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México

{osoriomauri, jlcarballido7}@gmail.com

Abstract. We introduce a new 4-valued logic that we call
M4M4. We show that M4M4 is conservative extension
of the 3-valued logic G′

3, which serves as the formalism
to define the p-stable semantics of logic programming.
M4M4 possesses two negation operators. The weak
negation operator that corresponds to the negation
operator of G′

3. In addition, M4M4 also includes
a strong negation operator that is the new feature
of this logic with respect to G′

3. It is well known
that allowing these two negations is very useful in
knowledge representation. M4M4 can be used as the
formalism to define the p-stable semantics as well as
the stable semantics. We also present other suitable
properties of M4M4.

Keywords. Knowledge representation, stable seman-
tics, logic programming.

1 Introduction

Deductive databases are an important aspect
in the convergence of artificial intelligence and
databases [6].

Currently it is necessary to have complex
reasoning tasks to deal with great amounts of data.
Logic based systems are an option to provide such
complex reasoning capabilities.

Specifically, Deductive Database Systems are
forms of database management systems whose
storage structures are designed around a logical
model of data and at the same time, inference
modules for the Deductive Database Systems are
designed on logic programming systems.

The Deductive Database Systems are based
on deductive database theories that always have
associated a semantics. In general, a deductive
database theory may give different answers to a
query depending on the semantics used.

Two of the semantics that a database theory can
be based on, are the stable logic programming se-
mantics (stable semantics) as well as the p-stable
logic programing semantics (p-stable semantics).

The mathematical formalism to support those
semantics is the theory of intermediate and
paraconsistent logics; thus, intuitionism helps to
express the stable semantics and the logic G′

3

helps to express the p-stable semantics.

In this work we study a new 4-valued logic called
M4M4. M4M4 has a strong negation besides
having the native negation operator. We prove that
M4M4 is a conservative extension of G′

3.

Furthermore, M4M4 can be used as the
formalism to extend the p-stable semantics to a
version that includes strong negation in a similar
way as the stable semantics has been extended to
include such a negation [4].

Our paper is structured as follows. In section
2, we summarize some definitions and logics
necessary to understand this paper. In section
3, we introduce the new M4M4 logic that is a
conservative extension of logic G′

3.
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This new logic satisfies a substitution theorem,
and can express the stable semantics as well as
the p-stable semantics. Finally, in section 4, we
present some conclusions.

2 Background

In this section we summarize some basic concepts
and definitions necessary to understand this paper.

2.1 Logics

We present several logics that are useful to define
and study the new M4M4 logic. We assume that
the reader has some familiarity with basic logic
such as chapter one in [3].

2.1.1 Hilbert Style Proof Systems

One way of defining a logic is by means of a set of
axioms together with the inference rule of Modus
Ponens. As examples we offer two important logics
defined in terms of axioms, which are related to the
logics we study later. Cω logic [1] is defined by the
following set of axioms:

1. α→ (β → α) ,
2. (α→ (β → γ)) → ((α→ β) → (α→ γ)),
3. α ∧ β → α,
4. α ∧ β → β,
5. α→ (β → (α ∧ β)),
6. α→ (α ∨ β),
7. β → (α ∨ β),
8. (α→ γ) → ((β → γ) → (α ∨ β → γ)),
9. α ∨ ¬α,
10. ¬¬α→ α.

The first eight axioms of the list define positive
logic. Note that these axioms somewhat constraint
the meaning of the →, ∧ and ∨ connectives to
match our usual intuition.

It is a well known result that in any logic satisfying
axioms Pos1 and Pos2, and with modus ponens as
its unique inference rule, the Deduction Theorem
holds [3]. We present a Hilbert-style axiomatization
of G′

3 that is a slight (equivalent) variant of the one
presented in [5].

Table 1. Truth tables: connectives in G3 and G′
3

x ¬G3x ¬G′
3
x

0 2 2

1 0 2

2 0 0

→ 0 1 2

0 2 2 2

1 0 2 2

2 0 1 2

We present this logic, since it will be extended
to a new logic called M4M4, which possesses
a strong negation and is the main contribution of
this work.
M4M4 logic has five primitive logical connec-

tives, namely GPC := →,∧,∨,¬,∼. M4M4-
formulas are formulas built from these connectives
in the standard form. We also have two defined
connectives:

– ∽ α := α→ (¬α ∧ ¬¬α),
– α↔ β := (α→ β) ∧ (β → α) .

