
No Need to Get Wasteful: The Way to Train a Lightweight
Competitive Spelling Checker Using (Concentrated)

Synthetic Datasets

Vladimir Starchenko*

Higher School of Economics University, School of Linguistics, Moscow,
Russia

vmstarchenko@edu.hse.ru

Abstract. This study focuses on spelling checkers,
which remains problematic for modern error correction
systems. Based on T5 architecture, we create a
lightweight spelling check tool that can be used in
combination with a large language model (LLM) and
significantly improves the overall result of the error
correction system. It also performs competitively
compared to other recently developed spelling check
tools, despite being considerably smaller in size. The
high performance of the model is obtained as a result
of introducing two synthetic datasets: a dataset with a
high density of spelling errors and the dataset with errors
more difficult for correction.

Keywords. Spelling errors, spelling check, grammatical
error correction, preprocessing, synthetic datasets.

1 Introduction

The performance of large language models (LLMs)
on the task of error correction in natural texts has
greatly improved over recent years. [26] shows
that T5 and GECToR receive as high an evaluation
in standard metrics as human experts do, while
subsequent studies, e. g., [40, 41], further improve
their results.

Still, particular kinds of errors or errors
in particular environments remain difficult for
language models to correct. [26] notices errors
related to inter-sentence dependencies, errors
in long sentences, errors in certain syntactic
configurations, etc.

Crucially, one kind of errors that large and
accurate modern GEC models handle notoriously
unsatisfactorily are character-level errors or, simply
put, spelling errors. Spelling errors are easily
corrected by humans and are rated simplest in
studies that compare the difficulty of errors in
texts [9].

Yet since the start of active use of machine
learning in GEC and until now, researchers
pervasively notice that SOTA GEC systems
perform poorly with spelling errors [6, 32],
among others.

[32] note that GEC systems may not only fail
to correct a single spelling error, but also get
triggered to hallucinate both in the word with an
error or elsewhere in the sentence. [36] suggests
similar effects for the interaction of spelling errors
with other NLP tasks like summarization and
question-answer systems.

As a solution to this problem, we suggest
a light-weight system which is specifically
dedicated to correcting spelling errors in
English and can be used jointly with a large
GEC model. We train and evaluate models of
various architectures and sizes and select 31M
T5-efficient-mini [36] as demonstrating the best
recourse consumption–performance ratio. The
model is publicly available1. We suggest a training
algorithm consisting of several steps.

1huggingface.co/startc/optispell-t5-mini

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

ISSN 2007-9737



Table 1. CSD: Example

Correct sentence This guarantees
secure transmission
and is extremely
useful to companies
sending/receiving
critical information.

Corrupted sentence Tthis guaraneen
seecuretransmiesoion
and is extreely
uuseful to compyanes
sdendng/recieving
critical infrmation.

It includes training on synthetic data that
imitates the errors met in natural texts, tuning
on generated dataset with selected more difficult
errors2 and on natural texts (dataset clang-8; [28]).
The model outperforms SOTA spelling correcting
systems, cf. [21], and consume considerably
less resources than them (e.g., 59.55 MB versus
1.37 GB).

The rest of the paper is organized as follows:
section 2 overviews related studies. Section
3 suggests the definition of spelling errors in
the present study. Section 4 discusses the
synthetic and natural datasets. Section 5
presents the experiments, evaluating the influence
of model size, architecture and training process
on the performance and comparing the best
result with other recently developed spelling check
tools. Section 6 provides the discussion of the
experiments. The last section is the conclusion.

2 Related Work

Spelling checking systems for English have been
developed since the earliest stages of electronic
text editing tools. Multiple approaches were
suggested, including rule-based approaches [15,
35, 37], among others, statistical approaches [1,
14, 33, 38], among others, and machine learning
[3, 21, 24], among others. The correction of
spelling errors is commonly assumed a part of
GEC task: a GEC system is expected to output a

2Both synthetic datasets are available by the link: huggingface.
co/datasets/startc/synthetic-spelling.

correct text akin to one that an educated speaker
would produce. Despite this fact, as noted, GEC
models struggle when dealing with spelling [32,
6, 29, 34, 40]. Spelling check is performed by
some GEC systems for various languages as a
preprocessing step [4, 6, 7, 30].

This step is however not considered standard
(e.g., it is not mentioned in the recent overview of
GEC systems [2]), and no standard tool for this task
exists. One reason that prevents the usage of the
tools listed above for this purpose is the commonly
accepted wide notion of spelling, including within
this category many error types.

[24], developing a common benchmark for
spelling correction tools, discusses errors in verbal
tense, pronoun choice and punctuation among 12
suggested types of spelling errors. Confusion
of semantically distant words is also usually
included in spelling errors, e.g., [21, 24], among
many others.

This approach to the definition of a spelling
error is problematic in the way that it does not
draw a clear line between spelling, on the one
hand, and grammar, word choice and other types
of errors, on the other hand. This division
is however crucial for approaches using LLMs.
As it has been discussed, they show poorer
results with character-level errors (spelling in the
narrow sense) but show outstanding results with
token-level errors (other types), prompting to treat
the former separately.

3 Definition of a Spelling Error

The present study uses the following definition for
a spelling error:

(1) A spelling error is a distortion in the written
text, which creates a non-existent word or word
form. Further, we refer to the errors defined
by (1) as spelling errors in the narrow sense
when contrasted to the wider and more traditional
understanding of this notion.

