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Abstract. As reported by the World Health Organization,
falls constitute the second leading cause of unintentional
injury death worldwide. Particularly, adults older than 60
years suffer the most significant number of fatal falls or
serious injuries, with nearly 30% of individuals over 65
reporting at least one fall annually, a risk that increases
with age. The anticipated growth in life expectancy and
the resulting larger aging population accentuates the
economic burden associated with falls. Consequently,
identifying effective strategies for fall prevention and
early detection in the elderly has become relevant.
This study proposes a non-invasive fall detection
system based on a thermal sensor and a supervised
machine-learning algorithm. The experimental dataset,
generated by students through simulations of both fall
and non-fall events, included the recording of room
temperatures using a thermal sensor, along with the
associated data labeling. For fall event detection, we
evaluated three well-known supervised machine learning
models: a Support Vector Machine, a Random Forest,
and a Convolutional Neural Network. The experimental
results demonstrate that these models exhibit robust
capabilities in distinguishing between falls and non-fall
events, consistently achieving performances above 95%
across various evaluation metrics.

Keywords. Elderly care, machine learning, sensor
monitoring, fall events.

1 Introduction

According to the World Health Organization (WHO)
[29], falls constitute the second leading cause of
unintentional injury death worldwide.

Each year, 37.3 million falls require medical
attention, and an estimated 684,000 become fatal.

Notably, adults older than 60 years suffer the most
significant number of fatal falls or serious injuries.
Almost 30% of adults over 65 years report at least
one fall yearly [1], increasing the risk with age [29].

The most common causes of falls in elderly
individuals are environment-related factors
and disorders related to gait, balance, or
weakness [24]. Additionally, older individuals
with mobility impairments, cognitive deficits,
chronic conditions, geriatric syndromes, and the
use of particular medications are at an increased
risk of experiencing falls [12].

From a financial perspective, elderly falls impact
the economic concerns of government-funded
programs. Several studies estimated annual costs
of billions of dollars in expenditures for medical fall
treatments [6]. Moreover, the economic burden
would be expected to grow due to the rising life
expectancy, leading to a larger aging population.

As reported by the WHO, the population of
individuals older than 60 will double (2.1 billion)
by 2050, which is 22% of the global population
[28]. Therefore, identifying strategies for fall
prevention and early detection in elderly individuals
becomes a topic of relevance. Over the past
decades, fall prevention and detection have been
active research areas [23]. Several strategies,
including risk factors reduction, exercise routines,
environmental modifications, and education
programs, have demonstrated effectiveness in
preventing falls [24]. However, while fall prevention
can reduce the occurrence of falls, it does not
eliminate the possibility of a fall event.
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Fig. 1. Frame temperature readings: (a) Frame at time t. (b) 4×4 thermal sensor resolution. (c) Room temperatures
captured by the sensor

Fig. 2. Final CSV file composed by 25 frames (rows) and 16 temperatures (cols)

Conversely, fall detection techniques focus on
recognizing falls and alerting when a fall event has
occurred [27]. In this work, we introduced a fall
detection model based on non-wearable devices
and machine learning techniques.

The main contributions of this study are, firstly,
the establishment of a dataset containing room
temperature values through the utilization of a
thermal sensor and, secondly, the application of
machine learning techniques for the classification
of fall and non-fall events.

2 Related Work

Fall detector methods can be broadly categorized
into wearable and non-wearable device-based

approaches. Wearable devices rely on clothing
embedded with sensors, including accelerometers,
gyroscopes, electro-myography, and pressure
sensors, to discern the subject’s motion and
location [19, 23].

Accelerometers, in particular, have been widely
used for fall detection in wearable systems [19].
However, wearable-based systems may not be a
good choice for older adults. Wearable devices
require subjects to wear the sensors actively and,
in some cases, need to be constantly charging
(e.g., smartwatches, smartphones).

