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Abstract. This paper presents a case study where the 
interdisciplinary approach between artificial intelligence, 
specifically genetic algorithms, and discrete 
mathematics has been instrumental in verifying a 
conjecture in graph theory. The focus of our research lies 
in the Minimum Dominating Set (MDS) problem, which 
involves identifying a dominating set with the minimum 
cardinality for a given graph. While previous works have 
primarily aimed at utilizing genetic algorithms to 
efficiently find satisfactory solutions to the MDS problem, 
our study aims to discover the optimal solution. The 
Rank GA algorithm employed in our work possesses the 
ability to escape local optima while simultaneously 
conducting local search to refine the best available 
solution. Since the MDS problem is known to be NP-
hard, the characteristics of Rank GA, coupled with the 
identification of regularities in one of the solutions, 
enabled us to verify the conjecture for graphs comprising 
30, 80, 312, and 800 vertices. This research serves as a 
testament to the versatility of genetic algorithms, 
showcasing their utility not only in practical problem-
solving but also in tackling theoretical challenges. 

Keywords: GA for theoretical problems, rank GA, 
genetic algorithms, minimum dominating set. 

1 Introduction 

Genetic Algorithms (GAs) have gained significant 
popularity for solving practical problems; however, 
their application in pure mathematics remains 
relatively limited. In this study, we present a 
compelling case where the Rank Genetic 
Algorithm [1] has facilitated the verification of a 
conjecture within the realm of discrete 
mathematics, particularly in the field of 
graph theory. 

The Minimum Dominating Set (MDS) problem 
holds great significance in algorithmic graph 

theory, finding applications in various domains and 
prompting extensive research endeavors [2]. A 
vast array of literature, encompassing articles, 
books, and surveys, has been dedicated to the 
MDS problem [3, 4]. Notably, the MDS problem 
and its variants find prominent applications in 
communication networks [5], and social networks 
[6, 7, 8]. For further exploration of the MDS 
problem's application areas, pertinent works can 
be referred to in [9]. 

The MDS problem is widely acknowledged to 
be NP-hard, prompting significant research efforts 
in developing heuristics to attain high-quality 
solutions within a reasonable timeframe. 
Noteworthy works in this domain can be found in 
[10, 11]. Numerous studies have been undertaken 
to devise efficient algorithms for solving the MDS 
problem, with the aim of improving upon the trivial 
bound of 𝑂(

ଶ௡

√௡
) [12]. 

Consequently, most works employing heuristic 
methods for MDS focus on finding good solutions 
as quickly as possible. In contrast, our objective is 
to uncover the best possible solution through the 
utilization of a genetic algorithm. Specifically, we 
seek real solutions that aid in verifying the validity 
of a theoretical conjecture. 

To accomplish this, we employed the Rank GA 
due to its reliability in escaping local optima while 
conducting a local search to refine the best solution 
obtained thus far. Through the utilization of Rank 
GA, we generated empirical data that aids in 
determining an upper bound for the cardinality of 
the minimal dominating set in incidence graphs of 
classical generalized quadrangles. 

The paper follows the following structure: In 
Section 2, we provide an overview of previous 
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works where Genetic Algorithms (GAs) have been 
successfully employed to solve mathematical 
problems. Section 3 presents a detailed 
explanation of the conjecture that is to be verified 
in our study. In Section 4, we describe the Rank 
GA and elaborate on its utilization in determining 
the minimal dominating set of a graph. The 
experimental results are presented in Section 5, 
while the conclusions drawn from our research are 
outlined in Section 6. 

2 Background 

Genetic Algorithms (GAs) are widely recognized 
for their utility in engineering problems, but it is 
important to highlight their applicability in 
advancing mathematical research as well [13]. 

For instance, Jong and Spears [14] 
demonstrated that GAs can be effectively 
employed to solve NP-Complete problems. 
Additionally, Jakobs [15] applied a GA to tackle a 
geometry problem, while Pourrajabian et al. [16] 
successfully utilized a GA to solve nonlinear 
algebraic equations. In more recent studies, 
Cervantes et al. [17] utilized a Rank GA to enhance 
an upper bound that governs the rainbow 𝑘-
connectivity of (𝑘; 6)-cages. 

