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Abstract. This work proposes a mathematical model for

computer-aided music composition as a multi-objective

optimization problem. This work aims to create a

framework to automatically generate a set of songs

with two melodies by combining a genetic algorithm

with machine learning. Musical patterns were studied

[16, 6, 18, 2] to simplify them and apply them for

the construction of the optimization model. This work

uses recent emotional music theory to construct the

optimization problem [11]. Three conflicting objective

functions represent the desired characteristics of the

melody to be created: (1) song happiness, (2) song

minimalism, and (3) song genre. Two of these objectives

are analytically designed, fulfilling well-studied features

like those in [14, 25, 11]. The third objective function

was developed using a machine learning model like in

[5, 8, 27]. The software JSymbolic is used [15] for

extracting features in real-time and getting the score with

the machine learning model trainer in the present work.

The results obtained by this work can be listened to by

test examples presented in a video format.

Keywords. Music composition, multiobjective

optimization, evolutionary music.

1 Introduction

Musical composition using artificial intelligence is

one of the great challenges due to the different

characteristics that a song contains; in addition,

the different types of properties of a song make its

study difficult.

Some artificial intelligence tools used for

this purpose are: deep learning, generative

music, quantum computing, machine learning

techniques, among others [21, 5, 8, 27]. In the

present work, the problem of computer-assisted

musical composition is modeled in terms of a

multi-objective optimization problem.

To generate songs with a maximum happiness,

while simultaneously looking for minimalism in the

ornaments and looking for songs in two different

genres as a third criterion.

For this, Mauro de Marı́a’s emotional music

theory [11], classical music theory [7], study of

musical patterns [16, 6, 19, 18, 22, 10, 2, 17]

were augmented and related state-of-the-art works

such as MetaCompose [25] and MorpheuS [14]

that provide valuable elements for our model.

The present work is a combination of existing

elements, such as the definition 9 (based on

equation 4 of [25]).

The first four terms of the g3 function of the

optimization problem are based on [14] together

with combination and simplification of [16, 6, 19,

18, 22, 10, 2, 17] and with original contributions

based on emotional music theory [11] present in

the other elements of the optimization problem.
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In addition, to evaluate the third objective to

optimize, a model generated with the help of

machine learning through the extraction of features

from songs of different genres is used.

2 Limitations

There are different limitations in the current work,

which are described below:

– The songs generated by the present work have

at most two notes playing at the same time.

This is because songs have been defined as two

melodies playing simultaneously. An example

of the song representation will be detailed in

section IV, basic concepts.

– The parameter p (bar partitions) will determine

the number of notes within a bar. A larger

number of p allows a larger number of musical

figures to be written to each melody. For

example, if p = 2, each melody will allow musical

figures of value 1
2 ( ˘ “) and 2

2 ( ¯ ), if p = 4, each

melody will allow musical figures of value 1
4 ( ˇ “),

2
4 ( ˘ “), 3

4 ( ˘ “‰ ) and 4
4 ( ¯ ) and so on.

– A larger value of b (number of bars in the

song) or p (bar partitions) implies more time

in optimization process; that is, increasing the

length of the song increases the time to find

feasible solutions.

– The generated songs are based on the

evocation of happy songs (objective g1) and

minimalist objective (objective g2), other

emotions and other musical aspects can be

taken into account by adding other objectives in

the optimization problem.

3 Related Work

There are different related works that allowed to

generate the model shown in the optimization

problem section, each one of them and the way

in which their valuable ideas were applied are

described as follow:

– The musical emotional theory elaborated

by Mauro de Marı́a [11] provides a great

perspective about the different parts that a

musical composition has and how each of its

parts influences the evocation of emotions.

For the elaboration of the present work, a

simplification of Mauro de Marı́a’s theory was

carried out to model happy and minimalist

songs. The main ideas of Mauro de Marı́a were

applied mainly in the definitions 4 , 23 and 14.