Moreover, wearable devices may be
uncomfortable, easily misplaced, or forgotten
by elderly individuals. Unlike wearable devices,
non-wearable devices are less invasive.
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Table 1. Hyper-parameter values for each ML model

Hyper-parameter Selection

CNN

layers 1, 2,3

nodes (1st layer) [32:256, step=32]

nodes (2nd layer) [32:256, step=32]

nodes (3rd layer) [32:256, step=32]

pooling average, maximum

fully connected [16:256, step=16]

activation function ReLU, tanh

optimizer SGD, Adam

learning rate [10-5:10-2, step=×10]

batch size 1, 16, 32, 64

SVM

C-value [10-2:103, step=×10]

gamma [10-4:1, step=×10]

kernel Linear, polynomial, radial, sigmoid

RF

n estimators 30, 50, 100, 300

max depth None, 3, 10, 30, 50, 100

min samples leaf 3, 5, 10, 30

max features None, auto, sqrt, log 2

bootstrap True, False

Non-wearable devices can be further divided
into ambiance and vision-based sensors.

Sound, temperature, visual, and vibrational
sensors, among others, fall into the category of
non-wearable devices [19, 23]. Dı́az-Ramı́rez
et al. [5] introduced a wireless sensor network
(WSN)-based fall detection system that relies on
sound analysis. In this system, nodes detect falls
by analyzing captured acoustic signals.

The model employs a signal-processing
algorithm utilizing cross-correlation to measure
the similarity between the sampled signal and
a reference template signal characterizing a
fall event.

If these signals exhibit similarity, the
Mel-frequency cepstral coefficients (MFCC) of
the fall sound are then extracted. Subsequently,
pattern recognition is performed using the dynamic
time warping (DTW) method. The system

demonstrated a detection rate of 90% in the
absence of acoustic interference and 83% in the
presence of TV noise.

Another interesting work is proposed by Nishio
et al. [20], where they present a fall detection
model using a single Microwave Doppler sensor
and applying the Hidden Markov Model (HMM) in
continuous wave Doppler mode. The Microwave
Doppler sensor is mounted on the ceiling, emitting
microwaves in a downward direction.

When any activity occurs within the microwave
range, the resulting output signal contains
information about the activity, with a frequency
proportional to the activity’s velocity. Fall
and non-fall detection models are created by
aggregating activities that yield high likelihoods.
The proposed HMM model achieved an
accuracy of 95%.

Visual-based approaches also have been
explored for fall detection [31]. Mecocci et
al. [18] presented a method for automatic fall
detection utilizing a Microsoft Kinect sensor, with
a focus on processing depth data exclusively.
Predefined rules from temporary-sequence data
analysis carried out fall detection. The model
obtained sensitivity and specificity of 62.4-80.3%
and 92.5-97.7%, respectively.

Hung et al. [9] introduced a 3D-based approach
for fall detection using multiple RGB cameras.
The authors utilized predefined thresholds of the
measures of humans’ heights and occupied areas
to distinguish fallings. The visual-based model
achieved sensitivity and specificity rates, ranging
from 88% to 95.8% and 96% to 100%, respectively.

Related to our work, Mashiyama et al. [17]
presented a system designed to detect fall
events utilizing an 8×8 infrared array sensor
for room temperature analysis. The detection
process involves employing a k-nearest neighbor
(k-NN) algorithm. The model demonstrated a
commendable accuracy rate of 95.8%.

Taniguchi et al. [26] proposed a fall detection
system using two 16×16 thermal sensors attached
to the ceiling and the wall of the subject room.
The authors’ system detects different posture
transitions using predefined thresholds derived
from training data. The model exhibited a

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1773–1781
doi: 10.13053/CyS-28-4-4809

Classification of Fall Events in the Elderly Using a Thermal Sensor and Machine Learning Techniques 1775

ISSN 2007-9737



Fig. 3. Resulting CNN architecture after hyperparameter tuning

notable accuracy rate, achieving 95.5% accuracy
in fall detection.

3 Materials and Methods

3.1 Machine Learning Techniques

For the fall and non-fall event classification,
three supervised machine learning models were
evaluated: a Support Vector Machine (SVM) [4],
a Random Forest (RF) [8], and a Convolutional
Neural Network (CNN) [14]. These models
have shown outstanding performance for several
machine learning tasks [3, 25, 16].

The SVM model [4] is one of the most known
classifiers due to its solid mathematical foundation.
Given a set of pairs {(xi, yi)|xi ∈ Rn and
yi ∈ Z, i = 1, 2, . . . , m}, where yi indicates
the class where the real vector xi belongs, the
SVM performs classification by constructing a
hyperplane in a higher dimensional space that
distinguishes one class from the others.

