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Abstract. Vision problems are common in patients with 
diabetes mellitus (DM) because they may suffer from 
diabetic retinopathy (DR). Because the symptoms of this 
condition are not easy to detect without the intervention 
of an expert technician, the use of convolutional neural 
networks (CNN) has been implemented to speed up the 
process of analyzing retina images. Due to the good 
results of this technology, efforts have been made to 
combine it with other technologies. In this paper, we 
present the use of an intelligent hybrid system that uses 
CNNs and Fuzzy Logic with the aim of improving the 
accuracy obtained. The implementation of fuzzy logic to 
adjust the hyperparameters of the network allowed us to 
obtain a mean of 0.9526 with a standard deviation of 
0.008521158 in the binary case study, while in the 
multiclass case study we obtained a mean of 0.7299 and 
a standard deviation of 0.015614013, offering better 
results when fuzzy logic is combined compared to 
when not. 

Keywords. Convolutional neural network, fuzzy logic, 
image pre-processing. 

1 Introduction 

Individuals afflicted with diabetes mellitus (DM), 
irrespective of whether it manifests as type 1 or 
type 2, face a significantly elevated likelihood of 
developing diabetic retinopathy (DR) [1-2]. Those 
grappling with this condition may experience visual 
impairments or, in severe cases, complete 
blindness [3-4]. A prognostic study indicates that 
within a mere decade, the prevalence of this 
ailment is anticipated to double compared to 
patient counts from a decade prior [5]. 

Consequently, the incidence of vision 
impairment is poised to witness a twofold increase. 
Several factors contribute to the expeditious 
proliferation of DR cases [6-7]. The foremost factor 

is the onset age of this condition, which has been 
documented in DM patients as young as 20 years 
old [8]. 

Another critical concern in the context of DR is 
the dearth of expert technicians that are adept at 
diagnosing the ailment [9-10]. In response to this 
challenge, diverse computer technologies have 
been harnessed to facilitate prompt detection and 
informed medical decision-making for patients. 

Researchers have leveraged advanced tools 
like deep learning, particularly neural networks, to 
expedite the detection process not only for DR but 
also for other diseases, concurrently diminishing 
the margin of error [11-14]. 

Techniques such as convolutional neural 
networks (CNNs) and deep learning 
methodologies have proven highly efficacious in 
DR detection, with optimal outcomes realized 
through their application [15-17]. Many 
researchers have expedited their work by utilizing 
pre-trained CNNs, yet bespoke architectures 
tailored to specific issues have exhibited enhanced 
detection accuracy, incorporating techniques such 
as optimization algorithms and fuzzy logic [18]. 

This study commenced by meticulously 
selecting the foundational CNN model and the 
most appropriate pre-processing technique for the 
designated database. Exhaustive research 
ensured the identification of the pre-processing 
method that exhibited superior performance in 
prior studies. 

Similarly, the base CNN model was chosen 
based on the favorable outcomes discerned in the 
research. The subsequent phase involved the 
integration of a fuzzy inference system to optimize 
the layers of the CNN architecture for DR 
detection. Despite the prevalent use of fuzzy logic 
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in other studies for classifying diverse databases, 
its application in the detection and classification of 
DR remains relatively unexplored. 

Section 2 of this paper elucidates the related 
work conducted by various authors. Section 3 
provides comprehensive explanations of 
fundamental concepts, complemented by 
illustrative examples, to enhance comprehension 
of this study. 

Section 4 delineates and expounds upon the 
methods employed in this research. Section 5 
presents the results gleaned from the conducted 
experiments, and finally, Section 6 articulates the 
conclusions derived from the study. 

2 Related Work 

Increasing the precision of neural networks either 
for classification or prediction has been a priority 
for experts in recent years [19-20], due to this many 
works have been written with different 
implementations or own methods that seek the 
same objective. 

In the work of [21] we sought to modify the 
depth of the network, size and number of 
convolutional filters and number of neurons in the 
hidden layers. In this work it was concluded that, 
depending on the data set used, the number of 
filters used in the convolution layer can be 
increased or decreased, so increasing the number 
of filters will not necessarily improve the results. 