The definition (1) comprises two crucial
components. Firstly, it suggests that spelling errors
are defined at the level of word forms, meaning
that for locating them, no access to the context
is needed. Greatly simplifying, one could build
a system that finds spelling errors in the narrow

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

Vladimir Starchenko1866

ISSN 2007-9737

huggingface.co/datasets/startc/synthetic-spelling
huggingface.co/datasets/startc/synthetic-spelling


Table 2. NCSD: Example

Correct sentence Fedora Linux replaced the
original Red Hat Linux
download and retail version.

Corrupted sentence Fedora Linux replaced the
original Red Hat Linux
download and eetail version.

Table 3. Optimal dataset sizes

Dataset Size

CSD 16M

NCSD 8M

clang-8 2.34M

sense based purely on a dictionary of existing
word forms. Access to the context is however
essential for correction of errors, so that the result
corresponds to the word meant by the author and
semantically fits the text.

Secondly, the definition (1) excludes various
cases that are often mentioned among spelling
errors, but lead to the creation of existing words.
Such cases include words that are clearly distinct
semantically, but are graphically or phonetically
close. Possible examples include way instead of
away, form instead of from.

The framework of the present study suggests
that such errors that go beyond spelling in the
narrow sense are dealt with by a large GEC model.
These models solve the tasks related to grammar
or semantics, including word choice, with a high
accuracy, independently of whether the erroneous
option looks similar to the correct one or it does not.

The overall performance of a spelling checker
and a LLM is not expected to improve after
additional tuning of a spelling checker to such
errors. It is thus the spelling in the narrow sense
that must be handled by a spelling checker.

The errors that create non-existent words may
correspond to various errors in more fine-grained
classifications, e.g., [16, 25]. In some cases,
incorrect spelling arises from typing errors:
incidental letter deletion, insertion, replacement
or transposition.

Errors of this kind are distributed more randomly
than the other ones and correlate with the positions
of keyboard buttons. In other cases, spelling errors
may arise in orthographically difficult contexts,
e.g., kik instead of kick in the texts of children
or language learners, hypertention instead of
hypertension for more proficient speakers.

Unlike the previous group, orthographic errors
are distributed less randomly and associated with
letters or digraphs that are easy to confuse or
particular lexemes that are difficult for speakers or
language learners to write.

Lastly, a misspelling may result from an
ill-formed word formation process. These include
both inflection, e.g., non-existent forms like gooses
or medias, and derivation, e.g., disclosement
instead of disclosure.

The understanding of the sources of spelling
errors is important for the framework that uses
synthetic datasets for training: the distribution
of various kinds in the synthesized data must
correspond to the actual distribution or include
enough data of each type for relevant patterns to
be learnt by the LLM.

4 Datasets

4.1 Training Set

In the training workflow we use multiple training
datasets. For pre-training we create a large
synthetic dataset with a high density of spelling
errors. Fine-tuning is performed on several smaller
tuning synthetic datasets and clang-8, comprising
natural language data.

We suggest a novel approach to the generation
of synthetic data, as the existing approaches to the
generation of spelling errors use a different error
definition [3, 20, 21, 24], etc., see section 3.

Concentrated synthetic dataset (CSD)3. The
optimal suggested pipeline (see subsection 5.3
for more detail) includes the usage of synthetic
data with a high density of spelling errors. The
generation of this dataset is as follows:

3Available by the link: huggingface.co/datasets/startc/
synthetic-spelling

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

No Need to Get Wasteful: The Way to Train a Lightweight Competitive Spelling Checker ... 1867

ISSN 2007-9737

huggingface.co/datasets/startc/synthetic-spelling
huggingface.co/datasets/startc/synthetic-spelling


Table 4. Performance of T5-efficient model, various sizes

Model Prec Rec F0.5 Model Size, MB Model Size,
parameters

T5-base 0.925 0.773 0.890 425.15 MB 222M

T5-efficient-small 0.930 0.770 0.892 115.41 MB 60M

T5-efficient-mini 0.936 0.768 0.897 59.55 MB 31M

T5-efficient-tiny 0.912 0.711 0.864 29.7 MB 15M

1. As a source of correct sentences, we used
the dataset of Wikipedia articles4. The whole
dataset was separated into segments of up
to 63 tokens after tokenization (on average,
about 63 × 4 letters and 1–4 sentences). This
grouping is optimal for GPU working memory
and does not affect the quality of the model after
further tuning.

2. In each fragment, 0 to 30 words are randomly
selected for corruption. The number of
corrupted words is around 15–20 with a lower
frequency of a smaller and larger numbers.

3. The selected words are subjected to one of
corrupting transformations:

(a) Deletion of a letter,

(b) Adding a letter in the word,

(c) Doubling a letter,

(d) Swap of adjacent letters,

(e) Replacement of a letter with another one,

(f) Deletion of one of double letters,

(g) Adding a letter which is close on the
keyboard to one of adjacent letters,

(h) Replacement of a letter into another one
which is close on the keyboard.

Notice that some of the transformations
may lead to the same results. For example,
corrupted words produced by the deletion of
one of double letters are a subset of results
produced by the deletion of a random letter
(f ⊂ a); same is true for g ⊂ b and h ⊂ e.

4Available by the link: huggingface.co/datasets/
legacy-datasets/wikipedia

Despite this fact, transformations f–h are
included as a separate option for the corruption
algorithm in order to raise the frequency of
errors that a human is more likely to make.

