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Abstract. The Particle Swarm Optimization (PSO)
algorithm is a simple and effective method that has been
widely used to solve complex optimization problems.
However, it can easily get trapped in a local optima due
to the loss of population diversity. This paper presents
a new variant of the PSO algorithm based on social
learning (SL-PSO) that aims to improve performance
of traditional PSO. This is encouraged by the ability
shown by diverse animal species to learn from the
behavior of more experienced individuals. Specifically,
the historical information of the best particle is utilized
to modify the position and direction of the stagnant
particles, and improve the exploration capability of
the swarm. Experiments conducted on unimodal and
multimodal test functions demonstrate the effectiveness
of the SL-PSO algorithm compared to other variants of
the PSO algorithm.

Keywords. Particle swarm optimization, social
learning, bio-inspired algorithms, real-parameter single
objective optimization.

1 Introduction

Nowadays, solving optimization problems is
becoming increasingly challenging due to factors
such as a larger number of variables, the use
of constraints, and the handling of nonlinear
functions. In the field of optimization, it
has been shown that bio-inspired methods can
effectively solve various optimization problems
within a reasonable timeframe [5]. By replacing

exhaustive search methods, these algorithms have
significantly reduced the computational cost.

Among the bio-inspired algorithms, the Particle
Swarm Optimization (PSO) algorithm [4] stands
out for its simplicity and its ability to quickly reach a
good solution, allowing it to obtain favorable results
in the solution of various real-world optimization
problems [13, 7].

However, the PSO encounters challenges in
achieving a balance between exploring and
exploiting the search space, which can lead to
premature convergence. In addition, a major
drawback of the PSO is that it is prone to getting
stuck in a local optimal solution [2]. Therefore,
two important problems in the research of the PSO
algorithm are how to increase population diversity
to improve solution accuracy and how to avoid
stagnation in local optimal solutions. Strategies to
address these issues can be classified as follows:

(1) Parameter Control: The PSO algorithm has
two main parameters, the constraint factor, and
the inertia factor. The search capability of the
PSO algorithm has been improved by linearly
decreasing the inertia weight, by using a random
inertia weight, and by using a fuzzy adaptive inertia
weight [1].On the other hand, the convergence of
PSO has been improved by applying the constraint
factor proposed by Clerc and Kennedy [2].

(2) Hybridization: To improve the search
capabilities of the PSO algorithm, operators from
other algorithms such as differential evolution and
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ant swarm optimization have been introduced into
the structure of the PSO algorithm [7].

(3) Particle swarm topology: Modifying the
topology of the particle swarm can enhance the
performance of the PSO algorithm. The global
topology allows a faster convergence; however, it
can get trapped in a local minimum. On the other
hand, the local topology allows to obtain a better
solution, but with a slower convergence [7, 8].

Although there are several variants of the PSO
algorithm that achieve better performance than the
standard version, certain problems remain, such as
the difficulty of implementation, a greater number
of parameters to adjust, or a higher computational
cost, making it necessary to investigate how
to avoid stagnation in local optimal solutions,
improve the accuracy of the solutions found, while
maintaining an easy to implement structure.

Motivated by the above, this article proposes
a new variant of the PSO algorithm for solving
real-parameter single objective optimization prob-
lems. Following concepts and ideas of social
learning, the proposed approach identifies the
stagnation of the particles in the swarm and uses
the historical information of the best particle in
the swarm to modify the position and direction of
the stagnant particles. The proposed algorithm
is called Social Learning based Particle Swarm
Optimization (SL-PSO).

The remainder of the paper is organized as
follows. In section 2, preliminary concepts related
to this work are introduced. The proposed SL-PSO
is described in section 3. Experimental studies
and results are provided in section 4. Finally, the
conclusions are presented in section 5.

2 Preliminaries

This section introduces the main concepts used
throughout this paper.

