
Comparative Analysis of the Bacterial Foraging
Algorithm and Differential Evolution in

Global Optimization Problems

Adrian Garcı́a-López, Oscar Chávez-Bosquez,
José Hernández-Torruco, Betania Hernández-Ocaña

Universidad Juárez Autónoma de Tabasco,
División Académica de Ciencias y

Tecnologı́as de la Información,
México

221H18002@alumno.ujat.mx,
{oscar.chavez,jose.hernandezt, betania.hernandez}@ujat.mx

Abstract. There are bio-inspired metaheuristics in
nature rarely used in areas where there is not
domain or knowledge of computational algorithms, to
mention some, medicine, finance and administration.
TS-MBFOA, a bacteria-based algorithm and the
Differential Evolution Algorithm (DEA), are metaheuristic
algorithms proposed for the optimization of complex
problems mathematically modeled as linear or non-linear
problems. In this paper, these algorithms are
implemented to analyze their performance in the search
for better solutions in constrained optimization problems.
Tests were conducted on four optimization problems
known in the literature as benchmark problems. Both
algorithms were run in 30 independent executions for
each problem with the same number of generations
and evaluations. Although the parameters of each
algorithm are different, the number of evaluations was
selected for a fair comparison. Results are similar for
both algorithms, however, DEA obtains better results
for the problem with the larger number of constraints.
Additionally, DEA generates solutions in less time than
TS-MBFOA. The nonparametric Wilcoxon Signed Rank
Test indicates significant differences in only 3 problems.
The convergence graph of both algorithms for each
problem shows that after 50 generations, both algorithms
are close to the best known solution in the state of
the art.

Keywords. Bacterial foraging, differential evolution,
global optimization, metaheuristics.

1 Introduction

Bio-inspired algorithms are computational
techniques inspired by nature, primarily the
simulation or emulation of simple and intelligent
processes of certain animals, insects, or bacteria
in search of food or shelter.

These algorithms arise to improving search
algorithms to solve numerical and combinatorial
optimization problems [9]. These algorithms
are classified as metaheuristics and incorporate
techniques and strategies to design or improve
mathematical procedures aimed at obtaining high
performance. [18].

Metaheuristics generate a set of results for a
particular problem that is totally or approximately
global optimum.

These algorithms are classified into two
groups based on different natural phenomena:
Evolutionary Algorithms (EAs) emulate the
evolutionary process of the species [2]
and Swarm Intelligence Algorithms (SIAs)
emulate the collaborative behaviour of
certain simple and intelligent species such
as bacteria [14], bees [8], ants [1], among
others [3]. Metaheuristics were created to solve
unconstrained optimization problems.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

ISSN 2007-9737

However, to handle this problems, mechanisms
such as feasibility rules, special operators,
decoders, among others are implemented. The
use of metaheuristics is an effective alternative
for solving Constraint Numerical optimization
Problems (CNOPs) [12].

Generally, a CNOP is known as a general
nonlinear programming problem and can be
defined as:

minimize : f(x⃗)

subject to:

gi(x⃗) = 0, i = 1, 2, ...,m or (1)
hj(x⃗) ≤ 0, j = 1, 2, ..., p, (2)

where x⃗ ∈ Rn such that n ≥ 1, where x⃗ is the
solution vector x⃗ = [x1,x2,x3, ...,xn]

T , where each
⃗xi, i = 1, 2, 3, ...,n is delimited by the lower and

upper limit Li ≤ xi ≤ Ui, k = 1, 2, ...,D; D is
the number of design variables, m is the number
of inequality constraints, and p is the number of
equality constraints (in both cases, the constraints
can be linear or non-linear).

If we denote by F the feasible region (where all
the solutions that satisfy the problem are found)
and by S the entire search space, then F ⊆ S [7].

There are different EAs techniques used to
solve CNOP, highlighting: Genetic Programming
(GP), Genetic Algorithms (GA), Evolutionary
Programming (EP) and Differential Evolution
Algorithm (DEA).

DEA is a simple and easy to implement
technique using the basic operators of genetic
algorithms: mutation, crossover and selection.
Despite its simplicity and smallthe number of
parameters, it generates good results in CNOPs.