In traditional usage, Genetic Algorithms (GAs) 
are typically employed to optimize a given fitness 
function by exploring a solution space and aiming 
to find the optimal solution. However, in the study 
by García-Altamirano et al. [18], the Rank GA 
underwent a unique adaptation: it was designed to 
exclusively perform Hajós operators with the 
objective of finding a path to reach a 
predetermined resulting directed graph. This 
represents a notable departure from the 
conventional usage of GAs. 

The algorithm started from an initial state where 
each individual represented a starting digraph, 
while the goal digraph that the algorithm aimed to 
reach was known in advance. The intriguing aspect 
was to uncover the method by which the Rank GA 
traversed the solution space to achieve the final 
state. By closely analyzing the algorithm's steps in 
the specific case, a general approach applicable to 
all cases was discovered. 

Indeed, showcasing the potential contributions 
of Genetic Algorithms (GAs) in the realm of 

mathematics is not only valuable but also inspiring. 
Demonstrating how GAs can be effectively 
employed in mathematical problems can serve as 
a catalyst for progress in other areas where 
scientific advancements are primarily theoretical. 
By highlighting the application of GAs in 
mathematics, researchers can explore new 
avenues and innovative approaches to solve 
complex theoretical problems. 

This interdisciplinary approach can lead to 
novel insights, methodologies, and solutions, 
bridging the gap between theoretical and practical 
domains. Thus, presenting such works can provide 
motivation and inspiration for researchers in 
various fields to explore the potential of GAs 
beyond their traditional applications. 

3 The Conjecture to be Verified 

In this section, we introduce key concepts that 
provide the necessary context for the conjecture 
that was verified using the Rank GA. 

3.1 Generalized Quadrangle 

Let k and r be positive integers greater than 2. A 
Generalized Quadrangle 𝐶𝐺(𝑘 − 1, 𝑟 − 1) refers to 
a system comprising lines and points, where an 
incidence relation is established based on the 
following axioms: 

1. Two lines intersect at most in one point. 

2. At most one line passes through any two points. 

3. Exactly r lines pass through each point. 

4. Each line contains exactly k points. 

5. If a point p is not contained in a line l, there exists 
precisely one line that passes through p 
and intersects l. 

These axioms define the fundamental 
properties of a Generalized Quadrangle, providing 
the framework for studying and analyzing 
their characteristics. 

Fig. 1 illustrates the classical Generalized 
Quadrangle 𝐺(𝑞, 𝑞) for the specific case of q = 2. In 
this case, the values of r and k are both equal to 3. 

Considering a Generalized Quadrangle 
𝐺(𝑞, 𝑞) with q as a prime number, the incidence 
relation between points and lines can be depicted 
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as a bipartite graph, where the points and lines 
correspond to vertices of the graph and a point is 
adjacent to a line if they are incident. The number 
of vertices in each part of the bipartite graph can 
be determined using expression (1): 

𝑞ଷ + 𝑞ଶ + 𝑞 + 1. (1) 

Fig. 2 shows the incidence bipartite graph for 
the classical Generalized Quadrangle 
𝐶𝐺(𝑞, 𝑞)  𝑞 =  2. 

3.2 The Minimum Dominating Set Problem 

The Minimum Dominating Set (MDS) problem 
revolves around identifying a dominant set in a 
given graph G. A graph G is defined as a set of 

vertices V and a set of edges E, denoted as 𝐺 =
(𝑉, 𝐸). In the context of the MDS problem, a 
dominant set is a subset D of V, where every vertex 
that does not belong to D is connected to (at least) 
one vertex in D through an edge in E. To illustrate 
this concept, Fig. 3 showcases examples of 
various dominant sets for a given graph. 

Dominating Set (Mathematical Definition): 
Given a simple undirected graph 𝐺 = (𝑉, 𝐸), where 
V represents the set of vertices and E represents 
the set of edges, a subset D of vertices D ⊆ V is a 
dominating set of G if, for every vertex u in V \ D, 
there exists a vertex x in D that is adjacent to u. In 
other words, every vertex not in D is adjacent to at 
least one vertex in D. 

 

Fig. 1. Classical generalized quadrangle 𝐶𝐺(𝑞, 𝑞)  𝑞 = 2 

 

Fig. 2. Incidence graph of the classical generalized quadrangle 𝐶𝐺(𝑞, 𝑞)  𝑞 = 2 

 

Fig. 3. Examples of Dominant Sets in a Graph 
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Vertex Domination: A vertex u is said to 
dominate a vertex v if either u = v or u is adjacent 
to v. This concept signifies the relationship 
between vertices within the context of domination 
in the graph. 

