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Abstract. Learning from data in almost any human 
activity is a very important task, usually using similarity 
or dissimilarity between data. Recently, it was shown the 
importance of considering the involution operation 
defined on the data domain which reflects a symmetry of 
data structures. This symmetry should be taken into 
account in data analysis. Co-symmetric similarity and 
dissimilarity measures defined over a set with involution 
play an important role in data analysis.  In this paper, four 
dissimilarity functions over the set of probability 
distributions are created that meet the property of co-
symmetry with respect to the involutive negation of 
distributions. Scatter graphs are generated from their 
respective dissimilarity matrices to compare the 
similarity between them. Additionally, the Pearson, 
Kendall, and Spearman correlation coefficients are 
calculated to numerically assess the relationship that 
exists. Subsequently, four dissimilarity functions are 
considered due to their higher correlation with those 
studied in this paper. They are divided into two groups, 
and an analysis is conducted to determine which are 
more correlated. 

Keywords: Co-symmetry, correlation, dissimilarity, 
involution, probability distribution. 

1 Introduction 

Many similarity and dissimilarity measures are 
proposed for probability distributions [1,2]. 
Recently, an involutive negation of probability 
distributions [3] and measure of correlation 
between distributions were introduced [4, 5]. This 

correlation measure used co-symmetric distance 
between probability distributions based on 
involutive negation of probability distributions. Co-
symmetric similarity and dissimilarity measures are 
important for applications because they take into 
account the symmetry of data related to involution 
operation [6]. In this paper, four new co-symmetric 
dissimilarity functions for probability distributions 
are created and compared with the other co-
symmetric distances between probability 
distributions considered in [7]. 

In Section 2, a small outline of the theory used 
to support the results is given. In Section 3, four 
distances are used to create four dissimilarity 
functions that comply with the co-symmetry 
property. In sections 4 and 5, they are compared 
with four other co-symmetric distances introduced 
in [7]. Sections 6 and 7 contain results 
and conclusion. 

2 Preliminary Definitions 

2.1 Negator and Negation of Probability 
Distributions 

Let � = ���, … , ��	 be a set of alternatives ordered 
in some way. A probability distribution over � is a 
sequence of non-negative numbers 
 = �
� , … , 
�	 
such that ∑ 
�

�
�
� = 1. Here, for all � = 1, … , �, 
� is 

considered as a probability of ��. 
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The first example of negation of probability 
distributions was introduced in [8]. In [9], the 
general properties of negations of probability 
distributions and the class on linear negations of 
probability distributions are considered. In [3], it 
was introduced an involutive negation of 
probability distributions. Relationships of negation 
with entropy of probability distributions are studied 
in [10]. Interpretation of probability distributions as 
fuzzy distribution sets and extension on probability 
distributions parametric negations of fuzzy sets is 
considered in [11, 12]. A negator � is a function 
that transforms point by point one probability 
distribution 
 = �P�, … , P�	 into another probability 
distribution ����
	 = ���
�	, . . . ��
�	) called 
negation of 
 [9], such that for all �, � = 1, … , �, from 

� ≤ 
� it follows ��
�	 ≥  ��
��. 

A negation is called an involutive if 
��������
	� = 
. In [3], Batyrshin introduced 

a negator: 

� �
�	 = max�
	 + min�
	 − 
�
��max�
	 + min�
		 − 1 = (
 − 
�

�(
 − 1,  

where max�
	 = max�
�,…,� {
�}, min�
	 =
min�
�,…,� {
�}, (
 = max�
	 + min�
	. This 
negator generates an involutive negation of 
probability distributions: ��� �
	 =
�� �+�	, . . . , � �+�	�  such that 

��� ���� �
	� =  
. 

2.2 Co-symmetric Dissimilarity Functions 

Suppose 
 = �
�, … , 
�	 and , = �,�, … , ,�	 are 
two probability distributions. A dissimilarity function 
-�
, ,	 takes values in the interval [0,1] and satisfy 
the following properties: 

symmetry:        

-�
, ,	 = -�,, 
	, 

irreflexivity:      

     -�
, 
	 = 0. 

Table 1. Original distances that were considered for this analysis. 