4. Errors that humans tend to make in natural
texts, including errors in usage of similar letters
or digraphs and word formation, were added to
the words from a predefined list5.

5. Errors related to space placement were added:
a random space may be inserted inside a word
or deleted.

Interjections, proper names and words shorter
than 4 characters were not selected for corruption.
If the error generating algorithm created a
sequence of letters corresponding to an existing
word, it was rerun.

The algorithm of corrupted text generation
allows us to expose a model to various types of
errors described in the previous section. Steps
3 and 5 add typographical errors, while step
4 provides orthographically difficult contexts and
erroneous word formation.

Table 1 shows an example from the CSD
dataset. It includes the original correct sentence
and its corrupted version with 12 errors of
various types, induced according to the algorithm
described above.

Non-concentrated synthetic dataset
(NCSD)6. The first step of fine-tuning was made
on a separate synthetic dataset. The aim of using
this dataset is two-fold.
5The list of frequent errors in English words is based on their
long list at the Wikipedia, available by the link: en.wikipedia.
org/wiki/Wikipedia:List of spelling variants

6Available by the link: huggingface.co/datasets/startc/
synthetic-spelling

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

Vladimir Starchenko1868

ISSN 2007-9737

huggingface.co/datasets/legacy-datasets/wikipedia
huggingface.co/datasets/legacy-datasets/wikipedia
en.wikipedia.org/wiki/Wikipedia:List_of_spelling_variants
en.wikipedia.org/wiki/Wikipedia:List_of_spelling_variants
huggingface.co/datasets/startc/synthetic-spelling
huggingface.co/datasets/startc/synthetic-spelling


Table 5. Performance of various versions of T5 and
BART

Architecture Prec Rec F0.5

T5-efficient-small 0.923 0.768 0.887

T5-small 0.922 0.759 0.884

long-T5 0.933 0.720 0.881

BART-base 0.889 0.786 0.866

byT5 0.879 0.698 0.836

First, it exposes the model to less erroneous
data to lower the number of false positive results.
Secondly, it provides more complicated examples.
To achieve the latter, examples with 1–2 erroneous
words per sentence were generated and checked
by a model trained without fine-tuning by NCSD
(only CSD and clang-8 used).

The examples that this model fails to process
correctly were added to the dataset, mixed with
examples that are completely correct. Table 2
presents an example from the NCSD dataset with
one of two possible erroneous words.

Clang-8. As the second step of fine-tuning we
use the dataset clang-8. It is created from the
NAIST Lang-8 Learner Corpora which comprises
natural texts of L2 English speakers and is further
cleaned by a SOTA GEC system [28]. All the errors
except for spelling were removed from the dataset.

4.2 Dataset Sizes

The size of training datasets is crucial for the
resulting performance of a model. It is often true
that the larger a dataset, the more information
a model learns. On the other hand, with
the growth of the training dataset, the pace
of model enhancement decreases and resource
consumption grows.

The present setup potentially allows the scaling
of the synthetic datasets infinitely, so it is important
to recognize the point until which it is expedient
to enlarge them. Optimal suggested dataset
sizes are listed in Table 3; sizes for CSD and
NCSD are given in segments, as described in
the beginning of this section, for Clang-8 — in
sentences. In order to find them, we assess the
models from subsection 5.2 trained on synthetic

datasets of sizes until the point the performance
(almost) stops growing (see subsection 5.3 for
more detail). Clang-8 consists of natural erroneous
texts and can only be scaled by (half)-manual
annotation, which is beyond the limits of the
present study. Given its relatively small size, we
take it in its entirety.

We notice that testing the models trained on
different dataset sizes reveals that the pace of
training does not necessarily correlate with the best
possible result.

Model A may perform significantly worse than
model B trained on a small synthetic dataset
(≤1M), yet demonstrate an advantage when
trained on larger dataset.

4.3 Evaluation Set

For evaluation, we use the JFLEG dataset [23]. We
calculate Precision, Recall, and F0.5 scores, which
is widely used for the GEC task and represents
human judgments in this task well [5, 10, 22].

This makes our results comparable with recent
studies dedicated to spelling. We focus on
comparison with [21] as the best available results.

Our definition of spelling errors section 3 makes
the evaluation only partly comparable. Some
errors, e.g., confusion of phonologically similar
existing words or grammar errors that do not
lead to creation of non-existent words, are not
considered spelling errors within our approach, but
are supposed to be corrected in the other systems.

JFLEG comprises a fraction of such errors
annotated as spelling errors. As a result, we
create a modification of JFLEG which does not
have existing (but incorrect) words annotated as
spelling errors, henceforth JFLEG-NE.

We use JFLEG-NE for the evaluation of our
models and provide the scores for both versions
of JFLEG when comparing our models with the
results of other studies.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

No Need to Get Wasteful: The Way to Train a Lightweight Competitive Spelling Checker ... 1869

ISSN 2007-9737



Table 6. Training workflows

Training steps Prec Rec F0.5

CSD (16M) + NCSD + clang-8 0.927 0.756 0.887

CSD (24M) + clang-8 0.921 0.743 0.879

CSD (16M) + clang-8 0.918 0.746 0.878

CSD (16M) + NCSD 0.903 0.741 0.865

CSD (24M) 0.918 0.658 0.851

CSD (16M) 0.913 0.660 0.848

5 Experiments

5.1 Experiment 1: Model Size

One of the aims of the present study is creating
a high-performance spelling checker that can be
paired with a large GEC model without significant
increase in the resource consumption of the whole
system. In order to make a spelling checker
lightweight, we test different sizes of the same
model. The scores are presented in Table 4.

