later
used the same SVM tool and trained their model
using the Arabic Treebank with a modified POS tag
set [12].

They reported an F-measure chunking
performance of 96.33%. Mohammed and Omar

Table 1. An illustration of ambiguity due to the unvocalization phenomenon

Unvocalized Word Vocalized Forms Buckwalter Transliteration Translation

 فهم

 fahima He understood فَهِمَ
مَ fah~ama He explained فَهَّ
 fuhima It has been understood فهُِمَ
 fahomN Comprehension فَهْمٌ
 fahumo Then them فَهُمْ
 faham~a Then started فَهَمَّ
… … …

Table 2. A sample of a sentence in an agglutinative form (one word)

Sentence Buckwalter transliteration Gloss

 .wastaqbalahum (Then he welcomed them) واستقبلهم

Table 3. Arabic sentence, order 1

Arabic sentence ذهب الولد بعلملاإلى

English translation to the stadium the boy went

Form complement subject verb

Table 4. Arabic sentence, order 2

Arabic sentence الولد ذهب بعلملاإلى

English translation to the stadium went the boy

Form complement verb subject

Table 5. Arabic sentence, order 3

Arabic sentence بعلملاإلى ذهب .الولد

English translation the boy went to the stadium

Form subject verb complement

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Comparative Study for Text Chunking Using Deep Learning: Case of Modern Standard Arabic 519

ISSN 2007-9737

[14] describe the development of an Arabic shallow
parser based on a rule-based approach.

The chunking which constitutes the main
contribution are achieved on two successive
stages that include grouped sequences of adjacent
words based on linguistic properties to identify
each of NPs, VPs and PPs. Since the aim of the
research is to generate results at two levels, the
final results adopted were based on the second
level results.

Tested on only 70 sentences, their system
achieved F-measure of 97%. Ben-Fraj and

Kessentini [15] proposed an approach for chunking
Arabic texts based on a combinatorial
classification process.

It is a modular chunker that identifies the chunk
heads using a combinatorial binary classification
before recognizing their types based on the parts-
of-speech (POS) of the chunk heads,
already identified.

For the experimentation, the authors used 226
sentences as training data. They obtained 80.46%
accuracy for the full chunking process.

Table 6. Comparative summary of related works

Works Approach Training Data Testing data Results

[12] Machine learning-Based 18 970 sentences 2337 sentences F-measure 91.44%

[14] Grammar-Based - 70 sentences F-measure 97%

[15] Machine learning-Based 2300 words 283 sentences Accuracy 80.46%

[16] Machine learning-Based 10 100 sentences 2524 sentences

Accuracy 96.54%
F-measure 76,23%

Recall 73,86%
Precision 81,57%

Fig. 2. Proposed method architecture

Table 7. Features list

Feature Description

w[t] the word being proceeded

w[t+1] the word on right vicinity at position t+1

w[t+2] the word on right vicinity at position t+2

pos[t] the POS annotation of w[t]

pos[t+1] the POS annotation of w[t+1]

pos[t+2] the POS annotation of w[t+2]

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Nabil Khoufi, Chafik Aloulou520

ISSN 2007-9737

Khoufi et al. developed a machine-learning
based model for Arabic text chunking [16]. They
utilized CRFs (Conditional Random Fields) for
training the model.

The training data was derived from the PATB
syntactic trees (80% of the ATB) and included
words and their part of speech annotations as
features, with a context window of -2/+2 words
centered around the word being processed.

The model also considered bigrams and
trigrams of words and POS annotations.

The model was tested on 20% of the PATB
corpus, representing 2524 sentences, and
achieved an accuracy of 96.54%.

A summary of their study of Arabic chunkers is
presented in Table 6.

5 Proposed Method

This section presents the design of our
proposed method. Our approach is based on deep
learning technology for chunking Arabic text, as
opposed to a rule-based method.

This is because constructing a grammar that
encompasses all the exceptional and specific
syntactic structures in Arabic is highly challenging,
if not impossible. Our method involves using an
annotated corpus, a set of features, and a model,
which will be discussed in the subsequent section.