Since then, DEA has been proven in
competitions such as the International Contest
on Evolutionary optimization (ICEO) of the IEEE
[15, 16] and in a wide variety of real-world
applications, such as the optimization of the
four-bar mechanism [19] or for global optimization
of engineering and chemical processes [10].

The Bacterial Foraging Optimization Algorithm
(BFOA) is a SIA based on foraging of Escherichia
Coli bacteria [14], which simulates the process
of chemotaxis (swim and tumble), swarming,
reproduction, and elimination-dispersal.

Algorithm 1: TS-MBFOA pseudocode. Sb is the
number of bacteria, Nc is the number of chemotaxis cycles,
β is the scaling factor, R is the stepsize, Sr is the number
of bacteria to reproduce, Repcycle is the reproduction
frequency and GMAX is the number of generations.

1 Create an population of random bacteria θi(j, 0) ∀i,
i = 1, . . . ,Sb.

2 Evaluate f(θi(j, 0)) ∀i, i = 1, . . . ,Sb .
3 for G=1 to GMAX do
4 for i=1 to Sb do
5 for j=1 to Nc do
6 Chemotaxis process: Interleaving the

proposed swims with Eqs. 3 and 4.
7 Apply grouping (Eq. 7) using β for the

bacteria θi(j,G).
8 end
9 end

10 if G mod RepCycle == 0 then
11 Reproduction process.
12 Ordering the population (follow the feasibility

rules).
13 Duplicate the best bacteria Sr.
14 EliminateSb − Sr worst bacteria.
15 end
16 Elimination-dispersion process.
17 Eliminating the worst bacteria θw(j,G) from the

current population considering the technique of
handling constraint.

18 Update the step size vector using Eq. 6.
19 end

These bacteria in the process face several
problems in their search for food [11]. From this
algorithm, significant modifications were made: the
number of parameters was reduced, an operator
for handling constraints was incorporated [13] and
a mutation operator similar to an EAs [6]; this is
called Two-Swim Modified-BFOA (TS-MBFOA).

This metaheuristic allows competitive and
favourable results when solving CNOPs, with
a good configuration of its parameters. This
approach has been successfully used to solve
engineering design problems, such as the
well-known Tension Compression Spring [7], the
generation of healthy menus [4] and optimization
of a Smart-Grid [5].

In the real world, TS-MBFOA and DEA have
implementations for solving optimization problems,

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

Adrian García-López, Oscar Chávez-Bosquez, José Hernández-Torruco, et al.426

ISSN 2007-9737

Algorithm 2: DEA pseudocode. The parameters are
as follows: Population of individuals, F is mutation, CR is
crossover and GMAX is the number of generations.

1 Create a random initial population
xj,i, i = 1, ...,NP , j = 1, ...,D

2 Evaluate population
f(xj,i), i = 1, ...,NP , j = 1, ...,D

3 for g = 0 to GMAX do
4 for i = 1 to NP do
5 Randomly select r1 ̸= r2 ̸= r3 ̸= i
6 jrand = randint[1,D]
7 for j = 1 to D do
8 if randj [0, 1) < CR or j = jrand

then
9 vj,i,g =

xj,i,g, r1 + F (xj,i,g, r2− xj,i,gr3)
10 end
11 else
12 vj,i,g = xj,i,g

13 end
14 end
15 if f(vj,i,g) ≤ f(xj,i,g) then
16 xg+1,j = vj,i,g
17 end
18 else
19 xg+1,j = xj,i,g

20 end
21 end
22 end

Table 1. TS-MBFOA and DEA Parameters

TS-MBFOA DEA

Parameter Value Parameter Value

Sb 15 Population 50

R 0.0005 F 0.7

Nc 8 CR 0.8

β 1.95 GMAX 500

Sr 1

Repcycle 100

GMAX 500

however, these algorithms are not fully exploited in
different areas where researchers are not aware of
their adaptation and implementation.