Table 4 shows that the size of the model has
a small effect on its performance on the spelling
correction task. Even the “tiny” model shows
good results, with a difference in decimals of F0.5

score. With the growth of model size over 31M
parameters F0.5 score even slightly decreases: the
rise of recall with the model size is compensated
with the fall of precision.

5.2 Experiment 2: Model Architecture

Recent studies mark T5 [27] as the best performing
model architecture for the spelling check task [21].
We test various types of T5 in addition to the
plain T5. Efficient-T5 [36] has a different model
shape, which performs better in certain tasks.
Long-T5 [11] is suggested to show better results
for longer sentences.

ByT5 [39] does not exploit a tokenization
mechanism and is expected to perform better on
character-level tasks like spelling check. As a
comparison, we take another architecture: BART
[18], which was originally trained to reconstruct
corrupted text and is claimed to perform well on the
GEC task in general [13].

Notice that we do not balance the models with
respect to their size. The previous section shows
that from some point the model size does not
significantly affect performance.

Table 5 shows the performance of the
models. Expectedly, various versions of T5
show comparable results with the best result for
T5-efficient-small.

5.3 Experiment 3: Training Workflow

In this section we focus on setting a workflow
for training a spelling checker with the best
performance. First, we discuss the optimal
combination of training datasets. Second, we
comment on the hyperparameters of the models.

5.3.1 Datasets Used

Table 6 presents the evaluation for various
workflows for training a spelling check model based
on the combinations of datasets presented in
subsection 4.1 (for model T5-efficient-mini).

The combination of all three training datasets
shows the best result from the point of view of
F0.5, Precision and Recall. Training on synthetic
CSD with simpler errors yields the lowest score,
while adding either NCSD with more difficult
errors or Clang-8 with natural data leads to
comparable enhancement.

As noted, at some point, increasing the
synthetic dataset no longer noticeably improves the
performance of the system, compare in particular
“CSD (16M) + clang-8” and “CSD (24M) + clang-8”.

5.3.2 Training Hyperparameters

The performance of a model mostly depends on
the architecture and training datasets. However,
parameters of training may affect the result (up to
∆F0.5 = 0.02) or the convergence speed.

The optimal learning rate depends on the
model architecture and size and was separately
found for every combination (8 · 10−3 on CSD /
NCSD, 8 · 10−4 on clang-8 for T5-efficient-mini
as the best-performing model). Similarly, optimal
effective batch size affects the performance (96 for
T5-efficient-mini).

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

Vladimir Starchenko1870

ISSN 2007-9737



Table 7. Comparison of best solutions of the present study and by [21]

Dataset Model Prec Rec F0.5

JFLEG T5-efficient-mini 0.936 0.768 0.897

JFLEG T5-large 0.906 0.855 0.895

JFLEG-NE T5-efficient-mini 0.934 0.933 0.934

JFLEG-NE T5-large 0.833 0.957 0.855

The spelling check model allows for the use of
bf16 [12] without loss of quality, resulting in the
reduction by half of the model size (in MB) and
training time.

5.4 Experiment 4: Comparison with
Previous Studies

[21] evaluates several recent and best performing
models for the spelling check task. We compare
our solution with the best model in terms of
F-score, according to their results.

Performance. The performance of the two
models is only partially comparable due to the
different definition of a spelling error. The sets of
errors which are supposed to be corrected by our
framework and [21] do not coincide.

[21] corrects errors that lead to creation of
existing words (the wide definition of a spelling
error); we correct all cases that lead to creation
of non-existent words, while [21] distinguishes
cases in which a non-dictionary form is not an
error, including dialect forms, intentional word
corruptions and the like. Provided that such cases
are considerably rare, a close approximation is that
the errors that spelling errors in the narrow sense
that we correct are a subset of errors corrected by
models in [21].

In order to make the results more comparable,
we evaluate models over two versions of JFLEG.
One is its original version (with all errors except
for spelling corrected), which corresponds to the
definition of a spelling error by T5-large [21] and
therefore is expected to show better performance
of this model. JFLEG-NE only includes errors
that lead to emergence of non-existent words and
is expected to give an advantage to our system.
Noticeably, T5-efficient-mini shows a slightly higher
F0.5 score for both evaluation datasets, despite

JFLEG includes errors that are not supposed to be
corrected by this model. This effect is achieved as
a result of a high precision, while the recall is higher
for T5-large [21]. For the JFLEG-NE, the difference
grows even further: recall of T5-efficient-mini
improves with the elimination of errors that create
existing words, and resulting F0.5 score delta
reaches ∆F0.5 = 0.079.

Resource consumption. As Table 9 shows,
T5-efficient-mini features 31M parameters,
whereas T5-large is more than 20 times larger,
featuring 737M parameters. It yields a difference
in the resource consumption: the smaller
model is lighter or faster in various respects,
including weight, execution speed and training
costs (the latter is also influenced by different
training procedures). The detailed comparison is
presented in the Table 8 (59.55 MB 1.37 GB).

Makes both its weight () and performance time
insignificant compared to those of a large GEC
model (cf., and for the model by [21].

6 Discussion

In this section, we discuss the four experiments
presented above in turn. We conclude that the goal
of creating a lightweight and competitive spelling
checker is achieved and elaborate on the methods
that allow to reach this result, on their further
application and restrictions.