The hyperplane can be expressed as wTxi −
b = 0, where wT is the transpose of the normal
vector to the hyperplane and b is a constant. For
the two-class problem, the hyper-plane, or decision
boundary, is constructed by solving the following
optimization problem:

minimize ||w||, (1)

subject to yi(w
Txi − b) ≥ 1. (2)

On the other hand, the RF classifier [8]
is characterized by its simplicity, ease of
comprehension, resistance to overfitting, and
interpretability of results. The RF algorithm is
based on a set of Decision Trees (DTs). Each DT
is constructed by randomly selecting data from

Table 2. ML results

Model ACC BACC AUC-ROC

Mashiyama 0.958 – –

Taniguchi 0.955 – –

CNN 0.96 0.95 0.99

SVM 0.99 0.98 0.99

RF 0.99 0.99 0.99

the training set, employing a technique called
bagging [2]. The models generated from these
data samples are trained independently, and the
algorithm makes its classification decision based
on the majority vote of the DTs.

In recent years, CNNs [14] have gained
significant popularity. CNNs primarily rely on
convolutional layers, where the pixel matrix (or the
output matrix from the preceding layer) undergoes
convolution with various filters to extract distinctive
feature maps. These filters consist of multiple
weights that are updated during the network
training process. Alongside convolutional layers,
CNNs incorporate pooling layers, which employ
global, average, or maximum operations to reduce
the height and width dimensions of the feature
maps.

Similar to conventional artificial neural
networks, convolutional networks also include
activation functions (such as ReLu, Tanh, sigmoid,
etc.) and fully connected layers, commonly
referred to as dense layers. The versatility of
CNNs in capturing hierarchical and spatial features
has contributed to their widespread adoption
in various applications [7].
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3.2 Dataset

For the dataset, simulations of both fall and
non-fall events were conducted by students.
Data was collected using a thermal sensor
(Omron D6T-44L-06) connected to an Arduino
microcontroller. The sensor transmitted sets of
bytes, which were converted into integer values
representing the room temperatures. These
temperatures are stored in CSV files through a
Python script. The thermal sensor has a frame
resolution of 4×4 and covers a detection area of
2.5×2.5 meters at a distance of three meters.

In each frame, 16 temperature values were
captured and recorded at a specific time t
(refer to Figure 1). These 16 frame temperatures
are organized as a row in a CSV file, resulting in
a total of 25 frames (rows) per file, as illustrated
in Figure 2. The final dataset consists of 354 fall
files and 899 non-fall files. The dataset is publicly
available in the following repository1.

3.3 Hyperparameters Tuning

The hyperparameter values are used to
control the learning process of the ML model.
Despite using the same training data, varying
hyperparameter values lead to distinct trained
models. The process of selecting the most
effective combination of hyperparameter values is
referred to as hyperparameter tuning and holds
significant importance in attaining high model
performance [30].

Unfortunately, there is not a one-size-fits-all set
of optimal hyperparameters for all problems,
and evaluating different combinations of
hyperparameter values is computationally
expensive. Nevertheless, hyperparameter
tuning strategies and commonly employed
hyperparameter values exist that have proven
successful in addressing similar problems. In
our experiments, we employed the widely used
grid-search strategy for hyperparameter tuning in
Support Vector Machines and Random Forests.

This strategy involves systematically selecting
various hyperparameter values and evaluating
all possible configurations. The grid-search

1github.com/rosendo655/fall data analysis

process was implemented using the GridSearchCV
function provided by the Scikit-learn Python
library. This approach allows for a comprehensive
exploration of hyperparameter combinations to
identify the most effective configuration for our
specific experiments [22].

Due to the consideration of a larger number
of hyperparameters in the CNN architecture,
we employed the hyperband method for
hyperparameter tuning [15]. The hyperband
method extends the successive halving algorithm
[10], and its process is outlined as follows: a
set of n hyperparameter values is evaluated for
all configurations using limited resources (e.g.,
dataset size, training time, number of epochs).

After evaluation, the configurations with the
worst performance are discarded, and the process
is iterated until only the best configuration remains.
Unlike the successive halving algorithm, the
hyperband method allocates a specific number
of iterations for different configurations, focusing
on promising candidates for more extensive
evaluations. In our work, hyperband tuning
was implemented using the Keras hyperparameter
tuning library [21]. Table 1 outlines the values
considered for hyperparameter tuning in each
machine learning model.

4 Results and Discussions

Following hyperparameter tuning, the best
configurations for the three machine learning
models are described as follows. For the SVM
classifier, the best hyperparameter configuration
was {C = 10, kernel=linear}.

