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Abstract. Crop monitoring is paramount to ensure

effective and sustainable agricultural practices. These

activities provide crucial information about crop health,

development, and yield, enabling farmers to make

informed decisions and enhance their farming practices.

However, deep learning has proven to be a vital tool.

It allows the automated analysis of vast agricultural

data, delivering precise and timely information for

proactive crop management and resource allocation

decision-making. Based on an enhanced convolutional

neural network model, the proposed framework focuses

on detecting three key growth stages in Vicia faba L.

cultivation within challenging and intricate environments.

The dataset utilized in this study comprises images

representing diverse developmental phases of crops

collected through Unmanned Aerial Vehicles (UAVs) at

an agricultural farm during different periods. Four distinct

models within the framework were evaluated based on

classification accuracy, mean average precision (mAP),

and F1 score. The results indicate that the model with

the highest classification accuracy reached 91.6%, with

a commendable mAP of 90.7%. In contrast, the model

with the lowest accuracy achieved a precision of 88.2%.

The empirical validation of the framework in a complex

agricultural environment aligns seamlessly with the

demands of modern farming operations, demonstrating

notable improvements in precision and reliability.

Keywords. Deep learning, convolutional neural network,

unmanned aerial vehicle, crop monitoring, precision

agriculture.

1 Introduction

An important research question in the larger area

of precision agriculture is the real-time monitoring

of crop development phases [21]. Precision

farming uses information and communication

technology to increase agricultural production’s

effectiveness and sustainability [16]. Creating

precise and reliable tools for crop growth and

development monitoring is one of the critical

issues in precision agriculture [14]. With this

knowledge, irrigation, fertilization, and pest control

procedures may be even more effective, increasing

crop output and quality [1]. Visual inspection

and manual sampling are time-consuming and

labor-intensive traditional crop growth monitoring

methods. Additionally, they are susceptible to

mistakes, especially in vast fields. Real-time

crop growth monitoring using remote sensing

and other technologies has recently gained

popularity [11]. For instance, information on crop

canopy cover, leaf area index, and other essential

growth indicators may be gathered via satellite

photography [5], drones [17], and ground-based

IoT devices drones [4]. A few issues still

need to be resolved before farmers extensively

use real-time crop growth monitoring. Creating

precise and reliable algorithms to derive crop

growth information from remote sensing data is

difficult. Another difficulty is developing low-cost,

easy-to-use crop growth monitoring devices that

can be used broadly.

Our study is focused on overcoming the

enormous challenges of monitoring and evaluating

Vicia faba development dynamics in modern

agricultural settings. We are working on an

enhanced real-time monitoring system, utilizing

the cutting-edge capabilities of deep learning to

solve these difficulties fully. The main goal of our
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study is to establish a solid framework capable of

accurately and consistently tracking Vicia Faba’s

various growth phases in real-time.

Given the complexity and dynamic character of

current agricultural ecosystems, where variables

like fluctuating climatic conditions, soil types,

and insect pressures may significantly affect crop

development, this endeavor has considerable rele-

vance.

The use of deep learning techniques, an aspect

of artificial intelligence that specializes in collecting

complicated patterns and information from vast

datasets, forms the basis of our strategy. We

want to develop a highly adaptive and responsive

system that can continuously evaluate and record

the growth trajectories of Vicia faba plants with

outstanding precision by utilizing the power of

deep neural networks. Our suggested approach

can quickly adapt to various agricultural contexts,

addressing the difficulties of multiple farming

methods and environmental factors. It will identify

Vicia faba’s developmental stages and essential

growth factors, including germination, flowering,

and fruiting phases. This multidimensional strategy

guarantees that our monitoring system offers

thorough insights into the general health and

performance of Vicia faba crops, going beyond

only growth stage identification. Additionally,

our study aims to provide the groundwork for

data-driven agricultural decision-making. Our

technology provides farmers, agronomists, and

researchers with the knowledge to optimize

cultivation techniques and resource allocation

by generating high-resolution, real-time data on

Vicia faba growth. This can result in higher

crop yields, better resource utilization, and more

environmentally friendly farming methods.