Experiment 1: Model size. An important result
of this experiment is that the spelling check task
does not require a large model size. Enlarging
the model over 31M parameters does not yield any
performance improvement.

Recall of larger models slightly grows, yet
results in more hallucination and lower precision,
as well as great expenses in learning and

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

No Need to Get Wasteful: The Way to Train a Lightweight Competitive Spelling Checker ... 1871

ISSN 2007-9737



Table 8. Comparison of T5-efficient-mini and T5-large [21]

Property T5-efficient-mini T5-large

Size, parameters 31M 737M

Weight 59.55MB 1.37 GB

Performance speed, CPU 104.4 examples per second
(JFLEG)

5.277 examples per second
(JFLEG)

Performance speed, GPU 2843 examples per second (JFLEG)
with the optimal batch size 4096

154.4 examples per second
(JFLEG) with the optimal batch size

128; with the growth of the batch
size the speed decreases

Training time 9 hours using one GeForce
RTX3090 (24GB memory)

360 hours on eight Nvidia A100
GPUs

application time and memory. This result may
follow from the fact that in most cases the
correction of a spelling error does not require
appealing to the semantics, which in its turn sets
high requirements to the model size.

The smallest best-performing model has the
weight of 59.55 MB, which is about a tenth or lower
of a regular large GEC model. Further reduction of
a model is impractical, as it leads to a lower quality.

Experiment 2: Model architecture. T5
architecture confirms its high performance in the
spelling check task. Different versions of this
architecture do not greatly vary with the highest
score belonging to T5-efficient.

BART architecture shows high performance
with respect to recall, but loses in ∆F0.5 due to its
low precision. These facts suggest that this model
in general tends to induce more changes into a
text, whether it is erroneous or correct.

Experiment 3: Training workflow. The
suggested training workflow makes use of two
large synthetic datasets. The idea to rely on
synthetic data when solving the spelling check
task is natural, provided that the erroneous
spelling is relatively easy to synthesize, and
many previous studies exploit it [8, 19, 21, 24],
among others. The two innovations that were
introduced concern the structure of the synthetic
data used. The pre-training CSD dataset is
concentrated: it includes 15–20 erroneous words
per 1–4 sentences on average. Such a high
proportion of erroneous words allows to expose a
model to the wider range of corrupted segments.

It is particularly fruitful for the spelling check task,
as spelling errors create a great space of variation
and are problematic as they require generalization
beyond patterns seen in the training data [4].

Further tuning on the data with lower error
density prevents a model from the excessively high
rate of false positives, caused by its “habit” to
meet many errors in one sentence. The second
innovation is introducing a dataset which includes
errors which are particularly difficult for a model
(NCSD). The approach using this dataset suggests
a two-step training process.

The first step is creating a model in the absence
of this dataset and probing synthetic data for
the errors which this model fails to correct; the
second iteration makes use of these difficult errors.
Adding NCSD into the training workflow raises the
performance of a model compared to using both
only CSD (∆F0.5 = 0.017) and CSD + clang-8
(∆F0.5 = 0.009).

Noticeably, the combination of only synthetic
datasets (CSD + NCSD) with no exposure to the
natural data yields results that are comparable with
the best performing full system. It means that
the suggested workflow (concentrated synthetic
dataset + synthetic dataset with difficult errors)
can be successfully used for languages with no
available natural corpus.

Experiment 4: Comparison with previous
studies. The suggested combination of model
architecture, size and training workflow create a
SOTA spelling check model with a low resource
consumption. Firstly, it slightly outperforms the

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

Vladimir Starchenko1872

ISSN 2007-9737



Table 9. A large GEC model with and without
preprocessing by our spelling checker

Models Prec Rec F0.5

T5-efficient-
mini

(spelling) +
BART-large

(GEC)

0.7382 0.5702 0.6971

BART-large
(GEC) 0.7314 0.502 0.6702

SOTA model suggested by [21] both for the wide
definition and to a greater degree to the narrow
definition of a spelling error.

Secondly, the trained model features only
31M parameters, which makes both its weight
(59.55MB) and performance time insignificant
compared to those of a large GEC model (cf., 737M
parameters and 1.37 GB for the model by [21].

Applying the developed spelling check tool as a
preprocessing stage prior to a large GEC model
improves the result of the whole system. To
exemplify it, we choose BART additionally trained
for the GEC task [13]. Table 9 shows the
performance of BART on its own and in conjunction
with the spelling checker.

One has to notice that the JFLEG dataset
contains a relatively low proportion of spelling
errors. A possible explanation for it is that
JFLEG consists of English learner texts for the
TOEFL exam.

The situation of examination encourages
students to pay a particular attention to the
well-formedness of texts, and the spelling
errors are expected to be easier to notice for
non-native speakers after double-checking an
examination paper.

A similar effect is observed for other
evaluation datasets, see [32] for the discussion of
ConLL-2014, which comprises essay texts [25]. In
contrast, native speakers writing everyday texts
pay less attention to checking their texts, yet in
general write grammatically correctly. As a result,
the proportion of spelling errors in such texts
is expected to be higher, yielding their greater
influence on the overall performance of a GEC
system.

7 Conclusions

In this study, we created a lightweight spelling
check system based on T5 architecture, whose
function is to eliminate non-existent words. This
model can be applied as a preprocessing step
in GEC systems with large language models,
enhancing the overall result on the GEC task. Our
model shows the best result in this task, compared
to existing spelling checking systems.