Therefore, this research is motivated to explore

the capabilities of both algorithms in the solution
of particular CNOPs known as: Pressure Vessel,
Process Synthesis MINLP, Tension Compression
Spring and Quadratically constrained quadratic
program. These algorithms are implemented in a
free and cross-platform programming language.

Results obtained were validated using basic
statistics such as best value, mean, median,
standard deviation and worst value.

Also, the nonparametric Wilcoxon Signed Rank
Test (WSRT) was applied to measure the
consistency of the results.

Finally, convergence graphs of the median
number of executions for each algorithm in each
problem are presented to notice the performance
of the algorithms.

2 Two-Swim Modified Bacterial
Foraging Optimization Algorithm
(TS-MBFOA)

The TS-MBFOA is a proposed algorithm for
solving CNOPs [7], where bacteria i is a potential
solution and is denoted as θi(j,G), where j is
the chemotaxis loop and G is the generational
loop (chemotaxis, swarming, reproduction and
elimination-dispersal).

The chemotaxis process is interleaved with
exploitation or exploration swim in each cycle.

The process begins with the classic swim
(exploration and mutation between bacteria) and is
calculated with Eq. 3, where a bacterium will not
necessarily interleave exploration and exploitation
swims, because if the new position of a given swim
θi(j + 1,G) has better fitness than the original
position θi(j,G), then another swim at the same
direction will occur in the next loop.

Otherwise, a new tumble will be calculated. The
process stops after Nc attempts. The exploration
swim uses the mutation between bacteria and is
calculated by:

θi(j+1,G) = θi(j,G)+(β)(θr1(j,G)−θr2(j,G)). (3)

The swim operator is calculated with Eq. 4:

θi(j + 1,G) = θi(j,G) + C(i,G)ϕ(i), (4)

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

Comparative Analysis of the Bacterial Foraging Algorithm and Differential Evolution ... 427

ISSN 2007-9737

where ϕ(i) is calculated with the original BFOA
tumble operator defined in Eq. 5:

ϕ(i) =
∆(i)√

∆(i)T∆(i)
, (5)

where ∆(i)T is a random vector generated with
elements inside an interval [−1, 1]. C(i,G) is the
random step size of each bacteria updated with
Eq. 6:

C(i,G) = R ∗Θ(i), (6)

where Θ(i) is a random vector of size n with
elements within the range of each decision
variable: [Uk,Lk], k = 1,n, and R is a
user-defined parameter for scaling the step size.

In the middle cycle of the chemotaxic process,
the swarming operator is applied with Eq. 7:

θi(j + 1,G) = θi(j,G) + β(θB(G)− θi(j,G)). (7)

Bacteria are ordered in the reproduction
process, eliminating the worst bacteria Sb − Sr

and the best bacteria are duplicated every certain
number of loops.

In elimination-dispersion, the worst bacteria are
eliminated from the population θw(j,G) and a
new one is random generated. In this proposal,
the original bias mechanism of the TS-MBFOA
is not used to consume less computational
cost. TS-MBFOA pseudocode is presented in
Algorithm 1.

3 Differential Evolution Algorithm
(DEA)

DEA, developed by Storn and Price in 1995,
was proposed to solve numerical optimization
problems [17].

This algorithm is competitive in global
optimization problems, its strategy is based
on population search. The algorithm starts from a
population of NP D-dimensional individuals, also
called parent vectors.

Table 2. Best result found by the TS-MBFOA and DEA
in 30 independent executions to each CNOPs

CNOP Nv Alg Bv T

Problem 1
f(x⃗)∗ = 6059.946

4
TS-MBFOA

DEA

8796.84951
9375.75820

44

20

Problem 2
f(x⃗)∗ = 4.579582

7
TS-MBFOA

DEA

4.26075

3.73269

55

31

Problem 3
f(x⃗)∗ = 0.012681

3
TS-MBFOA

DEA

0.012665
0.012665

96

21

Problem 4
f(x⃗)∗ = -118.704

2
TS-MBFOA

DEA

-118.70485

-118.70485

22
27

An individual of the NP population represents
a solution to the problem and is computed as
in Eq. 8:

xj,i,g,

i = 1, 2, 3, ...,NP ,

j = 1, ...,D,

g = 1, 2, ...,GMAX,

(8)

where xj,i,g is an individual with j dimensions or
number of variables. i is the individual in the
population NP and g is the number of generations
in the process the algorithm to the maximum
number GMAX. The process of the DE algorithm
is described below.