Do not forget that a convolutional neural 
network contains the same hidden layers as a 
traditional neural network. The work of the author 
[22] shows us the different behaviors that 

modifying the number of neurons in each of the 
hidden layers can result in an increase of precision. 

To carry out the modifications to the 
hyperparameters of the CNNs, the use of 
optimization algorithms has been implemented 
that allow experts to speed up the process, one of 
them being the genetic algorithm. Thanks to this 
technology, prior work can be carried out with the 
APTOS 2019 [23] database. Using this algorithm, 
a CNN model was created that improves the 
accuracy of diabetic retinopathy classification. 

3 Basic Concepts 

In the previous section, some terms were 
mentioned that may not be familiar to those who do 
not work with the use of intelligent hybrid systems. 
So, for a complete understanding of this work, this 
section will present the information necessary to 
understand the work in its entirety. 

3.1 Artificial Neural Networks 

One of the most widely employed machine learning 
tools for disease detection is the supervised 
artificial neural network. This specific neural 
network variant enables expert technicians to train 
the network using a labeled database [24]. 

When utilizing images in the learning phase, it 
becomes imperative to specify pertinent 
information for accurate future classification. This 
underscores the necessity for the supervision of an 
expert technician in the realm of image topics. 

However, there exists a type of neural network 
capable of performing this task with convolutional 
filters: convolutional neural networks [25]. The 
design of a convolutional neural network model 
closely resembles that of a feed-forward neural 
network, with the differentiating factor becoming 
evident after the input stage [26]. 

3.1.1. Convolutional Layer 

It is the initial layer in the CNN architecture, 
facilitates the recognition of key characteristics 
within the input images [27]. 

Consequently, the network eliminates the 
requirement for an expert technician to apply 
preprocessing methods to the images. To achieve 

Table 1. Multiple image distribution of APTOS 2019 

Distribution Name Number of images 

Retina without DR 1805 

No proliferative mild 370 

No proliferative moderate 999 

No proliferative severe 193 

Proliferative 295 

Retina with any proliferative 
stage of DR 

1857 
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this, the convolutional layer necessitates a kernel 
to derive a new matrix. 

3.1.2. ReLU Function 

The Rectified Linear Unit Function (ReLU) plays a 
crucial role in Convolutional Neural Networks 
(CNNs). Activation functions are essential after 
each individual neuron, and one of the widely 
utilized functions for CNNs is the ReLU 
function [28].  

ReLU permits the activation of every positive 
number, thereby reducing the time required 
for experimentation. 

3.1.3. MaxPooling Layer 

The activation function serves to expedite the 
training time, although the image size remains 
constant, and not all pixels carry equal 
significance. To address this, a pooling method is 
employed, with the MaxPooling method being one 
of the most prevalent in the domain of 
convolutional neural networks [29]. 

3.2 Fuzzy Logic 

Fuzzy logic is a logic that allows you to reach 
“reasoned” conclusions based on ambiguous or 
imprecise information [30]. One of the great 
contributions of this logic is that it allows us to 
model situations or behaviors that are vague in 
themselves, that is, it adapts better to reality than 
classic logic, where there are only two values to 
decide [31]. 

Human reasoning does not react in a classical 
logic manner, but on the contrary, evaluates the 
environment and based on the weights of each of 
the variables decides, so fuzzy logic is more 
suitable to try to emulate such mental 
behavior [32]. 

It has been used for the development of a 
countless number of applications of all kinds such 
as medicine and bioinformatics [33]. The primary 
emphasis of this study lies in hybrid systems, 
signifying the necessity of incorporating two or 
more distinct techniques to formulate the 
proposed method. 

The utilization of both CNN and fuzzy logic has 
been a recurrent theme in previous works, with a 
noticeable increase in its prevalence over the 
years [34]. The amalgamation of convolutional 
neural networks and fuzzy logic typically involves 
the incorporation of optimization algorithms, such 
as genetic algorithms or particle swarm 
optimization, aimed at optimizing the parameters 
associated with each technology [35]. 