In addition, the created model reaches SOTA
results in correcting spelling errors in a wide sense.
A small size of our spelling check tool allows
using it on its own on the computing systems with
few resources.

The high performance of a model is achieved
by using two synthetic datasets, one featuring high
density of errors, the other comprising selected
more difficult errors. Provided that both datasets
are automatically generated from well-formed
natural sentences, this approach may be scaled
to other languages that do not have a corpus of
erroneous texts.

The question that mostly stays unaddressed in
this study is the reason for the poor performance of
large GEC models on spelling errors. This problem
is even more striking provided that the spelling
errors are particularly easy to correct for a human.

While we make a step towards the practical
solution of this problem by suggesting the use of
a specialized tool for the spelling check task, one
could claim that a more desired solution is to cure
this flaw for large GEC models. One possible
explanation for this disadvantage of GEC models
compared to human experts lies in common
tokenization algorithms.

People see words in alphabetic languages as
sequences of characters, and a spelling correction
usually concerns an operation with one (rarer
more than one) of characters within a sequence.
In contrast, language models that are used for
the GEC task commonly tokenize a text at the
preprocessing stage. It allows to treat separately
frequent segments that are associated with a
specific semantics (affixes and frequent roots) and
at the same time have a limited size for a model
dictionary with no unattested words (see e.g.,
WordPiece tokenization used in T5 [17, 31]). As a

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

No Need to Get Wasteful: The Way to Train a Lightweight Competitive Spelling Checker ... 1873

ISSN 2007-9737



result, what appears to require a slight alteration in
terms of characters corresponds to a great change
in terms of tokens. This difference is further
aggravated by the fact that spelling errors often
disrupt regular morphemes and an erroneous word
splits into more tokens than a regular word of the
same size.

As an example, consider a false correction
made by the T5 model trained in this study:
misspelled spouce in a particular example
it corrects into source instead of spouse.
The character sequence spouce is split by
SentencePiece tokenizer [17] into 4 items. The
erroneous correction thus presents from the
perspective of a model as spouce [3, 7990, 76,
565] � source [1391], while the right correction
is spouce [3, 7990, 76, 565] � spouse [9911].
Although for a human observer spouse is clearly
closer to spouce than source, for the model both
are a replacement of four tokens into one.

Thus, tokenization, which greatly improves
processing the semantics of a text, obscures
spelling. Testing architectures, our study tests
a straight-forward solution for the tokenization
problem, training byT5 among other architectures.
It operates on byte-level and is not expected to
face the difficulties described above. Nevertheless,
byT5 does not perform on the spelling check task
better than the T5 with a regular tokenizer (Table 5),
suggesting that a more elaborate approach is
needed. We leave finding such an approach for
further research.

References

1. Ahmed, F., Luca, E. W. D., Nürnberger,
A. (2009). Revised n-gram based automatic
spelling correction tool to improve retrieval
effectiveness. Polibits, Vol. 1, No. 40,
pp. 39–48.

2. Bryant, C., Yuan, Z., Qorib, M. R., Cao, H.,
Ng, H. T., Briscoe, T. (2023). Grammatical
error correction: A survey of the state of the
art. Computational Linguistics, Vol. 49, No. 9,
pp. 643–701. DOI: 10.1162/coli a 00478.

3. Büyük, O., Arslan, L. M. (2021). Learning
from mistakes: Improving spelling correction
performance with automatic generation of
realistic misspellings. Expert Systems, Vol. 38,
No. 5, pp. e12692. DOI: 10.1111/exsy.12692.

4. Chollampatt, S., Ng, H. T. (2017). Connecting
the dots: Towards human-level grammatical
error correction. Proceedings of the 12th
Workshop on Innovative Use of NLP for
Building Educational Applications, Association
for Computational Linguistics, pp. 327–333.
DOI: 10.18653/v1/W17-5037.

5. Chollampatt, S., Ng, H. T. (2018). A
reassessment of reference-based grammatical
error correction metrics. Proceedings
of the 27th International Conference on
Computational Linguistics, pp. 2730–2741.

6. Chollampatt, S., Wang, W., Ng, H. T. (2019).
Cross-sentence grammatical error correction.
Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pp. 435–445. DOI: 10.18653/v1/P19-1042.

7. Ge, T., Wei, F., Zhou, M. (2018). Fluency
boost learning and inference for neural
grammatical error correction. Proceedings of
the 56th Annual Meeting of the Association
for Computational Linguistics, Melbourne,
Australia, Vol. 1, pp. 1055–1065. DOI: 10.
18653/v1/P18-1097.

8. Ghosh, S., Kristensson, P. O. (2017). Neural
networks for text correction and completion
in keyboard decoding. arXiv. DOI: 10.48550/
arXiv.1709.06429.

9. Gotou, T., Nagata, R., Mita, M., Hanawa,
K. (2020). Taking the correction difficulty into
account in grammatical error correction
evaluation. Proceedings of the 28th
International Conference on Computational
Linguistics, International Committee on
Computational Linguistics, pp. 2085–2095.
DOI: 10.18653/v1/2020.coling-main.188.