Name Distance 

Soergel �/0 = ∑ |
� − ,�|�
�
�

∑ max �
� , ,�	�
�
�

 

Sørensen �/23 = ∑ |
� − ,�|�
�
�

∑ �
� + ,�	�
�
�

 

Jaccard �456 = ∑ �
� − ,�	7�
�
�

∑ 
�
7�

�
� + ∑ ,�
7 − ∑ 
�,��

�
�
�
�
�

 

Dice �456 = ∑ �
� − ,�	7�
�
�

∑ 
�
7�

�
� + ∑ ,�
7�

�
�
 

Table 2. New distances created from the original distances and equation (1) 

Distance 89:;<= >?@AB?�A, C	 

Soergel �/0@D2@E32 = ∑ |
� − ,�| �
�
� ∑ |��
�	 − ��,�	|�

�
�

∑ max �
� , ,�	�
�
� ∑ max ���
�	, ��,�		�

�
�

 

Sørensen �/23@D2@E32 = ∑ |
� − ,�|�
�
� ∑ |��
�	 − ��,�	|�

�
�
∑ �
� + ,�	�

�
� ∑ ���
�	 + ��,�		�
�
�

 

Jaccard �456@D2@E32

= ∑ �
� − ,�	7 ∑ ���
�	 − ��,�		7 �
�
�

�
�
�

�∑ 
�
7 + ∑ ,�

7�
�
�

�
�
� − ∑ 
�,�

�
�
� ��∑ ��
�	7 + ∑ ��,�	7�

�
�
�
�
� − ∑ ��
�	��,�	�

�
� 	 

Dice 
�F�6G@D2@E32 = ∑ �
� − ,�	7 �

�
� ∑ ���
�	 − ��,�	�7�
�
�

∑ �
�
7 + ,�

7��
�
� ∑ ���
�	7 + ��,�	7	�

�
�
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Dissimilarity function is co-symmetric if for all 
probability distributions 
 and , of the length �, it 
is fulfilled: 

-���� �
	, ��� �,	� = -�
, ,	. 

2.3 Correlation Coefficients 

Pearson's correlation coefficient, commonly used 
in statistical analyses, allows the evaluation of the 
presence and strength of a linear relationship 
between two quantitative variables. It varies 
between -1 and 1. 

A value of 1 indicates a perfect positive 
correlation, -1 indicates a perfect negative 
correlation, and 0 suggests no linear correlation. 

On the other hand, Spearman and Kendall 
correlations are useful tools to investigate 
monotonic relationships between variables. 

While Spearman's is based on the ranges of 
observations, Kendall's focuses on the agreement 
of data pairs. Both correlations can vary between 
- 1 and 1 and are designed to be robust to outlier 
data and not assume specific distributions. 

3 New Co-Symmetric Dissimilarity 
Functions 

In [1], different similarity and dissimilarity measures 
that are usually used to compare distributions of 
probability functions are considered. They are not 

Table 3. Pearson, Kendall and Spearman coefficients for distances created from equation (1) 

Distance Pearson Kendall Spearman 

Sorensen Co-Pro Vs Soergel Co-Pro 0,9919 0,9613 0,9976 

Sorensen Co-Pro Vs Jaccard Co-Pro 0,9398 0,7828 0,9346 

Sorensen Co-Pro Vs Dice Co-Pro 0,9310 0,7705 0,9268 

Soergel Co-Pro Vs Jaccard Co-Pro 0,9372 0,7750 0,9299 

Soergel Co-Pro Vs Dice Co-Pro 0,9137 0,7580 0,9187 

Jaccard Co-Pro Vs Dice Co-Pro 0,9903 0,9634 0,9978 

 

Fig. 1. Scatter graphs comparing distances created from equation (1) 
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co-symmetric. We apply the method of co-
symmetrization of similarity and dissimilarity 
functions proposed in [13] to create new 
dissimilarity measures of probability distributions 
that comply with the co-symmetry property: 

-D2@E32�
, ,	 = -�
, ,	 ∗
-���� �
	, ��� �,	�, 

(1) 

where * is the product of real numbers. It is easy to 
show that the distances obtained from (1) are co-
symmetric dissimilarity functions. Table 2 shows 
co-symmetric dissimilarity functions obtained from 
the four known [1] dissimilarity functions presented 
in Table 1. 

4 Comparative Analysis of New Co-
Symmetric Dissimilarity Functions 

For comparative analysis of new dissimilarity 
measures, we used one thousand probability 
distributions created randomly, each with 10 
elements. For the first analysis, the dissimilarity 
matrices were constructed for the four new co-
symmetric dissimilarity measures created by 
equation (1). 

Subsequently, each dissimilarity matrix is 
transformed into a vector, and the correlation is 

calculated between two vectors corresponding to 
two dissimilarity matrices obtained for two 
different methods. 

The scatter graphs for each pair of vectors are 
created to graphically observe the correlation that 
exists between dissimilarity functions, see Fig. 1. 
In the same way, the correlation between the 
dissimilarity functions is calculated using Pearson, 
Kendall and Spearman correlation coefficients. 

5 Comparing Similarity Functions 
with Higher Similarity 

In [7], new co-symmetric dissimilarity measures 
based on average operation were obtained. It can 
be seen from the analysis carried out in the paper 
that the dissimilarity measures with the greatest 
correlations were two distances Sorensen Co-Avg 
and Soergel Co-Avg, and two distances Jaccard 
Co-Avg and Dice Co-Avg. 