– There are different related works [16, 6, 19, 18,

22, 10, 2, 17] that address the problem of finding

musical patterns successfully. In the elaboration

of the present work it was tried to use some

of these algorithms in the optimization problem;

however, it was decided to use a simplification

of these given that they are very expensive and

the generation of results could take maybe a

few months. These simplifications appear in

the first four terms of the g3 function of the

optimization problem.

– MetaCompose [25] and MorpheuS [14] propose

structured music generation. In the case of

MorpheuS, a tension pattern must be provided to

ensure that the result is adequate. In our work,

this tension is reflected in the functions g1, g2 and

g3, while the structure of the song is reflected in

the constraints of the optimization problem.

4 Basic Concepts and Fundamental
Elements of the Model

We have represented a song as a vector x ∈
Zb+2bp, where the first b components denote the

chord index for the corresponding bar; the following

bp components represent the notes of harmony;

finally, the last bp components represent the notes

of the melody. In this way, each melody x(1) ∈ Zbp

has b ∈ N bars and, in turn, each bar is divided into

p partitions, with p ∈ {2, 4, 8, 16}; furthermore, each

component 41 ≤ xj ≤ 88, for j ∈ {b + 1, . . . , 2bp}
is a MIDI note [1]; where MIDI note 41 will be taken

as a elongation of the previous note, while MIDI

note 42 will be used as rest. The next score shows

the representation of a song corresponding to the

vector x0 ∈ Z4+2(4)(8) given by:
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x0 =

[1, 11, 11, 1, 48, 48, 52, 52, 62, 64, 55, 42, 65, 65, 69, 69, 76,

77, 65, 42, 53, 53, 57, 57, 67, 69, 60, 42, 60, 60, 64, 64, 76, 88,

84, 42, 42, 41, 41, 71, 41, 83, 79, 88, 42, 41, 41, 81, 41, 84, 83,

84, 72, 77, 41, 71, 77, 41, 41, 41, 83, 84, 41, 83, 88, 41, 41, 41]T .

(1)

That said, we consider a melody to be a

vector of MIDI notes [1], the definitions 15,

16, 17, 18, 19 and 20 were built from the

classical music ornaments theory [23], while

the remaining definitions were created from the

emotional musical model [11] and adapted to the

optimization problem of this work. The necessary

definitions for our model will be shown below.

Definition 1 (Melody of the j-th bar of a melody).
Let x ∈ Zbp be a melody, with b, p ∈ N. The melody

of the j-th bar xB(j) corresponds to the subvector

of x given as:

B(j) := x(1+p(j−1):jp), j = 1, . . . , b. (2)

Definition 2 (Chord). The vector x = (x1, x2,
. . . , xq)

T ∈ Zq is said to be a chord, if each xi

is a numbered musical note, for i = 1, . . . , q and

furthermore it is verified that xi ̸= xj ∀i ̸= j.

Definition 3 (Melody with a good start). Let x ∈ Zk

be a melody. The tune x is said to have a good

start if the function NS : Zk → {0, 1} evaluated in

the tune x is equal to one, where the function NS
is defined as follows:

NS(x) :=



























1 if ∄j ∈ {1, . . . , k} : xj = 41,

1 si min
j=1,...,k
xj>41

j < min
ℓ=1,...,k
xℓ=41

ℓ,

0 otherwise.

Definition 4 (Total real notes in melody). Let

x ∈ Zk be a melody, the total number of real

notes in a melody is the result of TN(x), where

the function TN : Zk → Z is defined as follows:

TN(x) := number of elements xj greater than 42,

j = 1, . . . , k.

Definition 5 (Melody repetition of a melody). Let

x ∈ Zk be a melody such that ∃xj > 42.

The repeat melody y ∈ Zk of melody x is

the result of repeatMelody(x), where the function

repeatMelody : Zk → Zk is described in the

algorithm 1.

Algorithm 1 repeatMelody function to get the

repetition melody of a melody.

1: procedure repeatMelody(x)

2: Let m, j ∈ N, saveNote ∈ Z, y ∈ Zk.

3: m← min
j=1,...,k
xj>41

(j).

4: saveNote← xm.

5: j ← m+ 1.

6: y ← x.