The creation of effective and precise object

identification models, including RetinaNet [18],

Mask Region-Based Convolutional Neural Network

(Mask R-CNN) [8], Faster Region-Based Con-

volutional Neural Network (Faster R-CNN) [10],

and You Only Look Once (YOLO) [15], has been

made possible by contemporary deep learning

optimization approaches. YOLO is a popular

option for real-time object detection since it can

maintain a high inference speed while achieving

high accuracy. The YOLO model has been

enhanced and improved over time, resulting in

YOLOv5. YOLOv5 effectively addresses the Vicia

faba crop identification issues and real-time growth

monitoring. The first difficulty relates to the various

Vicia faba crops that growing phases impact.

YOLOv5 is proficient in detecting Vicia faba crops

under multiple circumstances due to its capacity

to manage geometric alterations, deformations,

and lighting shifts. The second problem is the

requirement for quick and resource-effective video

stream processing for real-time growth monitoring.

YOLOv5 shines in this area since it is a swift and

resource-effective object recognition model well

suited for real-time monitoring applications.

In this work, we conducted the first particular

study that integrates computer vision for real-time

monitoring of Vicia faba crop growth on a farm in

the eastern area of Morocco. To demonstrate fava

bean crop development at three different growth

periods (germination, flowering, and fruiting),

we compared the performances of all YOLOv5

versions. We evaluated the models’ performance

on various input picture resolutions to highlight

potential tradeoffs between speed and accuracy

as a function of model type and image size. The

models’ inference abilities were also evaluated

and contrasted across various field circumstances,

including light and shadow levels, fava bean

development phases, and row orientations. Our

findings demonstrated a very accurate and efficient

monitoring of crop progress. The architectural

layout of the YOLO network is shown in Figure

1. Our research used a large dataset of complex

aerial images of Vicia faba fields.

2 Related Work

In recent years, there has been much discussion

regarding the use of advanced deep-learning

models to identify and categorize agricultural

items. These deep learning configurations have

evolved, with models such as VGG, YOLO, and

Faster R-CNN becoming denser. It is interesting to

see that these models improve in pinpoint accuracy

as they become denser. However, everything

is not sunshine and rainbows. The constant

trade-off between these models’ accuracy and

speed of detection is evident. This section will
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Fig. 1. Simplified proposed architectural layout detection

model

examine a few recent studies that have added

something intriguing to the field of identifying and

monitoring crop products. In ref [13], the authors

proposed a faster R-CNN model for coconut

maturity detection, using a ResNet-50 as the

backbone, outperforming SSD and YOLO-V3 in

detecting two crucial maturity stages, tested with

real-time and Google images.

Li et al. provided a customized CM-CNN corn

growth monitoring model that uses unmanned

aerial vehicles (UAVs) and computer vision tech-

nologies to enhance crop production, breeding,

and seed production efforts [9]. With a 99.3%

accuracy rate, the model outperforms existing

CNN models, including AlexNet, ZFNet, VGG,

InceptionV3, Xception, and ResNet in categorizing

corn development phases. To recognize and

evaluate the growth of Prunus mume (plum) fruit,

the authors in [6] created a deep learning-based

object detection method utilizing convolutional

neural networks (CNNs). They tested the Faster

R-CNN, EfficientDet, Retinanet, and SSD object

identification models. The results showed that SSD

MobileNet was the quickest and EfficientDet was

the most accurate model. In ref [20], Zhang et al.