For the RF model, the best hyperparameter
configuration was {non-bootstrap, max depth=50,
min samples leaf = 3, n estimators = 100}.

Lastly, for the CNN architecture, we obtained
a three-convolutional layer network followed by
two fully connected layers. The first convolutional
layer consists of 32 filters (3×3) with a ReLU
activation function followed by a max pooling layer
(2×2). The second and third convolutional layers
consist of 64 and 192 filters (3×3), respectively,
followed by an average pooling layer (2×2). After
convolutional layers, a fully connected layer of 32
nodes and a tanh activation function were added.
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(b)

(c)

Fig. 4. Confusion matrices of the evaluated models: (a)
CNN, (b) RF, and (c) SVM

The output layer has two nodes and a softmax
activation function.

Figure 3 shows the CNN architecture2. These
configurations represent the best-performing
settings after thorough hyperparameter tuning for
each respective machine-learning model.

The training of the CNN architecture involved
the utilization of the cross-entropy loss function and
the Adam optimization algorithm [13]. The model
was trained with a learning rate set to 10-3 and
a batch size of 16 throughout 30 epochs. These
parameters were chosen to optimize the training
process and achieve effective learning for the
given dataset.

The performance results obtained by the
models were assessed through repeated
3×10-fold cross-validation [11]. The evaluation
employed standard performance metrics for
machine learning models [11], including Accuracy
(ACC), Balanced Accuracy (BACC), and Area
Under the Receiver Operating Characteristic Curve
(AUC-ROC). These metrics offer a comprehensive
evaluation of the overall method performance.

Table 2 shows the average results of the
evaluated ML techniques alongside related
literature works. It is evident that the CNN, SVM,
and RF models exhibit robust capabilities in
distinguishing between falls and non-fall events,
achieving performances consistently above 95%
across all metrics.

In comparison to the works of Mashiyama et al.
[17] and Taniguchi et al. [26] works, our evaluated
machine learning models demonstrated superior
performances, exceeding 96% accuracy with only
one sensor and a lower sensor resolution.

Notably, the RF classifier achieved outstanding
performance, reaching up to 99% for ACC, BACC,
and AUC-ROC. Moreover, Figure 4 illustrates that
the RF model incurred only four errors, primarily
misclassifying non-fall data as fall data.

Importantly, misclassifying a non-fall event as
a fall event is often considered less critical than
the opposite scenario. This emphasizes the
effectiveness of the RF model in minimizing errors
and underscores its potential as a reliable fall
detection solution.
2This figure was generated by adapting the code from: github.c
om/gwding/draw convnet
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5 Conclusion and Future Work

This work addresses the problem of elderly fall
event detection using a thermal sensor and
machine learning techniques. Unlike other devices,
the thermal sensor is less invasive, has no
need to be manipulated, and maintains privacy.
Additionally, the sensor’s low resolution opens up
possibilities for embedded applications, enhancing
its versatility in various contexts.

The experimental dataset utilized in this study
was generated by students through simulations of
both fall and non-fall events, during which a thermal
sensor recorded room temperatures. The captured
data for each event was subsequently stored in
a CSV file. The compiled dataset comprises a
total of 1,253 CSV files, consisting of 354 fall
events and 899 non-fall events. Each file is
structured with 25 rows (frames) and 16 columns,
representing the recorded room temperatures
during the respective events.

For the fall event detection, we selected
three well-known supervised machine learning
models that have shown outstanding performance
for several machine learning tasks: SVM, RF,
and CNN. The experimental outcomes affirm
the efficacy of the CNN, SVM, and RF models
in effectively distinguishing between fall and
non-fall events. Notably, the random forest
classifier demonstrated the most favorable results
in 3×10-Fold cross-validation, with merely four
errors. This underscores the remarkable detection
capabilities achievable with just one sensor.

The findings highlight the potential of leveraging
these machine-learning models for reliable and
efficient fall detection using minimal sensor
resources. In future research works, it would
be beneficial to incorporate more complex scenes
during the training stage, encompassing scenarios
involving multiple individuals or pets.

This approach aims to enhance the robustness
of the fall detection system by exposing it to a
broader range of environmental conditions. By
training the system on diverse and challenging
scenarios, it can develop a more comprehensive
understanding of potential fall events in real-world
settings, thus improving its reliability and
applicability across various contexts.
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