Minimal Dominating Set (Mathematical 
Definition): The minimal dominating set of a graph 
G is a dominating set D such that removing any 
element from D would render it non-dominant. In 
other words, for every element x in D, the set D - 
{x} is not a dominating set. 

Domination Number: The domination number 
𝛾(𝐺),  of a graph G is defined as the cardinality 
(size) of the smallest dominating set in G. It 
represents the minimum number of vertices 
required for a set in G to be a dominating set. 

3.3 The Conjecture 

The conjecture proposes that for a prime number 
q, the incidence bipartite graph associated with the 
classical generalized quadrangle 𝐶𝐺(𝑞, 𝑞)  
possesses an upper bound on the domination 
number 𝛾(𝐺). The domination number, denoted as 
𝛾(𝐺), represents the minimum number of vertices 
required to form a dominating set in the graph G. 

According to the conjecture, the upper bound 
for the domination number 𝛾(𝐺) in the incidence 
graph associated with 𝐶𝐺(𝑞, 𝑞) can be determined 
using Equation (2): 

γ(𝐺) = 2𝑞ଶ + 1. (2) 

Equation (2) provides an expression that 
bounds the value of the domination number in the 
incidence bipartite graph associated with the 
classical generalized quadrangle 𝐶𝐺(𝑞, 𝑞), where q 
is a prime number. The conjecture suggests that 
the domination number does not exceed this upper 
bound. Further investigation and verification are 
required to confirm the validity of this conjecture. 

4 Rank Genetic Algorithm for Finding 
Minimal Dominating Set 

In the field of evolutionary computation, there is a 
fundamental trade-off between exploration and 
exploitation. If exploitation dominates, the 
population converges prematurely, restricting the 
search to a small subspace of the search space. 

This can lead to the algorithm getting stuck in a 
local optimum, resulting in suboptimal solutions. 
On the other hand, excessive exploration leads to 
searching in a large region, making it difficult for 
the algorithm to converge and obtain a solution. 

The Rank Genetic Algorithm (Rank GA) [1] is a 
heuristic approach designed to strike a balance 
between exploration and exploitation. It achieves 
this by applying genetic operators that allow for 
both local and global search simultaneously. In the 
Rank GA, individuals within the population are 
evaluated and ranked from best to worst based on 
their fitness just before applying selection, 
recombination, and mutation operators to 
each individual. 

The operators are applied to individuals based 
on their current rank. The highly ranked individuals 
tend to remain unchanged and primarily recombine 
with better-performing individuals, promoting the 
exploitation of favorable genetic traits. 

On the other hand, lower-ranked individuals 
tend to recombine with worse-performing 
individuals, facilitating the exploration of distant 
genotypes in the search space, thus enabling the 
escape from local optima in the fitness landscape. 

The probability of mutation assigned to each 
individual follows a monotonously increasing 
pattern according to their rank in the population, 
which is determined by their fitness. This means 
that individuals with higher ranks have a lower 
probability of mutation, while individuals with lower 
ranks have a higher probability. 

In [19], it has been demonstrated that the Rank 
GA outperforms a simple GA in challenging fitness 
landscapes, especially those with binary string 
genotypes, where a good balance between 
exploration and exploitation is crucial. This balance 
is particularly necessary when the fitness 
landscape contains numerous local optima, and a 
modular solution can be constructed 
through evolution. 

In such cases, finding each module's solution 
may be challenging, requiring high exploration 
levels. Simultaneously, the integration of already 
found modules' solutions necessitates high 
exploitation levels within the algorithm. 

By effectively balancing exploration and 
exploitation, the Rank GA offers superior 
performance in difficult fitness landscapes, 
providing a robust approach for problems that 

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 1089–1097
doi: 10.13053/CyS-27-4-4782

Jorge Cervantes-Ojeda, María C. Gómez-Fuentes, Julian A. Fresán-Figueroa1092

ISSN 2007-9737



 

require a good trade-off between exploration and 
exploitation in evolutionary computation. 

4.1 Solution Representation 

The Rank GA adopts a binary representation for 
solutions in this case. Each solution X in the 
population is represented as an array of Booleans, 
where the size of the array corresponds to the 
number of vertices in the graph. The order of the 
array follows a fixed arrangement that aligns with 
the vertices of the graph. 