10. Grundkiewicz, R., Junczys-Dowmunt,
M., Gillian, E. (2015). Human evaluation
of grammatical error correction systems.
Proceedings of the 2015 Conference

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

Vladimir Starchenko1874

ISSN 2007-9737

10.1162/coli_a_00478
10.1111/exsy.12692
10.18653/v1/W17-5037
10.18653/v1/P19-1042
10.18653/v1/P18-1097
10.18653/v1/P18-1097
10.48550/arXiv.1709.06429
10.48550/arXiv.1709.06429
10.18653/v1/2020.coling-main.188


on Empirical Methods in Natural
Language Processing, Association for
Computational Linguistics, pp. 461–470.
DOI: 10.18653/v1/D15-1052.

11. Guo, M., Ainslie, J., Uthus, D., Ontanon,
S., Ni, J., Sung, Y. H., Yang, Y.
(2022). LongT5: Efficient text-to-text
transformer for long sequences. Findings
of the Association for Computational
Linguistics: NAACL 2022, Association for
Computational Linguistics, pp. 724–736.
DOI: 10.18653/v1/2022.findings-naacl.55.

12. Kalamkar, D., Mudigere, D., Mellempudi,
N., Das, D., Banerjee, K., Avancha,
S., Teja-Vooturi, D., Jammalamadaka, N.,
Huang, J., Yuen, H., Yang, J., Park, J.,
Heinecke, A., Georganas, E., Srinivasan,
S., Kundu, A., Smelyanskiy, M., Kaul, B.,
Dubey, P. (2019). A study of BFLOAT16 for
deep learning training. arXiv. DOI: 10.48550/
arXiv.1905.12322.

13. Katsumata, S., Komachi, M. (2020). Stronger
baselines for grammatical error correction
using a pretrained encoder-decoder model.
Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association
for Computational Linguistics and the
10th International Joint Conference on
Natural Language Processing, pp. 827–832.
DOI: 10.5715/jnlp.28.276.

14. Kernighan, M. D., Church, K. W., Gale,
W. A. (1990). A spelling correction program
based on a noisy channel model. COLING:
Papers presented to the 13th International
Conference on Computational Linguistics,
Vol. 2, pp. 205–210.

15. Kondrak, G., Sherif, T. (2006). Evaluation
of several phonetic similarity algorithms on
the task of cognate identification. Proceedings
of the Workshop on Linguistic Distances,
pp. 43–50.

16. Korre, K., Pavlopoulos, J. (2020). ERRANT:
Assessing and improving grammatical error
type classification. Proceedings of the 4th
Joint SIGHUM Workshop on Computational

Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature, Online,
pp. 85–89.

17. Kudo, T., Richardson, J. (2018).
SentencePiece: A simple and language
independent subword tokenizer and
detokenizer for neural text processing.
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing: System Demonstrations,
pp. 66–71. DOI: 10.18653/v1/D18-2012.

18. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad,
M., Mohamed, A., Levy, O., Stoyanov, V.,
Zettlemoyer, L. (2020). BART: Denoising
sequence-to-sequence pre-training for
natural language generation, translation,
and comprehension. Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pp. 7871–7880.
DOI: 10.18653/v1/2020.acl-main.703.

19. Li, H., Wang, Y., Liu, X., Sheng, Z., Wei,
S. (2018). Spelling error correction using a
nested RNN model and pseudo training data.
arXiv. DOI: 10.48550/arXiv.1811.00238.

20. Martynov, N., Baushenko, M., Abramov,
A., Fenogenova, A. (2023). Augmentation
methods for spelling corruptions. Proceedings
of the International Conference Dialogue.

21. Martynov, N., Baushenko, M., Kozlova,
A., Kolomeytseva, K., Abramov, A.,
Fenogenova, A. (2023). A methodology
for generative spelling correction via
natural spelling errors emulation across
multiple domains and languages. Findings
of the Association for Computational
Linguistics: EACL 2024, pp. 138–155.
DOI: 10.48550/arXiv.2308.09435.

22. Napoles, C., Sakaguchi, K., Post, M.,
Tetreault, J. (2015). Ground truth for
grammatical error correction metrics.
Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics
and the 7th International Joint Conference on
Natural Language Processing, pp. 588–593.
DOI: 10.3115/v1/P15-2097.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

No Need to Get Wasteful: The Way to Train a Lightweight Competitive Spelling Checker ... 1875

ISSN 2007-9737

10.18653/v1/D15-1052
10.18653/v1/2022.findings-naacl.55
10.48550/arXiv.1905.12322
10.48550/arXiv.1905.12322
10.5715/jnlp.28.276
10.18653/v1/D18-2012
10.18653/v1/2020.acl-main.703
10.48550/arXiv.1811.00238
10.48550/arXiv.2308.09435
10.3115/v1/P15-2097


23. Napoles, C., Sakaguchi, K., Tetreault,
J. (2017). JFLEG: A fluency corpus
and benchmark for grammatical error
correction. Proceedings of the 15th
Conference of the European Chapter
of the Association for Computational
Linguistics, Vol. 2, pp. 229–234.
DOI: 10.48550/arXiv.1702.04066.

24. Näther, M. (2020). An in-depth comparison
of 14 spelling correction tools on a common
benchmark. Proceedings of the Twelfth
Language Resources and Evaluation
Conference, pp. 1849–1857.

25. Ng, H. T., Wu, S. M., Briscoe, T.,
Hadiwinoto, C., Susanto, R. H., Bryant,
C. (2014). The CoNLL-2014 shared task on
grammatical error correction. Proceedings of
the Eighteenth Conference on Computational
Natural Language Learning: Shared Task,
pp. 1–14. DOI: 10.3115/v1/W14-1701.