In this paper, we obtained the same result for 
the product-based co-symmetrization (1) of these 
pair of distances, see Table 3 and Fig. 1, where 
scatter graphs demonstrate the almost strict 
monotone dependence between Sorensen Co-Pro 
and Soergel Co-Pro distances, and between 
Jaccard Co-Pro and Dice Co-Pro distances. 

Table 4. Pearson, Kendall and Spearman coefficients of comparing distances from one group. 

Distance Pearson Kendall Spearman 

Soergel Co-Avg Vs. Soergel Co-Pro 0.9758 0.9137 0.9867 

Soergel Co-Avg Vs. Sorensen Co-Avg 0.9906 0.9446 0.9933 

Soergel Co-Pro Vs. Sorensen Co-Pro 0.9919 0.9613 0.9976 

Soergel Co-Pro Vs. Sorensen Co-Avg 0.9656 0.8494 0.9628 

Soergel Co-Avg Vs. Sorensen Co-Pro 0.9587 0.9411 0.9934 

Sorensen Co Avg Vs. Sorensen Co-Pro 0.9629 0.8825 0.9766 

Table 5. Pearson Kendall and Spearman coefficients of comparing distances from two group. 

Distance Pearson Kendall Spearman 

Jaccard Co-Avg Vs. Jaccard Co-Pro 0.9566 0.8788 0.9781 

Jaccard Co-Avg Vs. Dice Co-Avg 0.988 0.9375 0.9939 

Jaccard Co-Pro Vs. Dice Co-Pro 0.9903 0.9634 0.9978 

Jaccard Co-Pro Vs. Dice Co-Avg 0.9437 0.8164 0.9501 

Jaccard Co-Avg Vs. Dice Co-Pro 0.9318 0.9153 0.9894 

Dice Co-Avg Vs. Dice Co-Pro 0.9365 0.8529 0.9688 
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For further analysis of the correlation-based 
similarity of obtained co-symmetric distances, we 
divided them into two groups of most correlated 
distances. The first group contains co-symmetric 
dissimilarity functions (distances) obtained from 
Sorensen and Soergel distances, and the second 
group contains co-symmetric dissimilarity 
functions obtained from Jaccard and 
Dice distances. 

The results are presented in Tables 4 and 5 and 
on Figures 2a) and 2b). As was expected, for most 
co-symmetric dissimilarity functions, different co-
symmetrization of the same distance usually gives 
co-symmetric distances without the correlation less 

than 0.99. We have paid more attention to the 
results of the Spearman correlation, which is a 
measure of monotonic relationship. Only one 
unexpected result was obtained for Soergel Co-Avg 

and Sorensen Co-Pro co-symmetric dissimilarity 
functions, see Table 4. 

6 Results 

We applied the procedure of co-symmetrization 
based on product aggregation to the four most 
popular distances between probability distributions 
[1]. The correlation analysis of similarity between 

 

(a) 

 

(b) 

Fig. 2. (a) Scatter plots comparing group one, and (b) Scatter plots comparing group two 
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these distances show high similarity between them 
with highest correlation between Soergel and 
Sorensen based co-symmetric distances, and 
between Jaccard and Dice based co-symmetric 
distances. These two pairs of distance are 
considered as two classes of similar co-symmetric 
distances with mutual Spearman correlation 
greater than 0.997 between distances from the 
same class. 

Although we applied three correlation 
coefficients, Pearson, Spearman, and Kendall 
correlation, we paid more attention to the 
Spearman correlation, which is a measure of 
monotonic relationship. This property is important 
in the comparison of similarity and dissimilarity 
measures [14, 15]. 

Further, we compared co-symmetric distances 
in each class based on product co-symmetrization 
with co-symmetric distances obtained in our 
previous paper [7] based on average co-
symmetrization of the same initial distances. The 
correlation between distances from the same class 
based on different co-symmetrization of distances 
is higher than 0.95. 

7 Conclusion 

We introduced new co-symmetric dissimilarity 
functions that can serve as distances between 
probability distributions. These dissimilarity 
functions take into account the symmetry of the 
space of finite probability distributions with respect 

to the uniform distribution 
I = J�
� , … , �

�K, which is 

the fixed point of the negation of probability 
distributions defined over the set with � elements 
[9], such that ����
I	 = 
I. 

Co-symmetrization of four popular distance 
measures and further correlation analysis of these 
functions showed highest correlation between 
Soergel and Sorensen based co-symmetric 
distances, and between Jaccard and Dice based 
co-symmetric distances. The same results were 
obtained for co-symmetric distances obtained 
previously for another co-symmetrization method. 

The obtained results give us a better 
understanding of known distances and co-
symmetric distances obtained from them, which 

can be used to select suitable distances between 
probability distributions. 
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