Table 8. An instance of an annotated sentence based on the IOB notation model

Sentence . 2016 صفاقس عاصمة الثقافة العربية

Transliteration . 2016 AlErbyp AlvqAfp EASmp SfAqs

Traduction . 2016 Arab Culture Capital Sfax

Annotation IOB O I-NP I-NP I-NP B-NP B-NP

Fig. 3. A segment of the training corpus in its original XML tree format

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Comparative Study for Text Chunking Using Deep Learning: Case of Modern Standard Arabic 521

ISSN 2007-9737

Figure 2 illustrates the design of our approach,
where a portion of the annotated corpus (80%)
undergoes pre-processing using features, the
Word2Vec model, and the IOB notation scheme.

This generates a model that is used to analyze
sentences. The model's performance is then
evaluated using the remaining portion of the
annotated corpus (20%) through cross-validation.
Detailed information regarding our method can be
found in subsequent sub-sections.

5.1 Our Features

The selection of features is crucial in machine-
learning algorithms as it has a significant impact on
the accuracy of labeling. Features determine what
information is extracted from the annotated corpus
during the training phase. In this study, we chose
to use the word itself (W) and its Part-of-Speech
(POS) annotation as our features.

These features capture the characteristics of
the word at position t by utilizing information from
the surrounding words. The features utilized for the
training phase are shown in Table 7.

5.2 Used Tag Set

For our experiment, we employ the tag set of the
PATB, which consists of 23 tags: S, NP, VP, SQ,

PP, SBAR, SBARQ, NX, PRN, PRT, QP, ADJP,
ADVP, FRAG, WHNP, WHPP, WHADJP,
WHADVP, CONJP, INTJ, NAC, UCP, X.

In addition to these tags, we use the IOB
notation model, where each word is tagged with a
chunk label and one of three additional tags:

− B for the first word of a chunk,

− I for a non-initial word in a chunk,

− and O for a word outside of any chunk.

This increases the number of tags in the tag set
to 46, as each tag in the tag set becomes either an
I or B tag. For example, NP can be represented as
two chunk types, I-NP or B-NP. Table 8 provides
an example of an Arabic sentence tagged using
the IOB scheme, with the English Translation
shown in the right-to-left direction.

5.3 Training Corpus

The Penn Arabic Treebank was established by the
Linguistic Data Consortium (LDC) at the University
of Pennsylvania [17]. It is composed of data
obtained from standard and modern Arabic
linguistic sources, consisting of 402,291 tokens
and 12,624 sentences.

The texts in the corpus do not contain any
vowels, as is typical in most written Arabic texts. In
our experiments, we used version 3.2 of this
corpus. In order to perform the training phase, the
training corpus must be pre-processed to
incorporate the IOB notation scheme and the
selected features along with their context window.

This pre-processing step transforms the PATB
corpus from its original tree format into a vector
format. Figure 3 displays the original format of the
training corpus.

5.4 Training Experiments

For the training stage, we utilize the Word2Vec
model for constructing word embeddings.
Word2Vec is a widely used method for building
word embeddings and was first introduced by [18].
There are two variations of the Word2Vec model
for learning word embeddings:

The Skip-gram and CBOW (Continuous Bag of
Words) models. Each of these models consists of
three layers: an input layer, a hidden layer, and an

Fig. 4. Evaluation results comparison

Fig. 5. Accuracy results

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Nabil Khoufi, Chafik Aloulou522

ISSN 2007-9737

output layer, with the output layer consisting of
neurons with a SoftMax activation function.

− The CBOW architecture enables prediction of
a word based on its context, using a word
window to the left and right. This model
assumes that the order of the context words
has no effect on the projection, and the
projection layer is shared among all words.
Learning word embeddings with the CBOW
architecture involves predicting a word based
on its context, by calculating the vector
obtained by summing the embeddings of the
context words, and then applying a log-linear
classifier to predict the target word.

− The Skip-gram architecture is also a three-
layer log-linear neural network. Unlike the
CBOW model, it allows for predicting a context
window given the word at the center of the
context. The central word serves as the input
to the network, and the words in the context
form the output. The goal is to predict, for a
given word, its context, so that the embedding
of any word is close to the embeddings of
words in the same context.