GLukG logic has all the axioms of Cω logic plus
the following:

– E1. (¬α→ ¬β) ↔ (¬¬β → ¬¬α),
– E2. ¬¬(α→ β) ↔ ((α→ β) ∧ (¬¬α→ ¬¬β)),
– E3. ¬¬(α ∧ β) ↔ (¬¬α ∧ ¬¬β),
– E4. (β∧ ∼ β → (∼∼ α→ α) ,
– E5. ¬¬(α ∨ β) ↔ (¬¬α ∨ ¬¬β).

Note that Classical logic is obtained from GLukG
by adding to the list of axioms any of the following
formulas: α→ ¬¬α, α→ (¬α→ β), (¬α→ ¬β) →
(β → α).

On the other hand, ∼ α → ¬α is a theorem in
GLukG, that is why we call the ∼ connective a non-
native strong negation operator.

In this paper we consider the standard substi-
tution, here represented with the usual notation:
ϕ[α/p] is α when will denote the formula that results
from substituting the formula α in place of the atom
p, wherever it occurs in ϕ.

Recall the recursive definition: if ϕ is atomic,
then ϕ[α/p] is α when ϕ equals p, and ϕ otherwise.
Inductively, if ϕ is a formula ϕ1□ϕ2 , for any binary
connective □. Finally, if ϕ is a formula of the form
¬ϕ1 , then ϕ[α/p] is ¬ϕ1[α/p].
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Table 2. Truth table of the implication in M4M4

→ 0 1 2 3

0 3 3 3 3

1 3 3 3 3

2 0 1 3 3

3 0 1 2 3

2.1.2 GLukG as a Multi-Valued Logic

It is very important for the purposes of this work
to note that GLukG can also be presented as a
multi-valued logic. Such presentation is given in
[2], where GLukG is called G′

3.
In this form it is defined through a 3-valued logic

with truth values in the domain D = 0, 1, 2 where 2
is the designated value.

The evaluation functions of the logic connectives
are then defined as follows: x ∧ y = min(x, y),x ∨
y = max(x, y); and the ¬ and → connectives
are defined according to the truth tables given
in Table 1.

We write ⊨ α to denote that the formula α
is a tautology,namely that α evaluates to 2 (the
designated value) for every valuation.

In this paper we keep the notation G′
3 to refer

to the multi-valued logic just defined, and we use
the notation GLukG to refer to the Hilbert system
defined at the beginning of this section.

There is a small difference between the
definitions of G′

3 and Gödel logic G3: the truth
value assigned to ¬1 is 0 in G3. G3 accepts an
axiomatization that includes all of the axioms of
intuitionistic logic.

In particular, the formula (α ∧ ¬α) → β is a
theorem in G3 but is not a theorem in G′

3. The next
couple of results are facts we already know about
the logic G′

3.

Theorem 1. [5] For every formula α, α is a
tautology in G′

3 iff α is a theorem in GLukG.

Theorem 2. (Substitution theorem forG′
3 logic). [5]

Let α,β and Ψ be GLukG-formulas and let p be an
atom. If α ↔ β is a tautology in G′

3 then Ψ[α/p] ↔
Ψ[β/p] is a tautology in G′

3.

Corollary 1. [5] Let α,βandψ be GLukG-formulas
and let p be an atom. If α ↔ β is a
theorem in GLukG then Ψ[α/p] ↔ Ψ[β/p] is a
theorem in GLukG.

3 The Logic M4M4

Next we introduce the following 4-valued logic,
which we will call M4M4. It counts with three
negations, one of them is defined as Łukasiewicz
negation (in Ł4),denoted here as ∼ x which
becomes the strong negation.

The weak or standard negation is denoted by ¬
and defined as follows: ¬3 = 0 and ¬x = 3 for any
value different from zero.

The third negation is denoted by the symbol ∽
and is defined as ∽ x = x → 0, where the
connective implication is defined below.

The double implication is defined as usual, as
the conjunction of two opposite conditionals. There
is only one designated value, which is 3.

With the three negations logic M4M4 counts
with six connectives: conjunction and disjunction
are binary connectives and are defined as
the minimum and maximum of the two values
respectively. The implication is a binary connective
defined by Table 2.

We define the bottom particle by the formula ⊥=
¬x ∧ ¬¬x for any atom x.

As mentioned before the first interesting property
of M4M4 logic that relates to our previous
sections, is the fact that logic G′

3 is expressed in
terms of it.