presented AI-MDSRS, an algorithm for automating

the identification of multiple developmental stages

of rice ears. Using an improved Faster R-CNN

framework with Inception_ResNet-v2, FPN, RoI

alignment, and DIoU-based NMS, the proposed

model achieved an impressive average accuracy of

92.47%, outperforming the original Faster R-CNN

(40.96%) and YOLOv4. An innovative method

for detecting legume seeds for intelligent farming

was provided in the paper [12]. The purpose of

the research is to identify 11 different varieties

of legume seeds, each of which has a distinct

color, size, and form. The construction of the

model is based on a rigorously gathered dataset

of 828 images taken in a range of settings. The

YOLOv4 model outperformed the Faster R-CNN

model in real-time detection when the two models

were compared using TensorFlow, attaining a

stunning average accuracy of 98.52%. Kumar

et al. proposed a novel space-layer modified

CNN architecture (GL-CNN) in conjunction with

IoT and drone technologies to monitor palm and

seedlings [7]. The GL-CNN model, which uses

specified convolutional layers and a deviation

layer for result classification, is trained to predict

whether seedling development will succeed or

fail. A real-time dataset was used for evaluation,

and the results showed an outstanding average

accuracy of 95.96%, exceeding current CNN

designs and demonstrating its potential for tracking

and forecasting palm seedling growth. Dhal

et al. developed a deep-learning model to

predict the day of harvest for hydroponically grown

soybeans [3]. The model uses feature extraction

to determine the growth stage from annotated

images. Photos were labeled using the Computer

Vision Annotation Tool (CVAT), and a five-layer

convolutional neural network (CNN) was trained to

predict the range of growing days. The pre-trained

model was integrated into a Flask backend with

a graphical user interface (GUI) for real-time

application, enabling users to estimate crop day

from input images.

This study concentrates on developing an

advanced real-time system tailored explicitly for

monitoring Vicia faba L. growth. This targeted

approach represents a marked departure from

broader investigations and positions our research

as a pioneering effort in precision agriculture. The

distinctive value of our methodology lies in its

immediate applicability, offering real-time insights

into Vicia faba crop growth and development.

Unlike prior studies that may provide general

insights, our system equips farmers with precise,

up-to-the-minute information. This empowers them

to make informed decisions promptly, optimizing
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Fig. 2. Study zone located in Bouarg, Nador province, Morocco

their management practices and directly influenc-

ing crop yields. Our contribution extends beyond

theoretical advancements—it directly addresses

practical challenges faced by farmers. By

enhancing decision-making processes through

real-time data, our research stands at the forefront

of efforts to improve agricultural productivity.

The tangible benefits extend to the resilience

and sustainability of food production systems,

showcasing a clear departure from abstract

findings to actionable outcomes.

3 Materials and Methods

3.1 Experimental Site

The experimental site was located at coordinates

35°04’24.9"N 2°48’58.8"W and was the site of

research from mid-January to early April 2023 at

an agricultural farm in the commune of Bouarg,

Nador province, Oriental region of Morocco (Figure

2). With an average temperature of 18.2°C, this

location had 456mm of yearly rainfall. The crop

under research was the fava bean, and 63 plots

were chosen randomly for the study.

3.2 Dataset Acquisition and Management

An unmanned aerial vehicle (UAV) with a 4/3

CMOS Hasselblad camera was employed to

capture high-resolution RGB aerial photographs of

the Vicia Faba collection on the farm. The aerial

photography sessions were conducted between

January and April 2023, covering the entire

topography of the farm. The photographs

were taken at altitudes ranging from 1.5 to 2

meters. Various lighting conditions were utilized

during the image acquisition process to document

the farm’s evolving landscape as Vicia Faba

underwent its multiple developmental stages. The

dataset also encompasses various developmental

phases, comprehensively representing real-world

conditions. With 2530 high-quality photos, this

dataset ensures that future research will benefit

from ample information and clarity in its results.

3.3 Image Annotation

In the training process of deep learning models

like YOLOv5, image annotation plays a crucial

and essential role. The caliber and precision

of these annotations significantly influence the

effectiveness and general correctness of the

resulting model. To rigorously annotate a

large dataset about the growth stages of Vicia

faba crops, we used the Python-based graphical

annotation tool "LabelImg" in the context of our

research project. To minimize the presence

of unnecessary background pixels inside the

boundaries of these boxes, this method required

the careful definition of bounding boxes enclosing

regions of interest.