In this study, we utilized the CBOW architecture
for word embedding construction as it is a widely
used method in NLP and has produced positive
outcomes in previous NLP studies such as [19].
Today, Recurrent Neural Networks (RNNs) are the
most commonly used systems in various machine
learning tasks.

They are frequently utilized in computer vision
(such as image classification, object detection,
segmentation, etc.) and natural language
processing (such as automatic translation, voice
recognition, language models, etc.). In our Arabic
chunking task, we experiment with three different
RNN architectures (LSTM, BILSTM, GRU), which
we present below, to compare their performance.

5.4.1 LSTM

Long Short-Term Memory (LSTM) is a deep
learning-based RNN architecture that has
feedback connections, unlike regular feedforward
neural networks. LSTM can handle not just
individual data points (such as images), but also
sequential data (such as speech or video) [20].

LSTMs are designed to address the vanishing
gradient problem that occurs in traditional RNNs,
which can make it difficult for the network to
capture long-term dependencies in sequential
data. In an LSTM, the network has a hidden state
that is updated at each time step.

The update is controlled by three gates: the
input gate, the forget gate, and the output gate.
The input gate determines how much of the new
input should be added to the current hidden state,
the forget gate determines how much of the
previous hidden state should be forgotten, and the
output gate determines how much of the new
hidden state should be output.

Applications of LSTM include unsegmented
handwriting recognition [21], speech recognition
[22], and network traffic anomaly detection or
intrusion detection systems (IDSs).

5.4.2 BILSTM

Bidirectional Long Short-Term Memory (BILSTM)
is a type of recurrent neural network architecture.
In a traditional LSTM, the input sequence is
processed in one direction, from the beginning to
the end. However, in a BILSTM, the input
sequence is processed in two directions
simultaneously: one forward and one backward.

The BILSTM consists of two LSTM layers, one
processing the input sequence in the forward
direction and the other in the backward direction.
The outputs of both the layers are concatenated at
each time step to form the final output of
the BILSTM.

Fig. 6. Results comparation between our DL models and
CRF model

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Comparative Study for Text Chunking Using Deep Learning: Case of Modern Standard Arabic 523

ISSN 2007-9737

This allows the model to capture both the past
and the future context of each input token, which
can be useful in many sequence modelling tasks.
The BILSTM has been widely used in various
natural language processing tasks such as part-of-
speech tagging, named entity recognition,
sentiment analysis, and machine translation [23],
among others. It has been shown to outperform
traditional LSTM models in many of these tasks.

5.4.3 GRU

Gated Recurrent Units (GRUs) are gating
mechanisms in RNNs, first introduced in 2014 by
Kyunghyun Cho et al. [24]. GRUs are similar to
LSTMs, but have a simpler structure with fewer
parameters, making them faster to train and less
prone to overfitting [25]. In a GRU, the network has
a hidden state that is updated at each time step.

The update is controlled by two gates: the reset
gate and the update gate.

The reset gate determines how much of the
previous hidden state should be forgotten, while
the update gate determines how much of the new
input should be added to the current hidden state.

The update gate and reset gate are both
sigmoid functions that take as input the current
input and the previous hidden state.

The output of these gates is then used to
update the hidden state. Unlike LSTMs, which
have separate memory cells, GRUs use a single
hidden state to store information about the
input sequence.

GRUs have shown comparable performance to
LSTMs in tasks such as polyphonic music

modelling, speech signal modelling, and natural
language processing [26], and even better
performance on smaller and less frequent
datasets [27].

6 Evaluation Results and Discussion

In order to evaluate the models, we divided the
PATB corpus into two parts, with 80% consisting of
10,100 sentences for training and 20% consisting
of 2,524 sentences for testing.

The unvocalized version of the Treebank was
used for all experiments and all the data was
sourced from the parsed trees in the Treebank.

By using the unvocalized version of the
Treebank, we ensure that our results are
consistent and comparable with other studies that
use the same corpus.

We measured the performance of the model’s
using precision, recall, F-measure and accuracy.

These metrics allows us to have a
comprehensive view of the performance of the
models and help us in choosing the best model for
our Arabic chunking task. This evaluation method
allows us to assess the ability of the models to
correctly predict the chunk tags for the
sentence chunks.