7: while j ≤ k do
8: if xj == 41 ∨ xj == 42 then
9: yj ← saveNote.

10: else
11: saveNote← xj .

12: end if
13: j ← j + 1.

14: end while
15: return y.

16: end procedure

Definition 6 (Simultaneously Pressed Notes). Let

x,w ∈ N be two MIDI notes, the notes x,w are said

to be simultaneously pressed notes if the result

of PSN(x,w) is one, where the function PSN is

defined as follows:

PSN(x,w) :=

{

1, if (x > 42) ∧ (w > 42),

0, otherwise.

Definition 7 (Proper note for the melody). Let x
be a MIDI note, let w ∈ Zk be a melody such

that ∃wj > 42.

Let ND(w) = {(xi−1) mod 12 ∀xi > 42}
⋃

{(xi+
1) mod 12 ∀xi > 42}. x is said to be a suitable note
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for the melody w if the result of MF(x,w) is equal to

one, where the function MF is defined as follows:

MF(x,w) :=

{

1, if x /∈ ND(w),

0, otherwise.

Using the definition 5, the following definition is

built, which will return a vector, where each of its

components will be −1, 0 or 1.

Definition 8 (SDR function). Let x ∈ Zt be a

melody with t ≥ 2, such that ∃xj > 42. Let

D : Zt−1 → Zt the first difference function. Let

S : Zt−1 → Zt−1 a vector with the signs of the

corresponding elements of argument. The function

SDR : Zt → Zt−1 is defined as follows:

SDR(x) := S(D(repeatMelody(x))).

Definition 9 (First note of the melody is the root

note of the chord). Let x ∈ Zk be a melody such

that ∃xj > 42, let w ∈ Zq be a chord. The melody

x is said to have as its first note the root note of

the chord w if the result of FirstNoteFC(x,w) is

equal to one, where the function FirstNoteFC is

described below:

FirstNoteFC(x,w) :=



















1, if xr mod 12 = w1,

r = min
xj>42

j=1,...,k

(j),

0, otherwise.

Definition 10 (MIDI note on chord). Let x be a

MIDI note, let w ∈ Zq be a chord. The MIDI note

x will be a note of the chord w if the result of

NInChord(x,w) is equal to one, where the function

NInChord is defined as follows:

NInChord(x,w) :=











1, if x mod 12 = wj ,

for some j = 1, . . . , q,

0, otherwise.

Using the definition 10, the following definition is

constructed as follows.

Definition 11 (At least fifty percent of MIDI notes

are chord notes). Let x ∈ Zk be a melody, let w ∈
Zq be a chord. At least fifty percent of the notes of

the melody x are said to be notes of the chord w if

the result of FPN(x,w) is equal to one, where the

function FPN is defined as follows:

FPN(x,w) :=















1 if

∑

xj>42
NinChord(xj ,w)

TN(x)
≥ 0.5,

0 otherwise.

Using the definitions 10 and 4, the following

definition is constructed as follows, which allows to

know if the MIDI notes of a melody are notes of a

given chord.

Definition 12 (Most MIDI notes in the melody

are chord notes). Let x ∈ Zk be a melody, let

w ∈ Zq be a chord. The MIDI notes of the

melody x are said to be mostly chord notes if

the result of MPN(x,w) is equal to one, where:

MPN(x,w) :=











1, if
∑

xi>42

NinChord(xi,w) ≥ TN(x)− 1,

0, otherwise.

Definition 13 (Beats of a melody). Let x ∈ Zk, the

beats of the melody x will be the result of BT(x),
where the function BT : Zk → Zk is defined below:

BT(x) := y, y ∈ Zk,

where yj , para j = 1, . . . , k, it’s subject to:

yj =











1 if xj > 42,

0 if xj = 42,

−1 if xj = 41.