4 Proposed Methods 

In this section, we will consider each of the 
concepts explained in the previous section. First, 
the architectures of the CNN models from a 
previous work to which the proposed method will 

 

Fig. 1. Graphical representation of FIS 

Table 2. Ranges of the new filters number 

Convolutional Layer Number Range 

1 [16-32] 

2 [32-64] 

3 [64-128] 

4 [128-256] 

5 [256-512] 

Table 3. Ranges of the new neurons number 

Fully Connected Layer Number Range 

1 (Binary Study Case) [64 - 128] 

2 (Binary Study Case) [128 - 256] 

3 (Binary Study Case) [256 - 512] 

1 (Multiclass Study Case) [64 - 512] 
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be applied will be detailed. Afterwards, the data 
from the APTOS 2019 database, characteristics 
and the two distributions necessary for the case 
studies of this work will be presented. 

Then the explanation of the preprocessing 
applied to the database will be gone into detail. 
And finally, the creation and implementation of a 
fuzzy inference system that will allow us to modify 
the number of filters and neurons in the networks. 

4.1 Neural Network Models 

There are two CNN models obtained on previous 
work [36]. The first model, focused on binary study 
case, has an input size of 256x256x3 (width, 
height, and depth) and 5 convolutional layers, 
some on them have MaxPooling layer after it, but 
not all. Also, the model has 3 fully connected layers 
with different number of neurons. 

Finally, the model has a Sigmoid activation 
function because it is for a binary study case. The 
second model, focused on multiclass study case, 
has the same input size and 5 convolutional layers 
with different values on its hyperparameters 
(MaxPooling size dropout if applies). Also, the 

model has 1 fully connected layer. Finally, the 
model has a Softmax activation function because 
it is for multiclass study case. 

4.2 APTOS 2019 Database 

This DR database has 3662 labeled images can be 
used for training and validation [37]. The database 
has 5 different classes that represent the damage 
caused by the disease that are used for multiclass 
study case [38], but 4 classes can be combined to 
obtain just 2 total classes for binary study case: 
healthy retina images and retina with diabetic 
retinopathy images [39]. 

The database has images with different kind of 
noise and no image has the same size. In Table 1, 
the distribution of the images for this work can 
be observed. 

4.3 Preprocessing Method 

This approach involves removing interfering pixels 
from the background and completely isolating the 
retina in the image. To achieve this goal, it is 
essential to transform color images to grayscale. 

Table 4. Fuzzy rules 

Fuzzy Rule Number Fuzzy Rule 

1 If (accuracy is very_bad) and (old_filters is very_few) then (new_filters is a_lot) 

2 If (accuracy is bad) and (old_filters is very_few) then (new_filters is many) 

3 If (accuracy is good) and (old_filters is very_few) then (new_filters is few) 

4 If (accuracy is excellent) and (old_filters is very_few) then (new_filters is very_few) 

5 If (accuracy is very_bad) and (old_filters is few) then (new_filters is a_lot) 

6 If (accuracy is bad) and (old_filters is few) then (new_filters is many) 

7 If (accuracy is good) and (old_filters is few) then (new_filters is very_few) 

8 If (accuracy is excellent) and (old_filters is few) then (new_filters is few) 

9 If (accuracy is very_bad) and (old_filters is many) then (new_filters is very_few) 

10 If (accuracy is bad) and (old_filters is many) then (new_filters is few) 

11 If (accuracy is good) and (old_filters is many) then (new_filters is a_lot) 

12 If (accuracy is excellent) and (old_filters is many) then (new_filters is many) 

13 If (accuracy is very_bad) and (old_filters is a_lot) then (new_filters is very_few) 

14 If (accuracy is bad) and (old_filters is a_lot) then (new_filters is few) 

15 If (accuracy is good) and (old_filters is a_lot) then (new_filters is many) 

16 If (accuracy is excellent) and (old_filters is a_lot) then (new_filters is a_lot) 
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By using a grayscale representation, conversion to 
a binary image becomes feasible. The process of 
converting the grayscale image to binary involves 
the selection of each pixel to refine the image. 

The amount of luminosity present in the pixel 
must exceed a defined threshold to avoid 
considering it as noise and instead take advantage 
of it for precise retinal extraction. With the resulting 
binary image, the next step consists of locating and 
identifying the retina. 