2.1 Real-Parameter Single Objective
Optimization Problems

A real-parameter single objective optimization
problem can be stated as follows: Given a function
f(X) : RN → R, an algorithm has to find the
values of the variables of a vector X such that
they minimize or maximize the function f (called
the objective function). In this type of problems, it
is assumed that the vector X can have N variables
(X = (x1,x2, ...,xN )) and the search space within
which the search for such a vector of variables
is performed is bounded by the lower and upper
bounds corresponding to each variable, i.e., ai ≤
xi ≤ bi, i ∈ {1, 2, ..N}, where ai is the lower bound
and bi is the upper bound corresponding to the
variable i.

2.2 Standard Particle Swarm Optimization

The PSO algorithm was proposed by Kennedy and
Eberhart in 1995 [4]. This optimization algorithm
attempts to mimic the complex socio-cooperative
behavior exhibited by different animal species such
as flocks of birds and schools of fish.

The standard version of PSO [14] utilizes a
swarm of NP particles, where each particle
represents a potential solution to an optimization
problem. This swarm is randomly placed within the
N -dimensional search space of the optimization
problem. For the ith particle of the swarm, its
position and velocity at iteration t are denoted by
Xi = (xi1,xi2, ...,xiN ) and Vi = (vi1, vi2, ..., viN )
respectively. Then the new velocity and position
of this particle at iteration t + 1 are calculated
as follows:

Vi,t+1 = ωVi,t + c1r1(Xipbest,t −Xi,t)

+c2r2(Xgbest,t −Xi,t), (1)

where i = 1, 2, ...,NP , c1 and c2 are two
non-negative acceleration factors, r1, r2 are two
uniformly distributed random numbers, Xipbest =
(pi1, pi2, ...., piN ) is the best solution found by the
ith particle itself until iteration t, and Xgbest is
the best solution found by the entire swarm until
iteration t. ω is the inertia weigth to balance the
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global and local search abilities of particles in the
search space, which is given by:

ω = ωmax − (ωmax − ωmin)
t

T
, (2)

where t represents the current iteration, ωmax

and ωmin are the maximum and minimum limits
respectively of the inertia weigth ω, and T is the
maximum number of iterations. Then, the position
of the particles is updated as follows:

Xi,t+1 = Xi,t + Vi,t+1, (3)

and check that Xi,t+1 stays within the search space
delimited by its boundary constraints.

In Equation (1), the first term represents the
inertia of the previous velocity, the second term is
known as the cognitive component and is related to
the personal experience of each particle, the third
term is called the social component and is related
to the cooperation between particles.

2.3 Social Learning

Learning in various animal species consists
of a process that allows them to acquire,
store and subsequently use information from
their environment. Some species, particularly
those that live in groups, have developed the
ability to learn from other members of their
group [6]. Experienced individuals, such as
parents, as well as long-lived and successful
members, provide a reservoir of useful behaviors.
Adopting behaviors from this reservoir allows new
or inexperienced individuals to skip the many
iterations of trial-and-error necessary for their
individual learning and move directly to solutions
previously tested by other individuals. Through
social learning, behaviors can be transferred from
one generation to the next, resulting in more
complex behaviors that help to solve tasks such
as foraging and predator avoidance in an efficient
way [6, 16].

3 Proposed SL-PSO

In this section, we describe our proposed
algorithm, the Social Learning Particle Swarm
Optimization algorithm, in detail.

3.1 Motivation

The SL-PSO algorithm is a variant of the
standard PSO algorithm that utilizes the historical
information of the search process, specifically
the information of the best individuals during
the search process. The decision to use this
information is made with the aim of mitigating the
stagnation of particles within the search process,
taking into account the fact that different species
of animals living in groups use this information and
learn from the behavior of other members of the
group through social learning.

3.2 Algorithm Description

The SL-PSO algorithm incorporates an external
archive called A with size NP , which stores
the best part of the swarm (Xgbest,t) in each
iteration. Unlike the standard PSO, which uses
only information from the current generation,
the proposed algorithm uses both current and
historical information through A.