Definition 14 (Total notes of the melody in the

C Major scale). Let x ∈ Zk be a melody, the

total number of notes of the melody x that are in

the C Major scale S = {0, 2, 4, 5, 7, 9, 11} is the

result of TNS(x), where the function TNS is defined

as follows:

TNS(x) :=
∑

xj>42
xj mod 12 ∈ S

1. (3)

Definition 15 (Neighbor Ornament). Let x ∈ Z3

be a melody, let u,w ∈ Zq chords. x is said to be

an embroidery motif for the chords u,w if the result

of isNeighbor(x,u,w) is equal to one, where the

function isNeighbor is defined as follows:
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isNeighbor(x,u,w) :=























































1, if

(x1 > 42) ∧ (x2 > 42)
∧ (x3 > 42)
∧ (1 ≤ |x1 − x2| ≤ 2)
∧ (x1 = x3)
∧ (x1 mod 12 = uj ,

for some j=1,. . . ,q),
∧ (x3 mod 12 = wℓ,

for some ℓ=1,. . . ,q),

0, otherwise.

Definition 16 (Escape ornament). Let x ∈ Z3 be

a melody, let u,w ∈ Zq be two chords. x is said to

be an escape ornament for the chords u,w if the

result of isEscape(x,u,w) is equal to one, where

the function isEscape is defined as follows:

isEscape(x,u,w) :=































































1, if

(x1 > 42) ∧ (x2 > 42)
∧ (x3 > 42)
∧ (1 ≤ |x1 − x2| ≤ 2)
∧ (|x2 − x3| > 2)
∧ ((x2 − x1)(x3 − x2) < 0)
∧ (x1 mod 12 = uj ,

for some j=1,. . . ,q)
∧ (x3 mod 12 = wℓ,

for some ℓ=1,. . . ,q),

0, otherwise.

Definition 17 (Cambiata ornament). Let x ∈ Z3 be

a melody, let u,w ∈ Zq be two chords. x is said to

be a cambiata ornament for the chords u,w if the

result of isCambiata(x,u,w) is equal to one, where

the function isCambiata is defined as follows:

isCambiata(x,u,w) =































































1, if

(x1 > 42) ∧ (x2 > 42)
∧ (x3 > 42)
∧ (1 ≤ |x2 − x3| ≤ 2)
∧ (|x1 − x2| > 2)
∧ ((x2 − x1)(x3 − x2) < 0)
∧ (x1 mod 12 = uj ,

for some j=1,. . . ,q)
∧ (x3 mod 12 = wℓ,

for some ℓ=1,. . . ,q),

0, otherwise.

Definition 18 (Passing tone ornament). Let x ∈ Z3

be a melody, let u,w ∈ Zq be two chords. x is

said to be a passing ornament for the chords u,w
if the result of isPassingTone(x,u,w) is equal to

one, where the function isPassingTone is defined

as follows:

Algorithm 2 countAppoggiatura function to obtain

the total number of appoggiatura ornaments given

a list of L chords.

1: procedure countAppoggiatura(w,x,L)

2: Let possible, j, found,C1, k,m ∈ Z, s ∈ R.

3: found← 0.

4: possible← bp
2 .

5: s← 0.

6: j ← 0.

7: while j < possible do
8: k ← ⌊2j/p⌋+ 1.

9: m← wk.

10: C1 ← Lm.

11: y ← x(2j+1: 2j+2).

12: if isAppoggiatura(y,C1) == 1 then
13: found← found+1.

14: end if
15: j ← j + 1.

16: end while

17: s←
found

possible
.

18: return s.
19: end procedure

isPassingTone(x,u,w) =































































1, if

(x1 > 42) ∧ (x2 > 42)
∧ (x3 > 42)
∧ (1 ≤ |x2 − x3| ≤ 2)
∧ (1 ≤ |x1 − x2| ≤ 2)
∧ ((x2 − x1)(x3 − x2) > 0)
∧ (x1 mod 12 = uj ,

for some j=1,. . . ,q)
∧ (x3 mod 12 = wℓ,

for some ℓ=1,. . . ,q),

0, otherwise.

Definition 19 (Appoggiatura ornament). Let x ∈
Z2 be a melody, let w ∈ Zq be a chord. The

melody x is said to be an appoggiatura ornament

for the chord w if the result of isAppoggiatura(x,w)
is equal to one, where the function isAppoggiatura
is defined as follows:

isAppoggiatura(x,w) :=























1, if

(x1 > 42) ∧ (x2 > 42)
∧ (1 ≤ |x1 − x2| ≤ 2)
∧ (x2 mod 12 = wj ,

for some j=1,. . . ,q)

0, otherwise.