Thanks to the binary image, this task is 
simplified since it only involves identifying the most 
prominent shape. Once the retina has been 
detected, its position is extracted and used to 
isolate the retina from the original images. 

Finally, black pixels are inserted as necessary 
to achieve an image with uniform dimensions in 
width and height. This method has yielded 
favorable results compared to other preprocessing 
techniques [40]. 

4.4 Fuzzy Inference System Description 

To start, both APTOS 2019 study cases require a 
Mamdani Type-1 fuzzy inference system (FIS). All 
membership functions are trapezoidal functions. 

The FIS comprises two inputs: the accuracy 
achieved with the current quantity of filters or 
neurons, and the second input pertains to the 
current quantity of filters or neurons. 

The FIS yields a single output, which signifies 
the number of filters for the convolutional layer or 
neurons for the fully connected layer. Each input 
and output have 4 membership functions. The 
graphical representation of the FIS is depicted in 
Fig. 1. The accuracy value is normalized within the 
range of 0 to 1. 

The quantity of filters or neurons is contingent 
upon the convolutional layer number or fully 
connected layer, with specified ranges detailed in 
Table 2 and Table 3 respectively. 

The chosen Defuzzification Method is Centroid. 
In the context of these experiments, the FIS 
incorporates 16 fuzzy if-then rules obtained by trial 
and error, which are outlined in Table 4. A 
graphical representation of the proposed method 
can be observed on Fig. 2. 

Equations of the FIS can be observed on Eq. 1-
8 where Eq. 1-4 are for the input of accuracy and 
Eq. 5-8 are for the input and output of the number 
of filters or neurons. 

 

Fig. 2. Graphical representation of the proposed method 
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μvery_bad�x� =

⎩⎪
⎪⎨
⎪⎪
⎧ 0,� − �−0.2�

−0.1 − �−0.2� ,
1,

� ≤ −0.2−0.2 ≤ � ≤ −0.1−0.1 ≤ � ≤ 0.7
0.8 − �

0.8 − 0.7 , 0.7 ≤ � ≤ 0.8
0,  0.8 ≤ �

, (1) 

�bad��� =
⎩⎪
⎨
⎪⎧

0, � ≤ 0.65
���.��

�.����.�� , 0.65 ≤ � ≤ 0.72
1, 0.72 ≤ � ≤ 0.83

�. ��
�. ��.!" , 0.83 ≤ � ≤ 0.9

0, 0.9 ≤ �
, (2) 

�good��� =

⎩⎪
⎪⎨
⎪⎪
⎧ 0, � ≤ 0.8� − 0.8

0.85 − 0.8 , 0.8 ≤ � ≤ 0.85
1, 0.85 ≤ � ≤ 0.951 − �

1 − 0.95 , 0.9 ≤ � ≤ 1
0, 1 ≤ �

, (3) 

�excellent��� =

⎩⎪
⎪⎨
⎪⎪
⎧ 0, � ≤ 0.9� − 0.9

0.96 − 0.9 , 0.9 ≤ � ≤ 0.96
1, 0.96 ≤ � ≤ 1.0421.375 − �

1.375 − 1.042 , 1.042 ≤ � ≤ 1.375
0, 1.375 ≤ �

, (4) 

�very_few��� =

⎩⎪
⎪⎨
⎪⎪
⎧ 0, � ≤ −0.375� − �−0.375�

−0.04 − �−0.375� , −0.375 ≤ � ≤ −0.04
1, −0.04 ≤ � ≤ 0.10.4 − �

0.4 − 0.1 , 0.1 ≤ � ≤ 0.4
0, 0.4 ≤ �

 (5) 

�few��� =

⎩⎪
⎪⎨
⎪⎪
⎧ 0, � ≤ −0.005� − �−0.005�

0.3 − �−0.005� , −0.005 ≤ � ≤ 0.3
1, 0.3 ≤ � ≤ 0.40.7 − �

0.7 − 0.4 , 0.4 ≤ � ≤ 0.7
0, 0.7 ≤ �

 (6) 