When the ith particle does not improve its result
considering the fit value between two consecutive
iterations, a stagnation counter Cs ≥ 0 increments
its value by one unit. If the stagnation counter
exceeds a set threshold (δs), this particle is
subjected to a social learning process in which
the particle uses the historical knowledge of the
best particle in the swarm to escape a possible
stagnation and at the same time allows it to
move towards regions with a higher improvement
potential. This intervention of the social learning
process implies that the position of the swarm is
modified as follows:

Xi,t = Xi,t+N
(
0, exp−t/10

)
+γ(XAr,t−Xi,t), (4)

where Xi,t is the position of the particle just
when the stagnation counter Cs exceeds the
set threshold, N

(
0, exp−t/10

)
is a vector of the

same size as Xi,t with randomly generated values
from a normal distribution with zero mean and
standard deviation given by exp−t/10, t represents
the current iteration, γ is a uniformly generated
random number, and XAr,t

is one of the best
swarm positions randomly selected from A.
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Global Minimum

Local Minima

Fig. 1. Diagram showing the change in the position
of a particle as a result of the process of social
learning

Fig. 1 shows a diagram that illustrates the
proposed modification. In this diagram, a particle
Xi,t (red circle) is close to a local minima, which
can provoke the stagnation of the particle and thus
finally activate the social learning process. In this
process, the particle uses the information of one of
the best particles of the swarm stored in the archive
A (green circle) and a perturbation provided by the
vector N

(
0, exp−t/10

)
. This allows the particle to

modify its position (magenta circle) to a new region
of the search space and to improve its orientation
with respect to the best particle of the swarm within
the current generation (cyan circle).

Once the social learning process is applied to a
particle, its stagnation counter is reset to zero. It
is important to note that in the Equation (4), the
vector N

(
0, exp−t/10

)
is intended to generate a

random perturbation at the current position of the
particle. Since this perturbation comes from a
normal distribution with zero mean and standard
deviation given by exp−t/10, the values generated
for this random perturbation vector tend to values
closer to zero as the evolution process progresses.
Thus, at the beginning of the algorithm execution,
larger perturbations are obtained, which improve
the exploration capacity of the algorithm, while
at later stages of the evolution process, smaller
perturbations are generated, which can benefit the
local search of the algorithm. It is also worth noting
that the speed of the particles is not modified within
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Algorithm 1: Pseudo-code of the SL-PSO algorithm

1 Initialize parameters:
2 NP← population size
3 N ← the dimensionality of search space
4 T ← the number of maximum iteration
5 δs ← stagnation threshold
6 ωmax ← maximum limit of inertia weigth
7 ωmin ← minimum limit of inertia weigth
8 c1, c2 ← acceleration factors
9 [Ximin , Ximax ]← the allowable position boundaries, i = 1, 2, ..,N

10 Initialize Population:
11 Randomly initialize a swarm of NP particles
12 Randomly initialize particles velocities
13 Initialize pbest and gbest
14 Initialize archive and stagnation counter:
15 A← Xgbest

16 Cs = ∅
17 for t = 1, 2, ...,T do
18 Update ω according to Equation (2)
19 for each particle Xi, i = 1, 2, ..,NP do
20 Update velocity according to Equation (1)
21 Update position according to Equation (3) and check the boundaries
22 if f (Xi,t+1) < f (Xipbest) then
23 Xipbest = Xi,t+1

24 else
25 Xipbest = Xi,t

26 Csi = Csi + 1

27 if f (Xi,t+1) < f (Xgbest) then
28 Xgbest = Xi,t+1

29 if Csi > δs then
30 Social learning process:
31 Modify position of Xi according to Equation (4)
32 Csi = 0

33 Add Xgbest to A
34 Resize A if |A| > NP
35 t = t + 1

36 Return the best solution

Fig. 2. SL-PSO algorithm

the social learning process and remains equal to
the value obtained just when the social learning
process is activated.