The results of these metrics are displayed in
figure 4. When comparing the performance of the
LSTM, GRU, and BILSTM models based on their
precision, recall, and F-measure metrics, the
results show that the BILSTM model achieved the
highest precision (86.71%), recall (84.54%), and F-
measure (85.59%).

This represents an enhancement of 6,37%,
5,94% and 6,13% respectively over the LSTM
model's precision (80.34%), recall (78.60%), and
F-measure (79.46%).

Similarly, the GRU model achieved an
enhancement of 0.43%, 0.73%, and 0.63%
respectively over the LSTM model's precision,
recall, and F-measure by reaching a precision of
80,69%, a recall of 79,33% and an F-measure
of 80%.

In addition, it's important to note that the
BILSTM model achieved the highest performance
in all three metrics, suggesting that it may be the
most effective model overall.

Fig. 7. Accuracy comparison between our DL models
and our baseline

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Nabil Khoufi, Chafik Aloulou524

ISSN 2007-9737

This could be explained by the ability of BILSTM
model to capture both past and future context
when processing sequential data. BILSTM model
results are confirmed by the accuracy metric.

Indeed, BILSTM model reached an accuracy of
97.90% slightly exceeding LSTM and GRU
models, respectively 97.21% and 97.46%.
Accuracy values comparison are displayed in the
following figure 5. It also interesting to compare
obtained results with previous work which we
consider as our baseline.

We have developed a machine learning model
for chunking Arabic using Conditional Random
Fields (CRF) (Khoufi et al. 2015). We used the
same data for training and testing the CRF model.
Results comparisons are illustrated in the following
Figure 6.

As shown in Figure 5, the LSTM, GRU, and
BILSTM models outperformed the CRF model,
which achieved an accuracy of 81.57%, a recall of
73.86%, and an F-measure of 76.23%. Indeed,
among the DL-based models, BILSTM achieved
the best results and significantly improved our
baseline with a 5.14% increase in precision, a
10.68% increase in recall, and a 9.36% increase in
F-measure.

Even the accuracy measurement confirms the
superiority of the BILSTM model (97,90%) over the
CRF model (96,54%), as demonstrated in Figure 7
below. For a detailed idea about the performance

of our model, we calculated the precision, the recall
and the f-measure for the major chunking tags.

These results are exposed in the following
Table 9. In relation to the outcomes displayed in
Table 9, our model has successfully identified
significant portions with acceptable accuracy.

We want to emphasize that the model has
achieved a commendable overall performance in
identifying chunks, which validates the obtained
results. As shown in Table 9, the CONJP category
is recognized with the highest precision of 98.87%,
recall of 99.47%, and f-measure of 98.85%.

This is reasonable due to the limited occurrence
of conjunctions in Arabic. The model also performs
well in recognizing PRTs, with a precision of
95.82%, recall of 97.47%, and f-measure of
96.64%. PRTs are typically associated with
CONJP, which facilitates their identification.

However, we have observed some difficulties in
detecting PP and ADVP chunks, with f-measures
of 65.87% and 56.61%, respectively. PPs consist
of a preposition followed by an object of
preposition, such as NP, and this relationship with
other chunks may make it challenging to determine
their boundaries.

We attempted to compare our findings with
those of other studies, but encountered difficulties
in performing an accurate analysis because they
used different metrics and datasets.

However, our accuracy value was higher than
that of (Ben Fraj et al. 2012), with a 17% increase.

Table 9. Chunking performance of BILSTM model calculated on major chunking tags

Tags Precision Recall F-measure

NP 93,32% 95,55% 94,42%

VP 93,82% 94,11% 93,96%

PP 65,80% 65,94% 65,87%

ADJP 91,25% 86,83% 88,99%

ADVP 55,84% 57,41% 56,61%

CONJP 98,87% 98,83% 98,85%

PRT 95,82% 97,47% 96,64%

PRN 52,22% 48,38% 50,23%

O 96,67% 97,97% 97,32%

S 92,88% 96,87% 94,83%

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Comparative Study for Text Chunking Using Deep Learning: Case of Modern Standard Arabic 525

ISSN 2007-9737

Also, the authors used only 2300 words as training
data which is not sufficient to obtain a viable model.