Additionally, object classes were carefully

assigned as brief rectangular boxes. The
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meticulous effort put into creating accurate and

detailed annotations symbolizes our dedication

to improving the effectiveness and resilience of

the YOLOv5 model, especially in its capacity

to navigate various real-world scenarios and

conditions. This meticulous annotation procedure

is the cornerstone of our scientific investigation

since it complies with the highest standards

of research methodology and provides priceless

information for improving the model’s performance.

The representation of instances for each class

is shown in Figure 3. Notably, the "Germination"

class displays more instances than the others. A

closer look at the graph reveals a relatively evenly

distributed distribution of occurrences among the

other classes. This evenly distributed data shows

that it is possible to train the model on a balanced

dataset for accurate item detection in the photos.

It’s crucial to remember that these numbers do

not always represent how well or accurately each

class detects objects. Various variables influence

the model’s performance, such as the accuracy

of the annotations and the sizes and complexity

levels of the objects in the photos. Therefore,

a thorough analysis of these components is

necessary for a more complete evaluation of the

model’s capabilities.

Each image in the database features bounding

boxes that may be used to identify the various

plant parts. The database has 2530 photos of

the Vicia faba crop at various stages of growth.

Then, using this information as training data, our

model algorithm can recognize these locations in

new images and determine the Vicia faba crop’s

growth stage. The accuracy of our model is

strongly influenced by the quality of labeling, which

must be carried out with considerable caution

and monitoring.

3.4 Configuration of Experimental Parameters
and Environment

3.4.1 Framework Selection: YOLOv5 for Object
Detection

In agriculture, the YOLO algorithm networks

have several uses for item detection. The

YOLOv5 model, which has been extensively

adopted and is recognized for its object-detecting

Fig. 3. The distribution of instances per class is

1192 instances for plant germination, 1013 instances for

flowers, and 1066 instances for pod labels

skills, is introduced in the eighth entry of the

YOLO series. This approach has improved the

agricultural industry’s capacity to precisely identify

distinct Vicia faba growth phases. Five network

designs are included in the YOLOv5 framework:

YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and

YOLOv5x. Among them, YOLOv5x distinguishes

itself because of its exceptional accuracy and

speed combination. The foundational network for

this study, YOLOv5x, furthers the field’s ability for

object detection in Vicia faba growth phases since

it has the most extensive network structure and the

best accuracy, even though it performs somewhat

slower than the other versions.

Even with a more extensive network, inference

time is decreased by YOLOV5’s Cross Stage Par-

tial (CSP) backbone. The CSP aims to minimize

the number of network parameters by solving

the fading gradient issue, enhancing feature

propagation, and reusing extracted features [19].

The Feature Pyramid Network (FPN) may help

resolve the minor object detection issue. A

pyramid of feature maps including geographical

and semantic data is used to try and address the

issue [2].

In the same way, YOLOV5 makes use of

the FPN-like path aggregation network (PANet).

PANet features an ascending and descending

path in addition to the FPN’s two ascending and

descending tracks. Adding more training data,

such as scaling, color space modifications, and

mosaic augmentation, is another significant new
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Fig. 4. Data sample batch from the training period

feature of YOLOV5. The YOLOV5 implementation

uses Pytorch’s data loaders to augment samples

at random while training and does not preserve

the enhanced samples. In Table 1, the network

parameters are presented. One example batch of

data is shown in Figure 4 during the training period.

The batch has 10 combined images made up of 4

separate photos. Figure 5 depicts the YOLOV5x

architecture in detail. The Concatenation and

Convolution modules in the first row of blocks

show the PANet structure. The fundamental CSP

structure comprises the Convolutional, Spatial

Pyramid Pooling (SPP), and C3 blocks. The

convolution process, batch normalization, and

activation function are all contained in the YOLOV5

Convolutional blocks. SPP concatenates the

pooling layers of various widths while processing

the input features in parallel. The C3 blocks consist

of three convolution procedures combined.