The pseudo-code in Fig. 2 provides a detailed
description of the proposed SL-PSO algorithm.

4 Experimentation and Results

To evaluate the performance of SL-PSO, 10
benchmark functions are selected from the
CEC2017 competition [10] as described in the
section 4.1. The algorithms and parameter settings
utilized in the tests are presented in section 4.2.
The results of the comparison of SL-PSO with the
standard PSO and other well-known variants of the
PSO algorithm are presented in the section 4.3.
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Table 1. Details of benchmark functions used in the experiments

Number Function name Type Dimension (N ) Search space Global optimum (Fmin)

F1 Shifted and Rotated Bent Cigar Unimodal 10/30 [−100, 100]N 100

F2 Shifted and Rotated Sum of Different Power Unimodal 10/30 [−100, 100]N 200

F3 Shifted and Rotated Zakharov Unimodal 10/30 [−100, 100]N 300

F4 Shifted and Rotated Rosenbrock Multimodal 10/30 [−100, 100]N 400

F5 Shifted and Rotated Rastrigin Multimodal 10/30 [−100, 100]N 500

F6 Shifted and Rotated Expanded Schaffer F6 Multimodal 10/30 [−100, 100]N 600

F7 Shifted and Rotated Lunacek Bi-Rastrigin Multimodal 10/30 [−100, 100]N 700

F8 Shifted and Rotated Non-Continuous Rastrigin Multimodal 10/30 [−100, 100]N 800

F9 Shifted and Rotated Levy Multimodal 10/30 [−100, 100]N 900

F10 Shifted and Rotated Schwefel Multimodal 10/30 [−100, 100]N 1000

4.1 Benchmark Functions

To evaluate the performance of SL-PSO on differ-
ent optimization problems, 10 benchmark functions
were selected from the set of single-objective
optimization problems with boundary constraints
from the CEC2017 competition [10]. Three of the
benchmark functions (F1−F3) are of the unimodal
type, i.e., functions with a single global optimum,
and the rest of them (F4 − F10) are functions with
multiple local optima, also known as multimodal
functions. The corresponding dimensions, search
spaces, and values of their respective global
optima are shown in Table 1.

4.2 Algorithms and Parameter Settings

The experiments were conducted using Python
3.11 programming language on a computer with 8
GB of RAM and a 3.6 GHz six-core processor. The
performance of SL-PSO was compared with the
standard PSO, the constraint factor PSO (CPSO)
[2], the human behavior-Based PSO (HPSO) [11],
and the PSO variant based on local stochastic
search strategy (LSSPSO) [3] on the set of
benchmark functions described in section 4.1.

In the simulations performed, all algorithms
were run with the same number of iterations and
particles: 1000 and 100, respectively. These
values are commonly used in the PSO algorithm
[9, 12]. For each algorithm, 51 independent
runs were performed for each function with N =
10 and N = 30. The initial population was
uniformly distributed over the search space. The

inertia factor range was set to [0.4, 0.9]. Table 2
shows the configuration of the five algorithms.
All the comparison algorithms adopt the authors’
suggested parameter configurations.

4.3 Comparison of SL-PSO with PSO
Algorithms

Tables 3 and 4 report the statistical results of
the tests performed on the five algorithms for
N = 10 and N = 30, respectively. The
solution error measure Fmin − F (X∗) was used
to obtain these results, where X∗ represents the
best solution found in each algorithm repetition,
and Fmin is the known solution to the problem.
The mean and standard deviation of the solution
error measure over 51 independent runs are shown
for each function and algorithm. The best value
for each function among all algorithms is shown
in bold. To identify significant differences between
the algorithms, the non-parametric Wilcoxon rank
sum test with a confidence level of 0.05 was also
implemented [15]. The values in the “W/T/L”
row indicate the number of functions where the
SL-PSO algorithm performed significantly better
(+), similar (≈), or worse (−) than its counterpart.
It is worth noting that the mean of the solutions is a
measure of the solution quality of the algorithms,
while the standard deviation is a measure of
their stability.