Theorem 3. The restriction of logic M4M4 to the
three values 0, 2, 3 and its weak negation coincides
with logic G′

3. In particular if |=M4M4 α then |=G′
3
α.

Proof. It is enough to observe that the connectives
of G′

3 and those of M4M4 when restricted to the
values 0, 2, 3 have the same truth tables if we
interpret the values 2 and 3 ofM4M4 as the values
1 and 2 of G′

3 respectively.
In fact, we have a converse for the second part of

the previous result, according to which, we obtain
equivalence between logics M4M4 and G′

3 as
established in next result.
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Theorem 4. For any formula α, if |=G′
3

α
then |=M4M4 α.

Proof. We use the fact that G′
3 has a Hilbert

style axiomatization for which a soundness and
completeness theorem holds.

Such axiomatic system has Modus Ponens as its
unique inference rule. It is not difficult to check that
each axiom that defines logic G′

3 is a tautology in
M4M4, hence we can use induction on the length
of the proof of formula α in G′

3 .

Let A1,A2, ....An = α be a proof of length n of
formula α in G′

3. Since Modus Ponens is the only
inference rule, there are a couple of indices, say
j, k such that Aj = Ak → An where Aj and Ak

are theorems in G′
3, hence by induction hypothesis

they are tautologies in M4M4.

According to the truth tables of M4M4 if Ak and
Aj = Ak → An are theorems then An should
always take the value 3. therefore α a tautology
in M4M4.

As a consequence of the previous two results we
have that for any given formula α, it is a tautology
in M4M4 if and it is a tautology in G′

3 as stated in
the next corollary.

Corollary 2. For any formula α we have |=G′
3
α if

and only if |=M4M4 α.

We state the next result as another corollary.

Corollary 3. The formula ∼ x cannot be
expressed in terms of the other connectives and
a single atom x.

Proof. According to Theorem 3 any formula in one
atom using exclusively the connectives ∨,∧,¬ and
→ evaluates to one of the values in {0, 2, 3} when
the atom takes the value 2, whereas the formula
∼ x takes the value 1 when the atom x takes
the value 2.

3.1 Some Other Properties of Logic M4M4

M4M4 possesses some other properties that are
common in some other logics and are useful
to enhance its richness, like for example the
De Morgan laws. We establish some of these
properties, which are easy to check, in the
next result.

Theorem 5. The following formulas are tautologies
in M4M4:

– ∼∼ α ≡ α,
– ∼ α→ ¬α,
– ¬(α ∧ β) ≡ ¬α ∨ ¬β,
– ¬(α ∨ β) ≡ ¬α ∧ ¬β,
– ∼ (α ∧ β) ≡∼ α∨ ∼ β,
– ∼ (α ∨ β) ≡∼ α∧ ∼ β,
– ∼ ¬α ≡ ¬¬α,
– ∼ (α→ β) ≡∽∽ α∧ ∼ β—.

It is worth noting that the reciprocal of the
second formula in this theorem is not a tautology.
As mentioned before, we provide a form of the
substitution theorem.

In order to do that, we need to define a
strong equivalence connective since the regular
biconditional does not satisfy the substitution
property, as shown in the following example.

Last formula in the previous theorem is a
tautology, however for the valuation α = β = 2,
the left hand side evaluates to zero and the right
hand side evaluates to 1, so when negating both
sides of that formula with the strong negation the
new formula is not a tautology, since we get 3 on
the left hand side and 2 on the right hand side for
the same values of the variables:

∼∼ (α→ β) ≡∼ (∽∽ α∧ ∼ β). (1)

To proceed with our plan we define a new
non-primitive connective, which we call the strong
equivalence. See Tables 3 and 4:

α⇔ β := (α↔ β) ∧ (∼ α⇔∼ β). (2)

Definition 1.

φ

[
ψ

ρ

]
=

{
φ if φ is atomic and different from ρ,

ψ if φ = ρ.
(3)
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Table 3. Truth table: standard bi-conditional connective
in M4M4

x y x↔ y

0 0 3
0 1 3
0 2 0
0 3 0
1 0 3
1 1 3
1 2 1
1 3 1
2 0 0
2 1 1
2 2 3
2 3 2
3 0 0
3 1 1
3 2 2
3 3 3

Table 4. Truth table: strong bi-conditional connective
in M4M4

x y x↔ y ∼ x↔∼ y x⇔ y

0 0 3 3 3
0 1 3 2 2
0 2 0 1 0
0 3 0 0 0
1 0 3 2 2
1 1 3 3 3
1 2 1 1 1
1 3 1 0 0
2 0 0 1 0
2 1 1 1 1
2 2 3 3 3
2 3 2 3 2
3 0 0 0 0
3 1 1 0 0
3 2 2 3 2
3 3 3 3 3

In the case φ is not atomic then φ = φ1□φ2

(where □ is any of the binary connectives) or
φ = ¬φ1.