Using definition 19, algorithm 2 is defined,

which will be used to count the total appoggiatura

ornaments of a given melody.
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Algorithm 3 countThree function to get the total of

three note embellishments given a function J and

a list of chords L.

1: procedure countThree(w,x, J ,L)

2: Let possible, j, found, k, ℓ,m1,m2 ∈ Z, s ∈
R, y ∈ Z3,C1,C2 ∈ Zq.

3: found← 0.

4: possible← pb−2
2 .

5: s← 0.

6: if possible > 0 then
7: j ← 0.

8: while j < possible do
9: k ← ⌊2j/p⌋+ 1.

10: ℓ← ⌊(2j + 2)/p⌋+ 1.

11: m1 ← wk.

12: m2 ← wℓ

13: C1 ← Lm1
.

14: C2 ← Lm2
.

15: y ← x(2j+1:2j+3).

16: if J(y,C1,C2) == 1 then
17: found← found+1.

18: end if
19: j ← j + 1.

20: end while

21: s←
found

possible
.

22: end if
23: return s.
24: end procedure

Definition 20 (Total anticipation ornaments). Let

x, y ∈ Zbp be two melodies. The total

anticipation ornaments for the melody x and the

harmony y is the result of the countAnticipation
function, where the countAnticipation function is

defined as follows:

countAnticipation(x, y) :=

b−1
∑

j=1

1 such that:

(

PSN(xB(j)p , yB(j+1)1) = 1
)

∧
(

xB(j)p = yB(j+1)1

)

.

Definition 21 (Melody ornaments). Let: x, y ∈ Zbp

be two melodies, let w ∈ Zb be a vector containing

the chord indices for each bar. Let: L be a

chord list. The total ornaments for the melody x
is the result of MOrnaments(w,x,L), which uses

definitions 15, 16, 17, 18 20 and algorithms 2, 3.

The function MOrnaments is defined as follows:

MOrnaments(w,x, y,L) :=
1

6

(

countThree(w,x,

isNeighbor,L) + countThree(w,

x, isEscape,L) + arg1(w,

x, isCambiata,L)

+ countThree(w,x,

isPassingTone,L)

+ countAppoggiatura(w,x,L)

+ countAnticipacion(x, y)

)

.

Definition 22 (Elongation melody). Let x ∈ Zk be

a melody, x is said to be a elongation melody if

elongation(x) is equal to one, where the elongation

function is defined as follows:

elongation(x) :=











1 if x1 > 42

∧ (xj = 41, ∀j = 2, . . . , k),

0 otherwise.

Definition 23 (Happiness per bar of the song). Let:

L =([0, 4, 7]T , [2, 5, 9]T , [4, 7, 11]T , [5, 9, 0]T ,

[7, 11, 2]T , [9, 0, 4]T , [11, 2, 5]T , [0, 4, 7, 10]T ,

[2, 5, 9, 0]T , [4, 7, 11, 2]T , [5, 9, 0, 3]T , [7, 11, 2, 5]T ,

[9, 0, 4, 7]T , [11, 2, 5, 8]T )

Be a list with major and seventh chords. Let:

M =[1, −2, −3, 2, 3, −1, −0.5, 1,

− 2, −3, 2, 3, −1, −0.5]T ,

Be a vector with the happiness level of each

chord corresponding to L. Let: w ∈ Zb Be a vector

containing the indices of the corresponding chord

for bar j, for j = 1, . . . , b. The happiness per bar

of the song is the result of Happy(w), where the

function Happy is defined as follows:

(w) :=
1

b

b
∑

j=1

Mwj
.
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Definition 24 (Harmony ornaments). Let y ∈ Zbp

be a melody, let w ∈ Zb be a vector containing

the chord indices for each bar, let L be a list of

chords. The total ornaments for the harmony y
is the result of HOrnaments(w,x,L), where the

function HOrnaments is defined as follows:

HOrnaments(w, y,L) :=
1

5

(

countThree(w, y,

isNeighbor,L)

+ countThree(w, y, isEscape,L)

+ countThree(w, y,

isCambiata,L)

+ countThree(w, y,

isPassingTone,L)

+ countAppoggiatura(w, y,L)

)

.