In this representation, if the i-th vertex of the 
graph is included in the solution X, then the 
corresponding element xi in the array is set to 1. 
Conversely, if the i-th vertex is not part of the 
solution, xi is assigned a value of 0. 

4.2 Fitness Function  

To evaluate a solution X, we employ two metrics. 
Firstly, we use the metric k to evaluate the number 
of vertices in V(G) that are dominated by X. In this 
context, a larger value of k is desirable. Secondly, 
we consider the cardinality c of X, which represents 
the number of elements in X. Here, a smaller value 
of c is preferred. 

The fitness function to be maximized is defined 
by equation (3) as follows: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝑘 + 𝑐. (3) 

The fitness function combines the metrics of the 
number of dominated vertices (k) and the 
cardinality of the solution (c) into a single value. By 
maximizing the fitness function, we want to achieve 
solutions that dominate a larger number of vertices 
while minimizing the cardinality of the solution. This 
allows for the identification of solutions that strike a 
balance between domination and the size of the 
minimal dominating set. 

Note that with this fitness function, there is an 
element of neutrality that can be advantageous for 
the search process. For example, consider the 
scenario where the best individual has a fitness 
value of 50, with k = 80 and c = 30. In this case, 
another solution with k = 81 and c = 31 would be 
just as favorable for the algorithm. 

This implies that either solution could occupy 
the top position in the rank of solutions. At the top, 
they would be protected from being lost during the 

application of genetic operators, as per the Rank 
GA scheme, and the search would be “located” 
around that top solution. 

This neutrality aspect in the fitness function 
allows for a broader exploration of the search 
space. Rather than being strictly limited to search 
from a single current best solution, the search can 
shift its “center” between different neutral solutions, 
thus expanding the exploration to encompass 
nearby solutions to any of them. 

4.3 The Rank GA Operators 

The Rank GA follows a specific procedure, 
beginning with the random initialization of the 
population. Individuals are then evaluated and 
sorted from best to worst based on their fitness. 
The rank of the i-th individual in the sorted 
population, denoted as 𝑟௜, is determined using 
equation (4): 

𝑟௜ =
௜

ேିଵ
, (4) 

where i ranges from 0 to N-1, and N represents the 
number of individuals in the population. 

The Rank GA then applies the following 
operations iteratively until a stopping criterion 
is met: 

1. Rank Selection 
2. Sort and rank 
3. Rank Recombination 
4. Evaluation, sort and rank 
5. Rank Mutation 
6. Evaluation, sort and rank 

Rank Selection: Rank selection involves cloning 
individuals according to a two-step procedure. 

First, the desired number of clones, cloneNbr, 
is calculated for each individual i using 
equation (5): 

𝑐𝑙𝑜𝑛𝑒𝑁𝑏𝑟௜ = 𝑆 ∗ (1 − 𝑟௜)ௌିଵ. (5) 

Here, 𝑟௜ represents the rank of individual i, 
ranging from 0 to 1, and S corresponds to the 
selective pressure of the Rank Selection operator. 
The floor of 𝑐𝑙𝑜𝑛𝑒𝑁𝑏𝑟௜  is taken, resulting in the 
number of clones to generate for each individual i. 

Secondly, additional clones are produced as 
follows. The procedure initializes i=0. While the 
total number of clones is less than the original 
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number of individuals N, the fractional part of 
𝑐𝑙𝑜𝑛𝑒𝑁𝑏𝑟௜ is used as the probability of producing 
an extra clone of individual i. If a random number 
in the range (0,1) is lower than that probability, a 
clone of individual i is generated. The value of i is 
incremented modulo N to ensure it cycles through 
the individuals. The main idea in this step is to 
increase the likelihood of producing extra clones 
for individuals who lost a larger fractional part when 
the floor of 𝑐𝑙𝑜𝑛𝑒𝑁𝑏𝑟௜was taken in the first step. 

The selective pressure (S) determines the 
intensity with which the selection operator 
concentrates the population towards a single 
dominant genotype. Lower selective pressure 
allows for more genetic diversity to be preserved in 
the population after each application of the 
selection operator. 

By implementing Rank Selection, the Rank GA 
can effectively guide the cloning process, favoring 
individuals with higher ranks and promoting the 
retention and reproduction of genetic traits 
associated with higher fitness while maintaining 
some genetic diversity in the population. 

The adjustable selective pressure provides 
control over the concentration of individuals, 
influencing the balance between exploitation and 
exploration during the evolutionary process. 