Table 1. YOLOv5 Parameters trained

From n Params Module Arg

0 -1 1 8800 Conv [3,80,6,2,2]

1 -1 1 115520 Conv [80,160,3,2]

2 -1 4 309120 C3 [160,160,4]

3 -1 1 461440 Conv [160,320,3,2]

4 -1 8 2259200 C3 [320,320,8]

5 -1 1 1844480 Conv [320,640,3,2]

6 -1 12 13125120 C3 [640,640,12]

7 -1 1 7375360 Conv [640,1280,3,2]

8 -1 4 19676160 C3 [1280,1280,4]

9 -1 1 4099840 SPPF [1280,1280,5]

10 -1 1 820480 Conv [1280,640,1,1]

11 -1 1 0 Upsample

12 [-1, 6] 1 0 Concat [1]

13 -1 4 5332480 C3 [1280,640,4]

14 -1 1 205440 Conv [640,320,1,1]

15 -1 1 0 Upsample

16 [-1, 4] 1 0 Concat [1]

17 -1 4 1335040 C3 [640,640,4]

18 -1 1 922240 Conv [320,320,3,2]

19 [-1, 14] 1 0 Concat [1]

20 -1 4 4922880 C3 [640,640,4]

21 -1 1 3687680 Conv [640,640,3,2]

22 [-1, 10] 1 0 Concat [1]

23 -1 4 19676160 C3 [1280,1280,4]

24 [17,20,23] 1 53832 Yolo.Detect

3.4.2 Experiment Platform

An AMD 3700x CPU, 16 GB of RAM, and a

powerful GeForce GTX 2070 Super GPU were

used in the experimental setup on a Windows

10 operating system computer. A carefully

chosen software stack, Torch 1.13.1 as the main

framework, Cuda 11.6 for GPU acceleration, and

Python 3.9.16 for scripting and data processing,

was used to facilitate the deep learning tasks.

Notably, pre-training weight data kindly given

by the framework’s developers were generously

integrated into the training process to provide

the models a solid beginning basis, highlighting

the thorough and well-studied quality of the

experimental setup.

3.4.3 Experiment Parameter

The pre-trained model was the starting point for

training the numerous YOLO models, including

YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and

YOLOv5x. After the training, the resultant

model was saved, and a brand-new set of

test data was used for a rigorous manual
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Fig. 5. Architecture of the trained model

examination. This assessment compares the iter-

ative hyperparameter tweaking procedure results

with those obtained using the platform’s default

hyperparameters. The optimal hyperparameter

values for the top-performing model in this study

were obtained as a result of this analysis and are

shown in Table 2. The verification metrics figure

out the performance of the training procedure.

Accuracy validation was executed following the

training procedure, as illustrated in Figure 6.

3.4.4 Comprehensive Assessment of Model

Performance

The model’s performance was thoroughly as-

sessed using a variety of measures, each of

which has a specific function. Precision is the

percentage of accurately anticipated positive tests

among all predicted positives, as determined by

the equation (1).

Fig. 6. Model training and validation set graphs

The model’s capabilities and effectiveness were

meticulously evaluated using a variety of perfor-

mance metrics, including recall, F1 score, average

precision (AP), and mean average precision (mAP)

at both the 0.5 and 0.5-0.95 intersection over

union (IoU) thresholds and processing speed

measured in frames per second (FPS). Thorough

model performance evaluation includes metrics
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that are combined across all classes. A crucial

indicator, especially when there are three separate

categories (N=3), is the mean Average Precision

(mAP). In further detail, mAP computed at

the intersection-over-union (IoU) criterion of 0.5

is called "mAP@0.5." "mAP@0.5:0.95" is the

average mAP derived over IoU thresholds from 0.5

to 0.95, with a 0.05 increment.

Equations (2,3,4,5), which provide the mathe-

matical formulas for recall, F1 score, Average Pre-

cision (AP), and mAP, respectively, offer a reliable

framework for evaluating model performance in a

variety of contexts:

Precision =
TP

TP + FP
× 100%, (1)

Recall =
TP

TP + FN
× 100%, (2)

F1_Score = 2×
Precision × Recall

Precision + Recall
× 100%, (3)

AP =

∫
1

0

Precision(Recall) d(Recall)× 100%, (4)

mAP =
1

3

3∑
i=1

APi × 100%. (5)

We meticulously considered a range of evalua-

tion indicators, including accuracy, mean Average

Precision (mAP), average accuracy for single-class

objects, computational efficiency, the Precision-

Recall curve, model detection speed, and network

weight properties.