5 Machine Learning

The third component of the F function was built

from a machine learning model. To make the

model, 262 songs divided into four genres (classic,

film, pop and rock) were used. Each of these songs

have two melodies (one for the treble and one for

the bass).

Subsequently, 5 features (repeated notes C1,

most common pitch class prevalence C2, melodic

interval histogram C3, pitch class variety C4 and

pitch class distribution C5) were extracted from

each of these songs using music21 [9] with the

JSymbolic [15] submodule.

Later, K-Means was used to obtain two

clusters of the features obtained, with this

classification, musical songs were divided into

two genres: classical genre in terms of repetition

of notes and contemporary genre in terms of

freedom of movement.

Then, an AdaBoost regressor

h1(C1, C2, C3, C4, C5) with 1 estimator was performed

to model these two clusters, where 0 indicates that

it corresponds to the first cluster (classic) and 1 to

the second cluster (freedom of movement).

Now, since the music21 function to obtain the

five features requires a MIDI file or a stream

object, a function h2(y, z) = [C1, C2, C3, C4, C5]
T ,

y, z ∈ Zbp was used to convert the song from our

representation to a stream file. Since the obtained

AdaBoost regressor model yields values greater

than one and less than zero, the function g4 was

used as follows:

g4(y, z) =

{

0.5 if 0 < h1 (h2(y, z)) ∨ h1 (h2(y, z)) > 1,

h1 (h2(y, z)) otherwise.

6 Optimization Problem

The generation of the desired melodies has been

modeled using the following problem:

MinimizeF (x) = [g1, g2, g3]
T , with x ∈ Zb+2bp.

For convenience, the vector x is presented as the

concatenation of three vectors w ∈ Zb and y, z ∈
Zbp as x = (w, y, z).

For convenience in writing for some parts of

the optimization problem, the notation described

in the 1 definition will be used. To model g1, the

definitions 4, 14, 21, 23 and 24 were used.

To model g2 the definitions 4, 21, 22 and 24 were

used. To model g3 the definitions 8, 13 and g4
function from section V were used. The functions

g1, g2 and g3 are minimized simultaneously and are

defined as:

g1(w, y, z) = 3−
TNS(y) + TNS(z)

TN(y) + TN(z)

−MOrnaments(z, y)−Happy(w)

−HOrnaments(y).

g2(y, z) = 2 +MOrnaments(z, y)

+ HOrnaments(y)

+
TN(y) + TN(z)

2bp

−

bp−
p
2
+1

∑

j=1

elongation(z(j:j+ p
2
−1))

−

bp−
p
2
+1

∑

j=1

elongation(y(j:j+ p
2
−1)).
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g3(w, y, z) =

b
∑

j=2

∥BT (yB(j))− BT(yB(1))∥

+

b
∑

j=2
j par

∥BT(zB(j))− BT(zB(j−1))∥

+

b
∑

j=2

∥ SDR(yB(j))− SDR(yB(1))∥

+

b
∑

j=2
j par

∥ SDR(zB(j))− SDR(zB(j−1))∥

+ g4(y, z).

In this way, the vector w will have as components

the indices of the chords of each bar, the vector y
will have the notes of the harmony and the vector

z will have the notes of the melody of the song.

Using the definitions 2, 3, 4, 7, 9, 11, 12 and 6,

the optimization problem is presented subject to

the following constraints:

– b ∈ N, p ∈ {2, 4, 8, 16}.

– ∃yj > 42 for j = 1, . . . , bp, ∃zℓ > 42, for

ℓ = 1, . . . , bp.

– L = (L1, . . . ,Lr), where Lj is a chord, for

j = 1, . . . , r.

– w1 = 1,wb = 1.