Initialization process: individuals are randomly
generated within the search space limited by the
upper and lower limit of each problem variable, i.e.:
Lj ≤ xj ≤ Uj . In each generation, individuals
mutate, recombine and select to produce new
offspring. If the descendant performs better than
the parent, it is integrated into the next generation.

Mutation process: the search direction controls
the magnitude of displacement in the search space
and the speed of convergence to the optimal
solution. The mutated vector is constructed from
two vectors weighted by a scaling factor, as shown
in Eq. 9:

vj,i,g = xj,i,g, r1 + F (xj,i,g, r2− xj,i,gr3),

r1 ̸= r2 ̸= r3 ̸= i,
(9)

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

Adrian García-López, Oscar Chávez-Bosquez, José Hernández-Torruco, et al.428

ISSN 2007-9737

Table 3. Basic statistics of the best results of the 30
iterations of the TS-MBFOA and DEA. The best values
are highlighted in bold

CNOP Measure TS-MBFOA DEA

Problem 1
f(x⃗)∗ = 6059.946

Media

Median

Std. dev.

Worst

8796.84982
8796.84951
0.00166

8796.85879

9375.75820

9375.75820

5.45696E-12
9375.75820

Problem 2
f(x⃗)∗ = 4.579582

Media

Median

Std. dev.

Worst

4.27758

4.27485

0.01223

4.32189

3.73305
3.73305
2.01891E-4
3.73348

Problem 3
f(x⃗)∗ = 0.012681

Media

Median

Std. dev.

Worst

0.012665
0.012665
0.0000013

0.012672

0.012665
0.012665
7.110684E-12
0.012665

Problem 4
f(x⃗)∗ = -118.704

Media

Median

Std. dev.

Worst

-118.7048
-118.7048
7.21821E14

-118.7048

-118.70485
-118.70485
4.26325E-14
-118.7048

where vj,i,g is the descendant generated by
crossing three individuals from the population
r1, r2, r3 totally different from each other and
randomly selected with a uniform distribution.

Crossover process: controls the recombination
of the mutation of individuals to generate a
new descendant, where the CR operator is
an end-user-defined parameter, which can be
randomly or statically defined.

In the selection process: the descendant
is evaluated in the problem function. If the
descendant obtains a better result than the parent,
then it replaces the parent in the next generation of
the algorithm, otherwise the parent is kept (Eq. 10):

xg+1,i =

{
vj,i,g if f(vj,i,g) ≤ f(xj,i,g),
xj,i,g otherwise,

(10)

where f is the objective function of the problem to
optimize. The Algorithm 2 shows the classic DEA.

4 Experimentation and Results

TS-MBFOA and DEA were implemented in
the Java programming language, a free and
cross-platform language.

The CNOPs to solve by both algorithms have
their own characteristics, such as: different
numbers of variables, number and types of
constraints, ranges of variables, among others; as
presented below in its mathematical model.

Problem 1: Pressure Vessel.
Minimize: 0.6224x1x3x4 + 1.7781x2x3

2 +
3.1661x1

2x4 + 19.84x1
2x3.

subject to:

g1(x⃗) = −x1 + 0.0193x3 ≤ 0, (11)
g2(x⃗) = −x2 + 0.00954x3 ≤ 0, (12)

g3(x⃗) = −πx3
2x4 −

4

3
πx3

3 + 1296000 ≤ 0, (13)

g4(x⃗) = x4 − 240 ≤ 0, (14)

where: 1 ≤ x1 ≤ 99, 1 ≤ x2 99, 10 ≤ x3 ≤ 200 and
10 ≤ x4 ≤ 200:

f(x⃗)∗ = 6059.946. (15)