4 Results and Discussion

4.1 Detecting Vicia Faba Growth Stages

When using the transfer learning approach during

the training phase, the dataset in our study

demonstrated successful convergence after 80

training epochs. YOLOv5 weights already trained

were used to start the training process. Mean

Average Precision (mAP), precision, recall, and F1

score attained outstanding percentages, with the

highest recorded values reaching 90.7%, 91.6%,

87.8%, and 89.6%, respectively. Furthermore,

we achieved exceptional classification precision

Fig. 7. Performance metrics and Precision-Recall

Curves for the best Trained model on our dataset

throughout several development stages. Specifi-

cally, 96.5% of plants in the germination phase,

88.8% of flowers, and 89.6% of fruiting (full pod)

were accurately classified, with only 3.5%, 12.2%,

and 11.4% misclassified as the background class,

respectively. It is important to note that earlier

studies have identified potential biases in classifier

performance favoring classes with a majority. As

a result, we examined performance using the

Precision-Recall Curve, as shown in Figure 7.

See Figure 8 for the conclusion of our Vicia

faba development phase detection, when the

fruiting, the last phase, reveals its secrets. The

identified pods are artfully encased within orange

bounding boxes in this visual reveal, each with

a unique confidence score. It provides a visual

demonstration of the accuracy and effectiveness of

our detecting technology and provides a look into

its precision and refinement.

4.2 The Optimal Model: Top-Performing

Trained Model

Our experiment encompassed a range of YOLOv5

architectural variants through the transfer learning

method. We fine-tuned these models with a
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Fig. 8. YOLOv5x fruiting detection results in the growth stage

Table 2. Hyperparameter settings

Hyperparameter Value Hyperparameter Value

Epochs 80 lr0 0.01

Batch Size 10 lrf 0.01

momentum 0.93 anchors -

weight_decay 0.00057 iou_t 0.2

warmup_epochs 3.0 anchor_t 4.0

warmup_momentum 0.795 box 0.05

warmup_lr 0.1 translate 0.1

mosaic 1.0 scale 0.5

cls 0.5 fliplr 0.5

cls_pw 1.0 hsv_h 0.0034

batch size of 10 and set images at a standardized

size 640. The YOLOv5x version demonstrated

exceptional performance among the tested mod-

els, achieving a 90.7% mAP@0.5 and a 68%

mAP@0.5:0.95. Figure 9 graphically represents

the progression of bounding box coordinates

and the associated loss in prediction validation

concerning mAP@0.5 and mAP@0.5:0.95 across

training epochs. This visual depiction offers

insights into the learning process of our model. For

a comprehensive overview of model performance,

Table 3 presents the parameter values, recall,

mAP@0.5, mAP@0.5-0.95, and precision during

the test phase for Vicia faba growth stage

identification. Notably, the YOLOv5s version

exhibited the lowest precision scores. In contrast,

the other three YOLOv5 variants demonstrated

better precision. YOLOv5x achieved the highest

precision score at 91.6%, closely followed by

YOLOv5m, YOLOv5l, and YOLOv5s, with scores of

89.9%, 88.8%, and 88.2%, respectively. Regarding

recall, YOLOv5m emerged as the top performer

with an 88.2% valid positive rate, while YOLOv5s

had the lowest recall rate. This analysis sheds light

on the distinct performance characteristics of these

models in the context of our study.