– 1 ≤ wj ≤ r, for j = 2, . . . , b− 1.

– 41 ≤ yj ≤ 88, for j = 1, . . . , bp.

– 41 ≤ zj ≤ 88, for j = 1, . . . , bp.

– yj < zj , ∀yj , zj such that PSN(yj , zj) = 1.

– NS(y) + NS(z)− 2 = 0.

–

b−1
∑

j=0

p
∑

k=1

MF(y(jp+k), zB(j))− TN(z) = 0

–

b
∑

j=1

FirstNoteFC(yB(j),Lj)− b = 0.

–

b
∑

j=1

FPN(zB(j),Lj)− b = 0.

–

b
∑

j=1

MPN(yB(j),Lj)− b = 0.

7 Experimental Results

The NSGA-II multi-objective evolutionary

algorithm [12] was used to solve the constrained

bio-objective optimization problem described in the

previous section.

For the parameters of the NSGA-II algorithm, a

population of 100 individuals was used, a cross of

2b points [26] with crossover probability pc = 0.75,
a mutation with the simulated binary crossover

distribution [3, 13], with a mutation probability of

pm = 0.05 and η = 1.

For the implementation of the code, C++, Python

3, pymoo [4] scikit-learn [24] and music21 [9] were

used. For all the results, the list of chords L
presented in the definition 23 was used, where

L has the major and seventh chords of the C

Major scale.

Different tests were carried out varying the

parameters b and p, the results obtained have been

placed on the next page 1, where some of the

solutions found in the Pareto front are shown2

obtained by the algorithm for each execution,

where it is possible to appreciate the difference

between greater happiness, greater minimalism

and different genre with patron described in the

functions g1, g2 and g3 of the optimization problem.

The previous page will also include a video

with the Pareto fronts obtained in each execution

after optimization process, rotating the graph for

better viewing. It should be noted that the songs

obtained in the Pareto fronts of each execution are

very interesting and creative, so the approach to

the problem of musical composition using musical

patterns and musical dimensions seems to be a

promising way to expand the results and research.

1natanvilchis.org/micai2022/
2The Pareto front [20] is the set that gives a solution to a

multi-objective problem.
For reasons of space, these definitions have been left out of

this text.
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Fig. 1. Execution 1: Pareto front obtained, different views

Fig. 2. Execution 2: Pareto front obtained, different views

It should be noted that given the task of

converting each of the songs in the population to

a stream object in real time in order to extract

the features using music21 with JSymbolic, it is

relatively time consuming, taking between 10 to

40 seconds to complete each generation and its

evaluations. corresponding.

For example, for execution 1, the parameters

b = p = 8 and 6600 generations were used.

In the results shown on the page you can see

very interesting results, for example, the extreme

corresponding to the minimization of the third

component of the function F shows a clear

harmonic and rhythmic pattern.

Now, the extreme corresponding to the

maximization of happiness shows a melodic

play between the fourth and fifth bars. Finally,

the extreme corresponding to the maximization

of minimalism can be seen that the previously

defined ornaments are avoided in a greater way.

The figure 1 shows the Pareto front obtained for

execution 1 after the optimization process with the

mentioned parameters and generations.

It can be seen that there are high values

for the g3 function, where it indicates that the

genre can be freer with respect to rhythmic and

harmonic patterns.

In addition, the figure 1 highlights the conflict

between the functions g1, g2 and g3, showing

that there is a relationship between happiness,

minimalism and the choice of musical genre. Now,

for execution 2, the parameters b = p = 8 were

used, with 11, 200 generations.

Very promising results are shown in the results

shown on the previous page; for example, with

respect to function g3, a clear difference is verified

between the genre of the two songs, where one

has a pattern at each bar and the other is freer.

In the figure 2 it can be seen that there are four

songs whose value in the objective function F are
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minimum for the third function; in addition, these

songs have a value between 0.4 and 0.6 for the

function g1; that is, the emotion level of happiness

is low, since the higher g1 value, less happiness

level in the song.