According to the results presented in Table 3,
SL-PSO achieves the best performance on the
functions F1,F2,F3,F4,F5,F7,F8 and F10, while
HPSO achieves the best performance on the
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Table 2. Parameter settings

Parameter Meaning SL-PSO PSO CPSO HPSO LSSPSO

T Number of iterations 1000 1000 1000 1000 1000

NP Number of particles 100 100 100 100 100

C1 Acceleration factor 2.0 2.0 2.0 N/A 2.0

C2 Acceleration factor 2.0 2.0 2.0 N/A 2.0

ω Inertia weight Linear Linear Linear Linear Linear

δs Stagnation threshold 15 N/A N/A N/A N/A

χ Constraint factor N/A N/A 0.7298 N/A N/A

r Constant N/A N/A N/A N/A 0.1

functions F6 and F9. PSO, CPSO, and LSSPSO
do not perform well on any of the benckmark
functions. As can be seen in this table, SL-PSO
ranks first among all algorithms in terms of average
mean performance, while the standard PSO
algorithm ranks last. SL-PSO shows significant
advantages except for three functions (F6,F7,F9),
but does not show significant disadvantages in
any case. In addition, SL-PSO has the lowest
standard deviation values for most functions,
followed by HPSO.

For N = 30, the results in Table 4 indicate that
SL-PSO performs best on the functions F1, F2,
F3, F4, F5, F8, and F10, while HPSO performs
best on functions F6, F7, and F9. It is worth
noting that the SL-PSO algorithm performs well on
both unimodal and multimodal functions. However,
none of the PSO, CPSO, and LSSPSO algorithms
perform well on any of the benchmark functions.
As with the results for N = 10, PSO ranks last
in terms of performance, with SL-PSO achieving
the best performance, followed by HPSO. The
HPSO algorithm presents significant advantages
in functions F6, F7, and F9, while SL-PSO has
significant advantages on functions F1, F2, F3,
F4, and F10. In addition, SL-PSO achieves the
lowest standard deviation values for the majority of
functions, showing its ability to solve problems with
multimodal functions.

Fig. 3 shows the convergence curves of the
evolution process of SL-PSO, PSO, CPSO, HPSO,
and LSSPSO. The benchmark functions F3, F6,
and F7 are used to exemplify the convergence
characteristics for cases where N = 10 and N =
30, with T = 1000 and NP = 100. Each curve

represents the average of 51 runs over a function,
obtained by a specific algorithm.

Figs. 3(a) and 3(b) show that for the
unimodal function F3, SL-PSO achieves the
highest accuracy in both 10 and 30 dimensions,
while the rest of the algorithms maintain higher
average error. Figs. 3(c) and 3(d) show that
for the multimodal function F6, HPSO produces
the lowest mean error, while SL-PSO remains in
second place. The remaining algorithms achieve
higher mean errors. This behavior is observed in
both 10 and 30 dimensions. Finally, Figs. 3(e)
and 3(f) show that for the multimodal function F7,
all algorithms keep relatively close error means in
both 10 and 30 dimensions. However, SL-PSO
achieves the lowest mean error, followed by HPSO.

Based on the accuracy of the solutions
(Tables 3 and 4), as well as the convergence
characteristics (Fig. 3), it can be clearly stated that
SL-PSO significantly outperforms PSO, CPSO,
and LSSPSO, in both unimodal and multimodal
functions, even as the number of dimensions
increases. On the other hand, SL-PSO performs
competitively with respect to HPSO mainly as the
number of dimensions increases.