Problem 2: Process Synthesis MINLP.
Minimize: (y1−1)2+(y2−2)2+(y3−1)2− log(y4+
1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

subject to:

y1 + y2 + y3 + x1 + x2 + x3 ≤ 5, (16)

y23 + x2
1 + x2

2 + x2
3 ≤ 5.5, (17)

y1 + x1 ≤ 1.2, (18)
y2 + x2 ≤ 1.8, (19)
y3 + x3 ≤ 2.5, (20)
y4 + x1 ≤ 1.2, (21)

y22 + x2
2 ≤ 1.64, (22)

y23 + x2
3 ≤ 4.25, (23)

y22 + x2
3 ≤ 4.64, (24)

where: 0 ≤ xi ≤ (1.2, 1.8, 2.5) i = 1, 2, 3
yi = 0, 1, i = 1, 2, 3, 4:

f(x⃗)∗ = 4.579582. (25)

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

Comparative Analysis of the Bacterial Foraging Algorithm and Differential Evolution ... 429

ISSN 2007-9737

Problem 3: Tension Compression Spring.
Minimize: (N + 2)Dd2 subject to:

g1(x⃗) = 1− D3N

71785d4
≤ 0, (26)

g2(x⃗) =
4D2 − dD

12566(Dd3 − d4)
+

1

5108d2
− 1 ≤ 0, (27)

g3(x⃗) = 1− 140.45d

D2N
≤ 0, (28)

g4(x⃗) =
D + d

1.5
− 1 ≤ 0, (29)

(30)

where: 0.05 ≤ d ≤ 2, 0.25 ≤ D 1.3 and
2 ≤ N ≤ 15:

f(x⃗)∗ = 0.012681. (31)

Problem 4: Quadratically constrained
quadratic program.
Minimize: x4

1 − 14x2
1 + 24x1 − x2

2

subject to:

− x1 + x2 − 8 ≤ 0, (32)

x2 − x2
1 − 2x1 + 2 ≤ 0, (33)

where: (−8, 0) ≤ xi ≤ (10, 10)i = 1, 2:

f(x⃗)∗ = −118.7048. (34)

Each algorithm has parameters that must be
calibrated to generate competitive results.

Previously, we performed tests in search of a
good calibration, to run each algorithm on the
test problems.

Tab. 1 presents the parameter settings of
the TS-MBFOA and DEA. TS-MBFOA and DEA,
where a number of 500 fixed generations were
established for each algorithm.

This yields to around 60,500 evaluations for
each algorithm, which allows a fair comparison
between the results and to plot the convergence
of the algorithms.

In the tests conducted with each algorithm, 30
independent iterations were adjusted to measure
the consistency of the results.

The results of the independent runs of each
algorithm with the four CNOPs are presented in
Tab. 2, where CNOP is the problem to solve, f(x⃗)∗

Fig. 1. Typical convergence in CNOP 1 and 2

is the best known value in the literature, Nv is the
number of design variables, Alg are the algorithms
used, BV is the best value found and, T is the time
in seconds of total iterations.

TS-MBFOA obtained better results than DEA in
most of the runs. However, the runtime of DEA was
smaller in many cases.

In problem 1, the TS-MBFOA obtained a result
of 8796.84951, better than the one obtained by
DEA. However, this solution is feasible but not
competitive with the best known optimal solution,
which is f(x⃗)∗ = 6059.946.

For problem 2, DEA finds the best optimal
solution of 3.73269. With TS-MBFOA, the best
value found is 4.26075, a non-competitive solution.
For problems 3 and 4, both algorithms find the
global optimum of the problem similar to the
optimal solution known in the state-of-the-art.

Generally speaking, both algorithms generate
results in less than 60 seconds, except for problem
3. With TS-MBFOA this experiment tooked 96

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

Adrian García-López, Oscar Chávez-Bosquez, José Hernández-Torruco, et al.430

ISSN 2007-9737

Fig. 2. Typical convergence in CNOP 3 and 4

seconds, but it is a reasonable time with a
competitive result.

For each experiment performed with both
metaheuristics, basic statistics were applied to
check the consistency of the results obtained.

Tab. 3 shows the basic statistics of the 30
iterations performed for each CNOPs with both
algorithms. The TS-MBFOA obtains better results
in problem 1. In problems 3 and 4, both algorithms
obtain equal results.