For execution 3, the parameters b = 8 and p = 4
with 21, 700 generations were used. As you can

see in the videos on the previous page, they are

different between the genres, where one is calmer

in the harmonic part and the other has much more

movement.

Now, the difference between decorations

between the extremes of happiness and

minimalism are also remarkable.

In figure 3 you can see a less disperse Pareto

front compared to previous executions. In addition,

the compromise between the functions g1, g2 and

g3 can be observed.

In figure 4, you can see the Parallel Coordinate

Plots of each execution, where each line

represents a solution and its respective evaluation

in functions g1, g2 and g3.

It can be seen that between the functions g1
and g2 there is a conflict: if the value of g1
increases, then the value of g2 decreases and vice

versa; in other words, if the level of happiness

increases then the level of minimalism decreases

and vice versa.

Now, an interesting behavior can be observed

between a) and b) of figure 4, where, despite

having the same parameters (b = p = 8), there are

different densities for the lines between g2 and g3.

This suggests that you can have songs from a

different musical genre but with the same levels of

happiness and minimalism.

Finally, in c), figure 4, there is an remarkable

inverse relationship between happiness and

minimalism. In another way, the lines between the

function g2 and g3 have a lower density compared

to a) and b).

This suggests that for songs with similar levels

of happiness and minimalism, different variations

of musical genres are possible.

8 Conclusions

In this work, the automatic musical composition

problem was modeled through optimization

problem. The aim was to create melodies where

a set of compromise solutions (Pareto front) was

established regarding the level of happiness, as

the first objective function, simplicity of ornaments

as the second optimization function and the

musical genre as a third objective. For the creation

of the model, emotional musical theory and related

works were used, promising results were obtained

by finding auditory diverse elements on the Pareto

front in each execution.

The graphs obtained from the Pareto fronts

shown in figures 1, 2 and 3 mainly show that there

is a relationship between the functions g1, g2 and

g3; In addition, the larger the values of b,p (as

in figures 1 and 2), the dispersion of the points

is greater, since the search space is expanding,

compared to figure 3, where the dispersion of the

dots is smaller, which appears to form a path.

The dispersion of the points in the Pareto fronts is

a good indicator that the functions g1, g2 and g3
have a relationship between them and also explore

different musical aspects.

In figure 4 it can be seen that there is a conflict

between the functions g1, g2 and g3; In other

words, to compose a song, it must be considered

that increasing one musical aspect (happiness,

minimalism or musical genre) will affect the values

of other aspects.

We sought to simplify the most important

aspects of music, trying to maintain a balance

between the creative capacity of the results and

avoiding complexity in the problem; for example,

for the musical patterns the first four terms of the

function were made.

Now, the use of machine learning shows an

improvement compared to using the two objectives

of the F function only; however, the runtime feature

extraction of the optimization algorithm is a costly

task since you have to convert each song to a

stream object or MIDI file to use JSymbolic.
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Fig. 3. Execution 3: Pareto front obtained, different views

Fig. 4. Parallel Coordinate Plots of the three executions: a) execution 1, b) execution 2, c) execution 3

9 Future Work

The results obtained in the present work are

interesting and promising, for this purpose three

ways are proposed as future work to improve the

results given the learning trajectory with this work:

– Change the song representation to one

that allows multiple melodies, for example

multidimensional ordered set used in [17]. With

this improvement proposal, it is intended to

generalize a song in a better way, allowing to

explore more about the space of polyphonic

songs to improve the results. However,

changing the representation may have to

solve other problems, such as identifying and

separating the notes corresponding to each

melody for individual analysis (melody structure,

melody patterns, ornaments, emotional level,

among others).

– Use machine learning to extract rhythmic

patterns, melodic patterns, and patterns that

evoke some emotion. With this improvement

proposal it is intended to improve the structure of

the song. To make this possible, it is necessary

to have a fast pattern detection algorithm, in

terms of complexity. To make this possible, it

is recommended to study in depth the existing

algorithms [16, 6, 18, 2] to make an improvement

that allows reducing their complexity.

– Study emotional music theory [11] in depth to

model each dimension mathematically and its

interaction in the evocation of emotions.
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