�many��� =

⎩⎪
⎪⎨
⎪⎪
⎧ 0, � ≤ 0.3� − 0.3

0.6 − 0.3 , 0.3 ≤ � ≤ 0.6
1, 0.6 ≤ � ≤ 0.71 − �

1 − 0.7 , 0.7 ≤ � ≤ 1
0, 1 ≤ �

 (7) 

μa_lot�x� =

⎩⎪
⎪⎨
⎪⎪
⎧ 0, � ≤ 0.6� − 0.6

0.9 − 0.6 , 0.6 ≤ � ≤ 0.9
1, 0.9 ≤ � ≤ 1.0151.315 − �

1.315 − 1.015 , 1.015 ≤ � ≤ 1.315
0, 1.315 ≤ �

 (8) 

5 Experimental Results 

In this section, we are going to bring together each 
of the concepts and methods proposed for 
distributed experimentation in two study cases: 
binary and multiclass. 

5.1 Experiments for APTOS 2019 Binary Study 
Case 

Two experiments were conducted; the initial one 
involved employing the CNN model derived 
through the hierarchical genetic algorithm as 
documented in prior research [41]. The second 
experiment utilized the CNN model acquired 
through the previously explained FIS. 

Each experiment was iterated 30 times, 
maintaining consistent hyperparameters: 10 
epochs, utilization of the APTOS 2019 database, 
and the Adam optimizer algorithm. 

In the first experiment, the mean accuracy 
recorded was 0.9021, accompanied by a standard 
deviation of 0.108434797. Conversely, for the 
second experiment, the mean accuracy achieved 
was 0.9526, with a standard deviation of 
0.008521158. Detailed results for each iteration 
are presented in Table 5. 

5.1.1. Box Plot for Binary Study Case 

One box plot was made to observe the comparison 
of the values. Box plot for the binary study case 
can be observed on Fig. 3. 

5.1.2. Hypothesis Testing for Binary 
Study Case 

Based on the results observed in Table 5, the 
hypothesis testing will be between mean accuracy 
and standard deviation obtained by the first 
experiment and the second one. The experiment of 
this present work got a higher mean accuracy, so, 
our statement is that the experiment with the CNN 
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model obtained by the fuzzy system inference 
offers a bigger mean accuracy than the offered by 
the experiment with the CNN model obtained by 
the hierarchical genetic algorithm for binary study 
case. Using an Alpha value of 0.05, the critical 

value obtained must be more than 1.96 to reject 
the null hypothesis. The score of the statistic test is 
2.5240, meaning that the null hypothesis is 
rejected and there is enough evidence to support 
the claim. 