26. Qorib, M. R., Ng, H. T. (2022). Grammatical
error correction: Are we there yet?
Proceedings of the 29th International
Conference on Computational Linguistics,
pp. 2794–2800.

27. Raffel, C., Shazeer, N., Roberts, A., Lee, K.,
Narang, S., Matena, M., Zhou, Y., Li, W.,
Liu, P. J. (2020). Exploring the limits of transfer
learning with a unified text-to-text transformer.
Journal of machine learning research, Vol. 21,
No. 140, pp. 1–67.

28. Rothe, S., Mallinson, J., Malmi, E., Krause,
S., Severyn, A. (2021). A simple recipe
for multilingual grammatical error correction.
Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing, pp. 702–707.
DOI: 10.18653/v1/2021.acl-short.89.

29. Rozovskaya, A., Roth, D. (2016).
Grammatical error correction: Machine
translation and classifiers. Proceedings
of the 54th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2205–2215.
DOI: 10.18653/v1/P16-1208.

30. Sakaguchi, K., Post, M., van-Durme, B.
(2017). Grammatical error correction with
neural reinforcement learning. Proceedings of
the Eighth International Joint Conference on
Natural Language Processing, pp. 366–372.

31. Sennrich, R., Haddow, B., Birch, A. (2016).
Neural machine translation of rare words with
subword units. Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics, pp. 1715–1725. DOI: 10.18653/v1/
P16-1162.

32. Starchenko, V. M., Starchenko, A. M. (2023).
Here we go again: Modern gec models
need help with spelling. Proceedings of the
Institute for System Programming of the RAS,
Vol. 35, No. 5, pp. 215–228. DOI: 10.15514/
ISPRAS-2023-35(5)-14.

33. Stüker, S., Fay, J., Berkling, K. (2011).
Towards context-dependent phonetic spelling
error correction in children’s freely composed
text for diagnostic and pedagogical purposes.
INTERSPEECH, pp. 1601–1604.

34. Susanto, R. H., Phandi, P., Ng, H. T.
(2014). System combination for grammatical
error correction. Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 951–962.
DOI: 10.3115/v1/D14-1102.

35. Taghva, K., Stofsky, E. (2001). OCRSpell:
an interactive spelling correction system for
OCR errors in text. International Journal
on Document Analysis and Recognition,
Vol. 3, No. 3, pp. 125–137. DOI: 10.1007/
PL00013558.

36. Tay, Y., Dehghani, M., Rao, J., Fedus,
W., Abnar, S., Chung, H. W., Narang,
S., Yogatama, D., Vaswani, A., Metzler,
D. (2021). Scale efficiently: Insights from
pre-training and fine-tuning transformers.
arXiv. DOI: 10.48550/arXiv.2109.10686.

37. van-Delden, S., Bracewell, D.,
Gomez, F. (2004). Supervised and
unsupervised automatic spelling correction
algorithms. Proceedings of the 2004 IEEE
International Conference on Information

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

Vladimir Starchenko1876

ISSN 2007-9737

10.48550/arXiv.1702.04066
10.3115/v1/W14-1701
10.18653/v1/2021.acl-short.89
10.18653/v1/P16-1208
10.18653/v1/P16-1162
10.18653/v1/P16-1162
10.15514/ISPRAS-2023-35(5)-14
10.15514/ISPRAS-2023-35(5)-14
10.3115/v1/D14-1102
10.1007/PL00013558
10.1007/PL00013558
10.48550/arXiv.2109.10686


Reuse and Integration, pp. 530–535.
DOI: 10.1109/IRI.2004.1431515.

38. Vilares, J., Alonso, M. A., Doval, Y., Vilares,
M. (2016). Studying the effect and treatment
of misspelled queries in cross-language
information retrieval. Information Processing &
Management, Vol. 52, No. 4, pp. 646–657.
DOI: 10.1016/j.ipm.2015.12.010.

39. Xue, L., Barua, A., Constant, N., Al-Rfou,
R., Narang, S., Kale, M., Roberts, A.,
Raffel, C. (2022). ByT5: Towards a
token-free future with pre-trained byte-to-byte
models. Transactions of the Association
for Computational Linguistics, Vol. 10,
pp. 291–306. DOI: 10.1162/tacl a 00461.

40. Zhang, Y., Zhang, B., Li, Z., Bao, Z., Li, C.,
Zhang, M. (2022). SynGEC: Syntax-enhanced

grammatical error correction with a tailored
GEC-oriented parser. Proceedings of the
2022 Conference on Empirical Methods in
Natural Language Processing, pp. 2518–2531.
DOI: 10.18653/v1/2022.emnlp-main.162.

41. Zhou, H., Liu, Y., Li, Z., Zhang, M.,
Zhang, B., Li, C., Zhang, J., Huang,
F. (2023). Improving Seq2Seq grammatical
error correction via decoding interventions.
Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 7393–7405.
DOI: 10.18653/v1/2023.findings-emnlp.495.

Article received on 09/07/2024; accepted on 17/10/2024.
*Corresponding author is Vladimir Starchenko.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 1865–1877
doi: 10.13053/CyS-28-4-5068

No Need to Get Wasteful: The Way to Train a Lightweight Competitive Spelling Checker ... 1877

ISSN 2007-9737

10.1109/IRI.2004.1431515
10.1016/j.ipm.2015.12.010
10.1162/tacl_a_00461
10.18653/v1/2022.emnlp-main.162
10.18653/v1/2023.findings-emnlp.495