5 Conclusion and Future Work

In this paper, a new variant of the PSO algorithm
called Social Learning based Particle Swarm
Optimization (SL-PSO) is proposed. It is inspired
by the fact that several species of animals living in
groups use social learning, which allows them to
use information and learn from other individuals in
the group. Stagnant swarm particles are redirected
to regions with higher improvement potential using
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Table 3. Comparison results of four PSO algorithms with SL-PSO in 10 functions and 10 dimensions

Function Metrics SL-PSO PSO CPSO HPSO LSSPSO

Mean 3.0750E+04 8.7415E+09 9.7242E+06 3.2958E+06 2.1328E+09

F1 Std 2.1906E+05 9.8876E+09 6.4430E+07 5.0008E+06 5.1754E+09

Rank 1 5 3 2 4

Significance + + + +

Mean 2.6103E-03 6.6244E+08 4.6415E+04 2.6280E+03 1.2007E+08

F2 Std 1.0826E-02 1.9478E+09 2.8757E+05 4.9877E+03 4.6080E+08

Rank 1 5 3 2 4

Significance + + + +

Mean 2.7864E-14 1.2900E+02 9.2323E-08 4.9061E+01 7.0305E+02

F3 Std 2.8699E-14 5.3368E+02 6.0167E-07 4.5129E+01 2.4047E+03

Rank 1 4 2 3 5

Significance + + + +

Mean 2.2166E+00 4.5452E+01 7.7978E+00 6.7092E+00 2.0047E+01

F4 Std 3.1996E+00 5.6387E+01 1.2717E+01 2.0264E+00 3.4095E+01

Rank 1 5 3 2 4

Significance + + + +

Mean 1.3667E+01 3.2589E+01 2.0087E+01 2.9228E+01 2.7216E+01

F5 Std 5.1568E+00 1.1341E+01 1.0310E+01 6.6641E+00 1.1248E+01

Rank 1 5 2 4 3

Significance + + + +

Mean 3.4429E+00 1.3974E+01 9.8673E+00 2.6507E+00 1.0049E+01

F6 Std 2.1599E+00 1.0043E+01 7.2500E+00 1.4455E+00 6.4726E+00

Rank 2 5 3 1 4

Significance + + ≈ +

Mean 2.8192E+01 3.1687E+01 3.8718E+01 2.9148E+01 3.6623E+01

F7 Std 8.5294E+00 1.0700E+01 1.1472E+01 8.1587E+00 1.0198E+01

Rank 1 3 5 2 4

Significance ≈ + + +

Mean 1.3210E+01 2.4956E+01 2.1728E+01 1.9494E+01 2.4347E+01

F8 Std 5.6112E+00 1.0126E+01 9.3034E+00 5.7626E+00 1.0231E+01

Rank 1 5 3 2 4

Significance + + + +

Mean 1.3980E+00 2.3724E+01 3.2838E+01 6.6562E-01 5.7464E+00

F9 Std 2.0021E+00 5.2860E+01 3.6176E+01 7.2203E-01 8.3653E+00

Rank 2 4 5 1 3

Significance + + ≈ +

Mean 4.5699E+02 9.6344E+02 7.7064E+02 1.1971E+03 8.5483E+02

F10 Std 2.1481E+02 3.1029E+02 2.3985E+02 2.1976E+02 3.3255E+02

Rank 1 4 2 5 3

Significance + + + +

Average rank 1.2 4.5 3.1 2.4 3.8

Final rank 1 5 3 2 4

W/T/L -/-/- 9/1/0 10/0/0 8/2/0 10/0/0

historical information from the best particle in
the swarm.

This increases its exploration capability while
maintaining a simple implementation that does not
require the configuration of a large number of
additional parameters.

The SL-PSO algorithm was tested on 10 single-
objective optimization problems with boundary
constraints from the CEC2017 competition.