We found that the testing data used by
(Mohamed et al. 2011) was insufficient to provide
an accurate assessment of system performance,
as they only tested on 70 sentences compared to
our model's 2,524 sentences. Despite this, (Diab et
al. 2007) achieved a higher F-measure of 96.33%
using a testing set of 2337 sentences compared to
our F-Measure.

In summary of this study's results, it can be said
that models based on deep learning techniques
achieve good results in processing the chunking
task of Arabic texts. These models, especially the
BILSTM model, improved our results compared to
the classical models that used traditional machine
learning algorithms, such as the CRF model we
used for our baseline.

7 Conclusion

In this study, we presented our approach for
chunking Arabic texts through the use of deep
learning models. The models we built are LSTM,
BILSTM, and GRU, and they are constructed with
morphosyntactic features and the IOB
notation system.

The training data for the models was obtained
from the PATB corpus. Our models were trained
on 80% of the PATB and tested on the remaining
20%. Evaluation results shows the supremacy of
BILSTM model for this task with an f-measure of
85.59% and an accuracy of 97.90%.

References

1. Khoufi, N. (2017). Une approche hybride pour
l'analyse syntaxique de la langue arabe.
Doctoral dissertation, Université de
Sfax Tunisie.

2. Khoufi, N., Aloulou, C., Belguith, L. H.
(2016). Toward hybrid method for parsing
modern standard Arabic. 2016 17th
IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed
Computing, SNPD, IEEE, pp. 451–456. DOI:
10.1109/SNPD. 2016.7515939.

3. Abney, S. P. (1991). Parsing by chunks.
Principle-based parsing, Springer, Dordrecht,
Vol. 44, pp. 257–278. DOI: 10.1007/978-94-
011-3474-3_10.

4. Ramshaw, L. A., Marcus, M. P. (1999). Text
chunking using transformation-based learning.
In: Armstrong, S., Church, K., Isabelle, P.,
Manzi, S., Tzoukermann, E., Yarowsky, D.
(eds) Natural Language Processing Using
Very Large Corpora, Text, Speech and
Language Technology, Vol 11. DOI: 10.1007/
978-94-017-2390-9_10.

5. Khoufi, N., Aloulou, C., Belguith, L. H.
(2014). Chunking Arabic texts using
conditional random fields. 2014 IEEE/ACS
11th International Conference on Computer
Systems and Applications, AICCSA, IEEE, pp.
428–432 DOI: 10.1109/AICCSA.2014.
7073230.

6. Khoufi, N., Boudokhane, M. (2013).
Statistical-based system for morphological
annotation of Arabic texts. Proceedings of the
Student Research Workshop associated with
RANLP 2013, pp. 100–106.

7. Zitouni, I. (2014). Natural language
processing of Semitic languages, Berlin:
Springer. pp. 299–334.

8. Khoufi, N., Aloulou, C., Belguith, L. H.
(2016). Parsing Arabic using induced
probabilistic context free grammar.
International Journal of Speech Technology,
Vol. 19, pp. 313–323. DOI: 10.1007/s10772-
015-9300-x.

9. Khoufi, N., Aloulou, C., Belguith, L. H.
(2015). Arabic probabilistic context free
grammar induction from a treebank. Research
in Computing Science, Vol. 90, pp. 77–86.

10. Debili, F., Achour, H., Souissi, E. (2002). La
langue arabe Et L’ordinateur: de L’étiquetage
grammatical à la Voyellation automatique.
Correspondances, Vol. 71, pp. 10–28.

11. Diab, M., Hacioglu, K., Jurafsky, D. (2004).
Automatic tagging of Arabic text: From raw text
to base phrase chunks. Proceedings of HLT-
NAACL 2004: Short papers, pp. 149–152.

12. Diab, M. (2007). Improved Arabic base phrase
chunking with a new enriched POS tag set.
Proceedings of the 2007 Workshop on

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Nabil Khoufi, Chafik Aloulou526

ISSN 2007-9737

Computational Approaches to Semitic
Languages: Common Issues and Resources,
pp. 89–96.

13. Allwein, E. L., Schapire, R. E., Singer, Y.
(2000). Reducing multiclass to binary: A
unifying approach for margin classifiers.
Journal of Machine Learning Research, Vol. 1,
pp. 113–141.