For the first case we define:

φ1□φ2

[
ψ

ρ

]
= φ1

[
ψ

ρ

]
□φ2

[
ψ

ρ

]
. (4)

For the second case we define:

¬(φ1)

[
ψ

ρ

]
= ¬φ1

[
ψ

ρ

]
,

or

∼ (φ1)

[
ψ

ρ

]
=∼ φ1

[
ψ

ρ

]
.

(5)

Finally, we present a weak version of the
substitution theorem for M4M4.

Theorem 6.

|= ψ1 ⇔ ψ2 then |= φ

[
ψ1

ρ

]
⇔ φ

[
ψ2

ρ

]
. (6)

Proof. The proof is done by induction on the
length of φ.

1. If φ = ρ then for each i, φ
[
ψi

ρ

]
= φ, and the

result follows from the induction hypothesis.
2. If φ is an atom different from ρ then there is no

substitution to be done and the result follows.
3. If φ = φ1□φ2 then by induction hypothesis

|= φ1

[
ψ1

ρ

]
⇔ φ1

[
ψ2

ρ

]
,

and

|= φ2

[
ψ1

ρ

]
⇔ φ2

[
ψ2

ρ

]
.

(7)

According to the strong bi-conditional truth
table, we know that any interpretation gives the
same truth values to:

φi

[
ψ1

ρ

]
and φi

[
ψ2

ρ

]
, (8)

And we also know that the truth values of:

(φ1□φ2)

[
ψ2

ρ

]
, (9)

Depend on those truth values solely, hence
the result follows.
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4. If φ = ¬φ1, then under any interpretation the
truth values of:

φ1

[
ψ1

ρ

]
, (10)

Are the same as those for:

φ1

[
ψ2

ρ

]
, (11)

By hypothesis, therefore as in the previous
case, the truth values of:

¬φ1

[
ψ1

ρ

]
, (12)

Are the same as those for:

¬φ1

[
ψ2

ρ

]
. (13)

Then it follows that:

|= ¬φ1

[
ψ1

ρ

]
⇔ ¬φ1

[
ψ2

ρ

]
. (14)

5. If φ =∼ φ1 This case follows exactly as the
previous one.

4 Conclusions and Future Work

In this paper, we introduce a new 4-valued logic
called M4M4. It can be used as a formalism to
define two logic programming semantics: stable
and p-stable.

These logic programming semantics could
be used to define the semantics of deductive
databases. As future work we propose the study
of properties of this logic and the comparison of it
to some well known paraconsistent logics.

References

1. Affonso da Costa, N. C. (1974). On the theory of
inconsistent formal systems. Notre Dame Journal of
Formal Logic, Vol. 15, No. 4. DOI: 10.1305/ndjfl/
1093891487.

2. Galindo, M. O., Navarro-Perez, J. A., Arrazola-
Ramirez, J. R., Macias, V. B. (2006). Logics with
common weak completions. Journal of Logic and
Computation, Vol. 16, No. 6, pp. 867–890. DOI: 10.
1093/logcom/exl013.

3. Mendelson, E. (1987). Introduction to Mathemati-
cal Logic.

4. Ortiz, M., Osorio, M. (2007). Strong negation and
equivalence in the safe belief semantics. Journal of
Logic and Computation, Vol. 17, No. 3, pp. 499–515.
DOI: 10.1093/logcom/exm011.

5. Osorio Galindo, M., Carballido Carranza, J. L.
(2008). Brief study of G′

3 logic. Journal of Applied
Non-Classical Logics, Vol. 18, No. 4, pp. 475–499.
DOI: 10.3166/jancl.18.475-499.

6. Solver, A. (2022). Web location of DLV:
www.dlvsystem.com/dlvdb/.

Article received on 04/04/2022; accepted on 08/06/2022.
Corresponding author is Mauricio Osorio.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 297–302
doi: 10.13053/CyS-27-1-4563

Mauricio Osorio, José Luis Carballido302

ISSN 2007-9737