These problems require function minimization,
which, due to their mathematical structure,
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Table 4. Comparison results of four PSO algorithms with SL-PSO in 10 functions and 30 dimensions

Function Metrics SL-PSO PSO CPSO HPSO LSSPSO

Mean 1.2385E+07 6.3888E+10 2.9003E+10 1.9072E+09 1.6355E+10

F1 Std 2.3163E+07 6.3034E+10 1.7661E+10 1.1510E+09 3.9199E+10

Rank 1 5 4 2 3

Significance + + + +

Mean 6.3208E+22 7.0401E+39 4.0791E+31 8.2597E+23 1.1473E+43

F2 Std 3.5340E+23 2.8986E+40 2.8381E+32 5.7518E+24 8.1915E+43

Rank 1 4 3 2 5

Significance + + + +

Mean 5.1230E+02 2.0306E+04 1.8521E+04 9.8818E+03 1.8536E+04

F3 Std 3.0889E+02 2.1862E+04 6.9042E+03 3.6645E+03 2.5974E+04

Rank 1 5 3 2 4

Significance + + + +

Mean 1.8055E+02 1.5944E+03 8.4919E+02 2.0912E+02 6.2117E+02

F4 Std 6.4990E+01 1.6563E+03 4.2227E+02 4.3289E+01 7.4243E+02

Rank 1 5 4 2 3

Significance + + + +

Mean 1.0057E+02 1.9181E+02 1.7107E+02 1.0556E+02 1.8041E+02

F5 Std 2.2009E+01 4.8255E+01 3.6120E+01 1.6339E+01 4.1253E+01

Rank 1 5 3 2 4

Significance + + ≈ +

Mean 2.9756E+01 5.1896E+01 5.1283E+01 1.7762E+01 4.9453E+01

F6 Std 5.4414E+00 1.1102E+01 1.1844E+01 4.0451E+00 1.4327E+01

Rank 2 5 4 1 3

Significance + + − +

Mean 1.9693E+02 2.9447E+02 3.1142E+02 1.7496E+02 2.7421E+02

F7 Std 3.7166E+01 1.0133E+02 6.5002E+01 2.3012E+01 6.5471E+01

Rank 2 4 5 1 3

Significance + + − +

Mean 9.0583E+01 1.5041E+02 1.3941E+02 9.6197E+01 1.4292E+02

F8 Std 2.0908E+01 4.0311E+01 3.1154E+01 2.1218E+01 3.4358E+01

Rank 1 5 3 2 4

Significance + + ≈ +

Mean 9.4548E+02 3.3655E+03 2.6033E+03 3.9235E+02 2.6611E+03

Rank 2 5 3 1 4

F9 Std 3.9333E+02 1.4856E+03 1.0561E+03 2.0978E+02 1.2553E+03

Significance + + − +

Mean 3.2987E+03 5.1759E+03 4.4595E+03 5.2560E+03 4.8679E+03

F10 Std 5.7575E+02 8.4169E+02 7.4558E+02 9.8490E+02 9.6935E+02

Rank 1 4 2 5 3

Significance + + + +

Average rank 1.3 4.7 3.4 2 3.6

Final rank 1 5 3 2 4

W/T/L -/-/- 10/0/0 10/0/0 5/2/3 10/0/0

provides insight into the performance of the
proposal under complex scenarios.

The statistical results as well as the convergence
curves confirm that SL-PSO is able to achieve
a high level of performance concerning other
PSO variants in both unimodal and multimodal

functions, even when the number of dimensions
are increased. In future works, we will focus
on improving the performance of the SL-PSO
algorithm and comparing it to other bio-inspired
algorithms. Furthermore, the application of
the proposed algorithm to solving real-world
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Fig. 3. Convergence curves of SL-PSO, PSO, CPSO, HPSO, and LSSPSO for the selected functions. The cases of
N = 10 and N = 30 are considered, with T = 1000 and NP = 1000. A logarithmic scale has been used for visualization
purposes

optimization problems is another area to be
investigated.
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