The F-measure, an essential measure for

evaluating classifier performance, represents the

balanced harmonic mean of precision and recall

and is encapsulated in the F1 score. It is an

essential indicator of a classifier’s effectiveness
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Fig. 9. Curves for training and validation metrics

in capturing relevant instances while minimizing

false positives. In our analysis, in Figure 10,

we have displayed the F1 curves for different

variants of YOLOv5 that have been trained, Figure

10(d) highlights a graph with a confidence value

set at 0.454. This specific confidence value

was meticulously selected to achieve a delicate

balance, resulting in an impressive F1 score of

0.896. This carefully chosen threshold reflects the

optimal compromise between sensitivity and accu-

racy, a crucial consideration in many classification

tasks. In practical terms, higher F1 scores and

confidence values are preferred as they indicate

a classifier’s ability to achieve high precision and

complete recall, reducing false positives and false

negatives and improving overall model robustness

and reliability. These results offer valuable

insights into the classifier’s capabilities and can

significantly influence decision-making processes

in various applications.

In our investigation, YOLOv5x demonstrated

strong performance across all three growth stages

of Vicia faba, excelling in most test images and

videos. The best-trained model exhibited an

impressive ability to detect even small, distant

objects while effectively filtering out unwanted

elements such as branches and herbs. Notably,

it could also discern objects in complex, cluttered

backgrounds. These encouraging outcomes are

clearly illustrated in Figure 11. When assessing

the performance of our trained models, we find

that, in cases like these, traditional metrics such as

the area under the precision-recall curve and mean

Average Precision prove to be more informative. To

ensure a fair comparison and mitigate the impact of

class instance imbalances, we rely on mAP values.

Our analysis reveals that the highest detection

accuracy was achieved during the "germinating"

growth stage, followed by "fruiting" and "flowering,"

as illustrated in Fig. 6. This hierarchy of

detection accuracy aligns with our expectations.

The "germinating" stage images presented fewer

challenges, lacking the substantial grass cover

often found in the "flowering" stage. As a result,

we applied pre-processing techniques specifically

to the "germinating" stage images to enhance

localization accuracy. Conversely, the "flowering"

stage images posed a more significant challenge

due to the prominence of weeds, resulting in a

comparatively lower detection accuracy.

This discussion underscores the dynamic inter-

play between growth stages, image complexity,

and the efficacy of our detection model. The

findings presented in this article pave the way

for real-time vegetation detection in various

crops using the YOLOv5x framework. This

advancement holds significant promise for more

precise crop management and enhanced utilization
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Fig. 10. Performance evaluation of models trained using F1-score: (a)YOLOv5s, (b)YOLOv5m, (c)YOLOv5l,

(d)YOLOv5x

of agricultural resources, offering potential benefits

to agriculture and environmental monitoring.

5 Conclusion and Future Work

In this groundbreaking research, we delve

into the dynamic realm of real-time detection

and classification of growth stages in Vicia

faba crops, unravelling the intricacies within

their natural habitat. Our study introduces

a cutting-edge lightweight framework for object

detection in complex agricultural settings. A

comprehensive evaluation of four YOLOv5 variant

models underscores the superiority of YOLOv5x,

boasting an exceptional performance pinnacle with

a mean Average Precision (mAP) soaring to

an impressive 90.7% and a precision of 91.6%.

This accomplishment spans diverse datasets,

meticulously curated to represent the multifaceted

tapestry of bean crop growth stages. The

datasets, meticulously captured using uncrewed

aerial vehicles (UAVs), testify to the model’s

prowess in navigating and excelling in challenging

environmental conditions. Our findings underscore

the potential of YOLOv5x and herald a new

era in precision agriculture, where cutting-edge

technology seamlessly aligns with the intricacies

of natural ecosystems. Looking ahead, our

research trajectory includes fortifying the dataset

by incorporating images captured under varying

conditions, ensuring a more comprehensive

representation of Vicia faba crop growth phases.

Furthermore, we embark on the optimization

journey, planning to refine the network model

through the strategic pruning of the YOLOv5x

architecture. This ambitious pursuit aims to elevate
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Fig. 11. Results of testing yolov5x model performance across various times of day and growth stages in Vicia faba

detection accuracy and recall rates, propelling

our framework to new heights of efficiency

and reliability. As we navigate the frontiers

of technological innovation, this study lays the

foundation for a future where the marriage of

advanced frameworks and agricultural insights

propels us toward sustainable and resilient food

production systems.
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