Table 5. Results for binary study case experimentation 

Experiment 
Number 

Genetic Algorithm 
Accuracy 

Fuzzy Logic 
Accuracy 

Experiment 
Number 

Genetic Algorithm 
Accuracy 

Fuzzy Logic 
Accuracy 

1 0.938608468 0.934515715 16 0.927694380 0.960436583 

2 0.929058671 0.956343770 17 0.889495254 0.938608468 

3 0.911323309 0.960436583 18 0.931787193 0.954979539 

4 0.507503390 0.952251017 19 0.950886786 0.949522495 

5 0.920873106 0.956343770 20 0.960436583 0.956343770 

6 0.930422902 0.961800814 21 0.953615308 0.952251017 

7 0.939972699 0.961800814 22 0.897680759 0.972714841 

8 0.937244177 0.942701221 23 0.931787193 0.949522495 

9 0.924965918 0.957708061 24 0.904502034 0.954979539 

10 0.938608468 0.956343770 25 0.934515715 0.935879946 

11 0.937244177 0.960436583 26 0.916780353 0.950886786 

12 0.937244177 0.960436583 27 0.929058671 0.946793973 

13 0.939972699 0.952251017 28 0.934515715 0.945429742 

14 0.946793973 0.952251017 29 0.507503390 0.954979539 

15 0.930422902 0.939972699 30 0.933151424 0.948158264 

Table 6. Results for multiclass study case experimentation 

Experiment 
Number 

Genetic Algorithm 
Accuracy 

Fuzzy Logic 
Accuracy 

Experiment 
Number 

Genetic Algorithm 
Accuracy 

Fuzzy Logic 
Accuracy 

1 0.728512943 0.717598915 16 0.688949525 0.740791261 

2 0.706684828 0.738062739 17 0.703956366 0.720327437 

3 0.714870393 0.733969986 18 0.731241465 0.736698508 

4 0.712141871 0.712141871 19 0.710777640 0.744884014 

5 0.710777640 0.731241465 20 0.703956366 0.727148712 

6 0.714870393 0.733969986 21 0.735334218 0.713506162 

7 0.727148712 0.723055959 22 0.728512943 0.720327437 

8 0.736698508 0.743519783 23 0.739427030 0.731241465 

9 0.740791261 0.739427030 24 0.739427030 0.729877234 

10 0.750341058 0.729877234 25 0.718963146 0.725784421 

11 0.724420190 0.742155552 26 0.690313756 0.727148712 

12 0.725784421 0.710777640 27 0.712141871 0.727148712 

13 0.727148712 0.724420190 28 0.706684828 0.721691668 

14 0.688949525 0.725784421 29 0.720327437 0.735334218 

15 0.716234624 0.736698508 30 0.717598915 0.753069580 
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5.2 Experiments for APTOS 2019 Multiclass 
Study 

In the same way as previous experimentation, two 
experiments were conducted; the first one involved 
employing the CNN model obtained through the 
hierarchical genetic algorithm [42] and the second 
experiment utilized the CNN model acquired 
through the FIS. Each experiment was iterated 30 
times, maintaining consistent hyperparameters: 10 
epochs, utilization of the APTOS 2019 database, 
and the Adam optimizer algorithm. 

In the first experiment, the mean accuracy 
recorded was 0.7191, accompanied by a standard 
deviation of 0.010199619. Conversely, for the 
second experiment, the mean accuracy achieved 
was 0.7299, with a standard deviation of 
0.015614013. Detailed results for each iteration 
are presented in Table 6. 

5.2.1. Box Plot for Multiclass Study Case 

In the same way as the previous experiment, one 
box plot was made to observe the comparison of 
the values. Box plot for the multiclass study case 
can be observed on Fig. 4. 

5.1.2. Hypothesis Testing for Multiclass 
Study Case 

Based on the results observed in Table 6, the 
hypothesis testing will be between mean accuracy 
and standard deviation obtained by the first 
experiment and the second one. 

The experiment of this present work got a 
higher mean accuracy, so, our statement is that the 
experiment with the CNN model obtained by the 
fuzzy system inference offers a bigger mean 
accuracy than the offered by the experiment with 
the CNN model obtained by the hierarchical 
genetic algorithm for multiclass study case. 

Using an Alpha value of 0.05, the critical value 
obtained must be more than 1.96 to reject the null 
hypothesis. The score of the statistic test is 3.1786, 
meaning that the null hypothesis is rejected and 
there is enough evidence to support the claim. 

6 Conclusions 

In this study, the focus was on employing a 
Mamdani Type 1 fuzzy inference system to 
determine the filter numbers based on the previous 
filter values and the obtained accuracy. Before 
implementing the proposed method, the mean 
accuracy and standard deviation of the base CNN 
model were calculated for comparative analysis. 
Subsequently, the proposed method was 
integrated into a pre-existing CNN model. 

After the generation of the new CNN model, the 
FIS was used iteratively to refine the CNN model, 
obtaining the best CNN model, mean precision, 
and standard deviation. There is room for 
improvement in the construction of the FIS such as 
the number of variables, rules and membership 
functions, so as future work the current work can 
be taken and implemented the respective 
improvements and seek a higher average 
precision with a reduced standard deviation. 

Finally, APTOS 2019 serves as a valuable 
database in addressing real-world problems, yet it 
is not the exclusive dataset where the proposed 

 

Fig. 3. Box plot for binary study case 

 

Fig. 4. Box plot for multiclass study case 
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method could find application. As future work, we 
plan to consider different metaheuristics for 
optimizing the method, as in [43-48]. Also, elevate 
the use of fuzzy logic to type-2, like it is done in 
several recent works [49-54]. 
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