In problem 2, DEA obtains a better result.
According to the standard deviation, the
consistency of the solutions found by DEA is
better than TS-MBFOA.

Figs. 1 and 2 present the behavior of both
algorithms at each CNOP of iteration number 15
of the 30 runs performed independently (median).

The convergence of both algorithms is similar in
3 of the 4 CNOPs, both algorithms from the first 50
generations already reach optimal solutions.

Only in problem 2 both algorithms require more
than 200 generations to converge to an optimal
solution. It is worth mentioning that CNOP 2
is a highly constrained problem. The WSRT
non-parametric test was applied with a 95%
confidence level, being 5% the significant level.

The result obtained in CNOP 1, 2, and 3
is p-value = 0.00001, a value lower than the
significant level.

This indicates a significant difference between
the results of both algorithms. Therefore, the lower
the p-value, the more significant the result. For
CNOP 4 the p-value = 0, this indicates that there
is no significant difference.

5 Conclusion and Future Work

In this work, two metaheuristics were implemented
to solve a set of numerical optimization problems
with constraints: TS-MBFOA, a swarm intelligence
algorithm, and DEA, an evolutionary algorithm.
Four benchmark problems were tested on both
algorithms, programmed in Java Language.

30 independent runs were performed by
each algorithm on each test problem with a
number of 500 generations and approximately
60,500 evaluations.

The parameters of each algorithm were adjusted
to the number of evaluations allowed in this work.
Basic statistics and a non-parametric test called
Wilcoxon Signed Rank Test was applied to know
the quality and consistency of the results, where
both algorithms obtained similar results.

DEA has better consistency of results according
to the standard deviation obtained in each
problem. TS-MBFOA and DEA obtained better
quality results in 1 of the 4 problems. The
non-parametric test indicates that there is no
significant difference between the results of both
algorithms in problem 4.

In the remaining three problems, there is
a significant difference (problem 1, 2 and 3).
With respect to execution times, both algorithms
generate solutions in seconds, however, DEA is the
one that generates results in less time with respect
to TS-MBFOA and this is due to the simplicity of the
processes and the small number of parameters of
the evolutionary algorithm.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

Comparative Analysis of the Bacterial Foraging Algorithm and Differential Evolution ... 431

ISSN 2007-9737

The convergence graph of each algorithm shows
that the TS-MBFOA and DEA after 50 generations
begin to converge, but in problem 2, both
algorithms converge after 200 generations.

It is necessary to perform a finer adjustment of
the parameters of each algorithm and to test both
algorithms in more benchmark problems.

Acknowledgments

We thank CONACYT (Ministry of Science in
México) for supporting the Doctoral program in
Computer Science at the Universidad Juárez
Autónoma de Tabasco.

References

1. Dorigo, M., Maniezzo, V., Colorni, A. (1996). The
ant system: Optimization by a colony of cooperating
agents. IEEE Transactions of Systems, Man and
Cybernetics-Part B, Vol. 26, No. 1, pp. 29–41. DOI:
10.1109/3477.484436.

2. Eiben, A. E., Smith, J. E. (2003). Introduction to
evolutionary computing. Natural Computing Series.

3. Engelbrecht, A. (2005). Fundamentals of
computational swarm intelligence. John Wiley
& Sons.

4. Hernández-Ocaña, B., Chávez-Bosquez, O.,
Hernández-Torruco, J., Canul-Reich, J.,
Pozos-Parra, P. (2018). Bacterial foraging
optimization algorithm for menu planning.
IEEE Access, Vol. 6, pp. 8619–8629. DOI:
10.1109/ACCESS.2018.2794198.

5. Hernández-Ocaña, B., Hernández-Torruco,
J., Chávez-Bosquez, O., Calva-Yáñez,
M. B., Portilla-Flores, E. A. (2019). Bacterial
foraging-based algorithm for optimizing the power
generation of an isolated microgrid. Applied
Sciences, Vol. 9, No. 6. DOI: 10.3390/app9061261.