Rank Recombination: The Rank Recombination 
operator forces mating between individuals with 
indexes i and i+1 in the sorted population, where i 
increases by 2. This strategy ensures that 
individuals mate with others that are nearby in 
terms of rank. The purpose is to prevent individuals 
from mating with those that are significantly 
different in rank. 

By doing so, the best individuals are 
safeguarded from being recombined with poorly 
performing ones, as such combinations could 
disrupt the advantageous gene value combinations 
present in the best individuals. In contrast, 
recombination between two high-performing 
individuals can result in the fusion of their 
respective already found building blocks of the 
optimal solution, potentially leading to the creation 
of improved offspring. 

Rank Recombination is done as uniform 
crossover with parent substitution. This means that 
all genes have an equal probability of being 
switched between parents, and the offspring 

always replaces the parents. The probability of 
switching genes, referred to as the switch 
probability (𝑝௦௪௜௧௖ ), is typically set to 0.5 as the 
recommended value. 

In the selection operator, a selective pressure 
value of S = 3 is commonly used. With S = 3, three 
clones of the fittest individual are generated. This 
approach ensures that the best-ranked clone has 
the opportunity to recombine with a clone of itself 
(the second-best ranked), thereby preserving the 
advantageous genetic traits present in the 
best individual. 

The third-ranked clone would recombine with 
the second-best individual (ranked fourth), which is 
expected to possess different chromosomes, 
resulting in the production of diverse offspring. This 
way, the Rank GA not only preserves the best 
individual but also allows for recombination with 
another high-performing individual. 

By employing Rank Recombination with a 
selective pressure value of S = 3, the Rank GA 
strikes a balance between preserving the 
advantageous genes of the best individual and 
introducing local search through recombination 
with other good individuals. This approach 
enhances the algorithm's ability to explore the 
search space effectively while retaining and 
propagating beneficial genetic traits. 

Rank Mutation: The probability of mutation 
assigned to each individual, denoted as 𝑝௜ is 
determined by a monotonic increasing function of 
their rank. The function is defined as follows: 

𝑝௜ =  𝑝௠௔௫ ∗ 𝑟௜
൬

୪୬(௣೘ೌೣ∗ீ)
୪୬(ேିଵ)

൰
. (6) 

In this equation, 𝑝௠௔௫  represents the maximum 
probability of mutation that can be assigned, 𝑟௜ is 
the rank of individual i, G is the size of the 
genotype, and N is the population size. 

The function assigns a mutation probability of 0 
to the best individual, 1/G to the second-best 
individual, and 𝑝௠௔௫  to the worst individual. As 
Rank Mutation is applied after Rank 
Recombination, it is highly likely that the first two 
individuals in the ranked list are identical. 

This means that the best individual remains 
unchanged (by mutation), while the second-best 
individual is likely to undergo exactly one mutation. 
This mechanism promotes exploration in the 
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immediate vicinity of that second individual which 
is likely to be a clone of the best. 

Conversely, poor-performing individuals 
undergo significant mutations to facilitate their 
escape from the basins of attraction of local 
optima. The larger mutations applied to these 
individuals ensure they can explore alternative 
regions in the search space and break free from 
suboptimal solutions. 

By employing Rank Mutation with a probability 
assigned based on the rank, the Rank GA 
combines the preservation of advantageous traits 
in the best individual with exploratory mutations in 
the neighborhood of the second individual. 
Simultaneously, it encourages significant 
mutations in poorly performing individuals to 
facilitate their exploration of alternative regions in 
the search space. 

This approach enhances the algorithm's ability 
to strike a balance between exploitation and 
exploration, promoting the search for optimal 
solutions in complex fitness landscapes. 

5 Results 

To verify the conjecture presented in equation (2), 
we conducted experiments on four bipartite graphs 
of generalized quadrangles with 30, 80, 312, and 
800 vertices. These cases come from the 
Incidence graph of the classical generalized 
quadrangle 𝐶𝐺(𝑞, 𝑞) with 𝑞 = 2,3,5 𝑎𝑛𝑑 7 
respectively. Using the Rank GA algorithm, we 
searched for a minimal dominating set in each of 
these incidence bipartite graphs of Classical 
Generalized Quadrangles. 

By determining the cardinality of the minimal 
dominating set, we were able to verify the 
conjecture stated in equation (2). 