14. Mohammed, M. A., Omar, N. (2011). Rule
based shallow parser for Arabic language.
Journal of Computer Science, Vol. 7, No. 10,
pp. 1505–1514. DOI: 10.3844/jcssp.2011.
1505.1514.

15. Allwein, E. L., Schapire, R. E., Singer, Y.
(2000). Reducing multiclass to binary: A
unifying approach for margin classifiers.
Journal of machine learning research, Vol. 1,
pp. 113–141.

16. Fraj, F. B., Kessentini, M. (2012).
Combinatorial classification for chunking
Arabic texts. International Journal of Artificial
Intelligence & Applications, Vol. 3, No. 5, pp.
63–71. DOI: 10.5121/ijaia.2012.3506.

17. Khoufi, N., Aloulou, C., Hadrich-Belguith, L.
(2015). Enhancing CRF model with N-grams
for Arabic texts chunking. The 25th
International Business Information
Management Conference, IBIMA 2015, pp.
2877–2884.

18. Maamouri, M., Bies, A., Buckwalter, T.,
Mekki, W. (2004). The Penn Arabic treebank:
Building a large-scale annotated Arabic
corpus. NEMLAR conference on Arabic
language resources and tools, Vol. 27, pp.
466–467.

19. Mikolov, T., Chen, K., Corrado, G., Dean, J.
(2013). Efficient estimation of word
representations in vector space. DOI: 10.485
50/arXiv.13 01.3781.

20. Barhoumi, A., Camelin, N., Aloulou, C.,
Estève, Y., Belguith, L. H. (2019). An
empirical evaluation of Arabic-specific
embeddings for sentiment analysis.
International Conference on Arabic Language
Processing, Springer, Cham. pp. 34–48.

21. Sahidullah, M., Patino, J., Cornell, S., Yin,
R., Sivasankaran, S., Bredin, H.,

Korshunov, P., Brutti, A., Serizel, R.,
Vincent, E., Evans, N., Marcel, S., Squartini,
S., Barras, C. (2019). The speed submission
to DIHARD II: Contributions & lessons learned.
arXiv preprint arXiv:1911.02388. DOI: 10.485
50/arXiv.1911.02388.

22. Graves, A., Liwicki, M., Fernandez, S.,
Bertolami, R., Bunke, H., Schmidhuber, J.
(2009). A novel connectionist system for
improved unconstrained handwriting
recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 3,
No. 5.

23. Sak, H., Senior, A. W., Beaufays, F. (2014).
Long short-term memory recurrent neural
network architectures for large scale acoustic
modeling. INTERSPEECH 2014, pp. 338–348.

24. Sundermeyer, M., Alkhouli, T., Wuebker, J.,
Ney, H. (2014). Translation modeling with
bidirectional recurrent neural networks.
Proceedings of the 2014 conference on
empirical methods in natural language
processing, EMNLP, pp. 14–25.

25. Cho, K., van-Merriënboer, B., Gulcehre, C.,
Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y. (2014). Learning phrase
representations using RNN encoder-decoder
for statistical machine translation. DOI:
10.48550/arXiv.1406.1078.

26. Gers, F. A., Schmidhuber, J., Cummins, F.
(2000). Learning to forget: Continual prediction
with LSTM. Neural computation, Vol. 12, No.
10, pp. 2451–2471. DOI: 10.1162/0899766
00300015015.

27. Ravanelli, M., Brakel, P., Omologo, M.,
Bengio, Y. (2018). Light gated recurrent units
for speech recognition. IEEE Transactions on
Emerging Topics in Computational
Intelligence, Vol. 2, No. 2, pp. 92–102. DOI:
10.1109/TETCI.2017.2762739.

28. Gruber, N., Jockisch, A. (2020). Are GRU
cells more specific and LSTM cells more
sensitive in motive classification of text?
Frontiers in artificial intelligence, Vol. 3, No. 40.
DOI: 10.3389/frai.2020.00040.

Article received on 27/03/2023; accepted on 22/04/2024.
*Corresponding author is Nabil Khoufi.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Comparative Study for Text Chunking Using Deep Learning: Case of Modern Standard Arabic 527

ISSN 2007-9737