6. Hernández-Ocaña, B., Pozos-Parra, M.
D. P., Mezura-Montes, E. (2016). Improved
modified bacterial foraging optimization algorithm
to solve constrained numerical optimization
problems. Applied Mathematics and Information
Sciences, Vol. 10, No. 2, pp. 607–622. DOI:
10.18576/amis/100220.

7. Hernández-Ocaña, B., Pozos-Parra, M. P.,
Mezura-Montes, E., Portilla-Flores, E. A.,
Vega-Alvarado, E., Calva-Yáñez, M. B. (2016).
Two-swim operators in the modified bacterial
foraging algorithm for the optimal synthesis of
four-bar mechanisms. Computational Intelligence
and Neuroscience, Vol. 2016, pp. 1–18. DOI:
10.1155/2016/4525294.

8. Karaboga, D., Basturk, B. (2007). Powerful
and efficient algorithm for numerical function
optimization: Artificial bee colony (ABC) algorithm.
Journal of Global Optimization, Vol. 39, No. 3,
pp. 459–471. DOI: 10.1007/s10898-007-9149-x.

9. León, J. A. (2009). Diseño e implementación
en hardware de un algoritmo bio-inspirado. Ph.D.
thesis, Instituto Politécnico Nacional. Centro de
Investigación en Computación.

10. Martı́nez-Zecua, M. Y., Salamanca-Vázquez,
L. A., Flores-Pulido, L., Portilla-Flores, E. A.,
Ortız-Arroyo, A. (2019). Evolución diferencial para
la optimización global de procesos de ingenierıa
quımica. Research in Computing Science, Vol. 148,
No. 8. DOI: 10.13053/rcs-148-8-2.

11. Mezura-Montes, E., Cetina-Domı́nguez, O.,
Hernández-Ocaña, B. (2010). Nuevas heurı́sticas
inspiradas en la naturaleza para optimización
numérica. , pp. 249–272.

12. Mezura-Montes, E., Coello-Coello, C. A. (2011).
Constraint-handling in nature-inspired numerical
optimization: Past, present and future. Swarm
and Evolutionary Computation, Vol. 1, No. 4,
pp. 173–194. DOI: 10.1016/j.swevo.2011.10.001.

13. Mezura-Montes, E., Hernández-Ocaña, B. (2008).
Bacterial foraging for engineering design problems:
Preliminary results. Memorias del 4o Congreso
Nacional de Computación Evolutiva (COMCEV).

14. Passino, K. (2002). Biomimicry of bacterial foraging
for distributed optimization and control. IEEE Control
Systems Magazine, Vol. 22, No. 3, pp. 52–67. DOI:
10.1109/MCS.2002.1004010.

15. Price, K. (1997). Differential evolution vs. the
functions of the 2nd ICEO. Proceedings of 1997
IEEE International Conference on Evolutionary
Computation (ICEC 97), pp. 153–157. DOI: 10.
1109/ICEC.1997.592287.

16. Price, K., Storn, R. M., Lampinen, J. A. (2006).
Differential evolution: A practical approach to global
optimization. Springer Science & Business Media.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

Adrian García-López, Oscar Chávez-Bosquez, José Hernández-Torruco, et al.432

ISSN 2007-9737

17. Storn, R., Price, K. (1997). Differential evolution-a
simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global
Optimization, Vol. 11, No. 4, pp. 341–359. DOI:
10.1023/A:1008202821328.

18. Suarez, O. (2011). Una aproximación a la heurı́stica
y metaheurı́sticas. INGE@ UAN-Tendencias en la
Ingenierı́a, Vol. 1, No. 2.

19. Zapata-Zapata, M. F., Mezura-Montes, E.,
Portilla-Flores, E. A. (2017). Evolución diferencial
con memoria de parámetros para la optimización
de mecanismos de cuatro barras. Research in
Computing Science, Vol. 134, No. 1, pp. 9–22.

Article received on 02/10/2022; accepted on 15/12/2022..
Corresponding author is Adrian Garcı́a-López.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 425–433
doi: 10.13053/CyS-27-2-4622

Comparative Analysis of the Bacterial Foraging Algorithm and Differential Evolution ... 433

ISSN 2007-9737