For the graphs with 30 and 80 vertices, the 
Rank GA algorithm quickly obtained solutions with 
γ(G) equal to the conjectured result. However, for 
the graph with 312 vertices, although the solutions 
found were very close to the conjectured result, 
they were not exactly equal to it. 

Upon analyzing the solutions for 30 and 80 
vertices, we observed a particular pattern 
illustrated in Fig. 4. Specifically, on the left side of 
the bipartite graph, only the last bits were set to 1, 
while on the right side, only the first few bits were 

set to 1. This led us to consider the possibility of 
similar solutions existing in the case of 312 
vertices. We tested a solution where the number of 
bits set to 1 on the left side was determined by 
equation (7): 

൫ଶ௤మାଵ൯

ଶ
+

ଵ

ଶ
. (7) 

And the number of bits set to 1 on the right side 
was given by equation (8): 

(2𝑞ଶ + 1)

2
−

1

2
 (8) 

This solution turned out to be a valid dominating 
set when applied to the graph with 312 vertices. 
Encouraged by these findings, we further tested 
the case of 800 vertices, which also yielded a 
dominating set. These results strongly support the 
conjecture presented in equation (2). 

As shown in Table 1, the domination number 
𝛾(𝐺) predicted by the conjecture was found to be 
equal to the 𝛾(𝐺) obtained through the Rank 
GA algorithm. 

6 Conclusions 

In this research article, we explored the application 
of the Rank Genetic Algorithm (Rank GA) in 

 

Fig. 4. Regularity in one of the solutions 

Table 1. Comparison of 𝛾(𝐺) predicted by the 
conjecture and 𝛾(𝐺) obtained through Rank GA 

q # 
Vertices 

𝜸(𝑮) Conjecture 𝜸(𝑮) Rank 
GA 

2 30 9 9 
3 80 19 19 
5 312 51 51 
7 800 99 99 
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verifying a conjecture in the field of graph theory. 
Specifically, we focused on the Minimum 
Dominating Set (MDS) problem and its relationship 
with incidence graphs of classical Generalized 
Quadrangles. 

Through our investigation, we demonstrated 
that the Rank GA algorithm is capable of effectively 
searching for minimal dominating sets in some 
bipartite graphs. By evaluating the domination 
number 𝛾(𝐺) of the obtained solutions, we were 
able to verify the validity of the conjecture 
proposed for the incidence graphs of 
generalized quadrangles. 

Moreover, we were able to construct specific 
sets attaining the conjectured bound. This is an 
important result because many conjectures in 
mathematics do not have explicit constructions.  

Our results showed that the Rank GA algorithm 
performed very well in finding solutions that aligned 
with the conjectured domination numbers. For 
graphs with 30 and 80 vertices, the algorithm 
quickly identified solutions that matched the 
expected values. 

Although the solutions for the graph with 312 
vertices were very close to the conjectured result, 
they were not exact. However, further analysis 
revealed that the pattern observed in the smaller 
graphs also held true for the larger graphs, 
supporting the conjecture. 

The use of the Rank GA algorithm allowed us 
to strike a balance between exploration and 
exploitation, ensuring efficient search capabilities 
in the fitness landscapes of the MDS problem. The 
rank-based selection, recombination, and mutation 
operators employed in the Rank GA algorithm 
provided a robust framework for navigating the 
search space and escaping local optima. 

The experimental results presented in this 
study, along with the consistent agreement 
between the conjectured domination numbers and 
those obtained through the Rank GA algorithm, 
validate the effectiveness of using genetic 
algorithms for theoretical problems in graph theory. 

The Rank GA algorithm demonstrated its ability 
to contribute not only to practical problem-solving 
but also to the exploration and verification of a 
mathematical conjecture and the construction of 
objects satisfying the conjecture. 

Overall, this research highlights the potential of 
genetic algorithms, specifically the Rank GA, in the 

field of graph theory. The successful verification of 
the conjecture in the context of the Minimum 
Dominating Set problem for incidence graphs of 
classical Generalized Quadrangles emphasizes 
the potential of genetic algorithms to advance 
theoretical understanding in mathematics. 

Future studies could further explore the 
capabilities of genetic algorithms in other areas of 
theoretical research and extend their application to 
different problem domains. 

By bridging the gap between artificial 
intelligence and discrete mathematics, this 
research opens up new possibilities for leveraging 
computational methods in solving complex 
theoretical problems and advancing 
scientific knowledge. 
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