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Abstract. This article presents an approach for
retrieving scenes of interest in long-duration videos
through image-to-text encoding. Unlike conventional
approaches that often involve the use of neural
networks, this method proposes a technique that
avoids the use of these complex structures in order to
reduce computational resource consumption. Through
experiments, the feasibility and effectiveness of this
technique are demonstrated, concluding that it is feasible
to employ it for multimedia information retrieval, offering
an efficient and economical alternative for this task.
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1 Introduction

In recent years, due to the development and
creation of better technological devices, there
has been an increase in the use of digital
cameras, such as cell phones, surveillance
systems, specialized cameras, among others,
resulting in a large volume of multimedia files.

Extracting information from these massive data
volumes presents various challenges, which vary
depending on the type of information to be
retrieved (video, images, audio, or text). Some
of the techniques used to obtain information
belong to the field of machine learning, with
deep learning standing out, as it is capable of
automatically extracting features from data [6].

However, despite the growth in artificial intelligence
studies, many public and private organizations
still rely on human resources to perform specific
tasks such as searching for scenes of interest in
long-duration videos.

This method of obtaining information is slow
and consumes a large number of human-hours,
as the process of identifying scenes in videos is
difficult and tedious, especially when dealing with
large volumes of data.

In contrast, it is observed that image information
retrieval techniques help reduce human costs in
this task [9]. Currently, the advancement of
deep learning provides us with tools to develop
multimedia information retrieval systems.

However, if these types of techniques are to
be implemented, the following points must be
considered: a large corpus is needed to train
deep learning models; training these models often
takes too long; a specialized model is required;
and computational resources are high (RAM, GPU,
processor, and disk space).

This document proposes an approach based
on text information retrieval to identify scenes of
interest in long-duration videos

These techniques tend to require fewer
computational resources, making them ideal for
adaptation on many servers that store videos.
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Fig. 1. Proposed methodology for identifying scenes of interest in long-duration videos using an image-to-text

encoding module
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Fig. 2. Analyzing the hat band present in frame 13

2 State of the Art

Multimedia Information Retrieval Systems (MIRS)
are closely linked to technological advancements.
There are various techniques applied to these
systems.

For example, the Bag-of-Visual-Words method
involves finding global descriptors of images by
creating histograms of high dimensionality. This
technique offers the ease of creating inverted
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indices and vector spaces to measure their
distance from other images, but it tends to be less
accurate in searches [26]. It has been shown
that global descriptors do not capture relevant
characteristics well, and local descriptors tend to
yield better results [4].

In the past decade, the concept of Vector
of Locally Aggregated Descriptors (VLAD)
was introduced. It extracts regions using
invariant detectors (algorithms for extracting
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Fig. 3. Textual representation obtained from frame 13
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currently, CNNs are trained to obtain these codes

geometric transformations) and then characterizes
them by SIFT descriptors (Scale-Invariant Feature
Transform). The results are classified into clusters,
which for information retrieval are associated with
a vocabulary [12].

These types of systems are known as
Content-Based Image Retrieval (CBIR) systems
and are used in various fields, such as medical
applications [3]. In recent years, methods for
obtaining image descriptors have been improved.

For example, Alsmadi in [1] obtains color,
shape, and texture information, and by combining
this information, presents results with good
accuracies. Some methods additionally create
hash codes (bit strings) from the constructed
descriptors, which are used to index images and
apply IR algorithms based on these indices [16].

However, the rise of artificial intelligence,
specifically the use of Convolutional Neural
Networks (CNNs), has shown that descriptors can
be found almost automatically [24]. Hash codes
are used to simplify and accelerate searches;

[10], and studies are beginning to be conducted
with other architectures like transformers to
generate these codes [7].

It is worth mentioning that the use of CNNs
requires a dataset to match images with text.
CNNs have shown the ability to associate
images with text and text with images by
projecting the text and the image into a single
feature subspace [23, 8, 11].

There are various studies focused on the
medical field that use CNNs to create specialized
Multimedia  Information  Retrieval = Systems
(MSIRS). Shamna and Aziz train a magnetic
resonance classification model using CNNs and,
through a similarity comparison, retrieve related
documents that will assist the physician in making
a diagnosis [19].

In the same vein, Zhang et al. employ
neural networks to classify resonances and match
them with text related to medical diagnosis, thus
providing specialists not only with retrieved images
but also with potential diagnoses [25]. In the
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Frame 11 of the video

Frame 20 of the video

Fig. 4. Frames close to frame 13
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Fig. 5. Analyzing frame 13 with hash code

fashion domain, Whu and Gao introduce the first
dataset to support the advancement of image
retrieval systems for fashion [23], leading to the
development of the first image retrieval models

Computacion y Sistemas, Vol. 28, No. 4, 2024, pp. 2343-2352
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referencing this database [5, 18]. On the other
hand, geolocation has gained great importance,
from the automation of unmanned vehicles to
tourist use.
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Fig. 6. Partition of frame 13 in the second experiment

Table 1. Documents retrieved by applying fault-tolerant
information retrieval

File Position Distance
frame_13.txt (5,7) 0
frame_12.txt (5,7)
frame_14.txt (5,7) 1
frame_11.txt (5,7)
frame_15.txt (5,7) 2
frame_16.txt (5,7)

frame_1176.txt (10, 1) 3
frame_19.ixt (5,7)

frame_1223.txt (10, 1)
frame_18.ixt (5,7)
frame_17.txt (5,7)

Tang et al. present an information retrieval
model that does not rely on a global satellite
navigation system.

They use CNNs to predict images of the
environment and, through a RIM system,
retrieve possible geographic areas in which
they are located [22]. In terms of security,
video surveillance is of utmost importance.

Prathiba introduces a multimodal retrieval
system using a promising clustering algorithm
for human-computer interaction.

This algorithm extracts features from the
frames comprising the video, applies the nearest
neighbor-based algorithm, and based on this,
calculates the distance between frames to retrieve
the most similar images [17]. A quick review of the
state of the art highlights that neural networks lead
the way in tasks related to multimedia information
retrieval [2, 20, 7, 8, 10, 11, 15, 17, 19, 21, 22, 23,
23, 24, 25].

3 Methodology

The methodology proposed in this document is
illustrated in Fig. 1. This methodology consists
of two main components: firstly, a module is
included to generate the text corpus, which is
carried out through an image-to-text conversion
algorithm; secondly, a text information retrieval
system is implemented, allowing text queries to be
made and relevant documents associated with the
query to be obtained as a response.

3.1 Image-to-text Conversion Algorithm

After obtaining the video frames, a modification
to the steps for extracting feature sequences
presented by Luo et al. [14] is applied. This
algorithm is used to hide information in images;
however, a text corpus is created using the
following steps: from the video, images are
extracted at regular intervals t, referred to as I;.

Each I, is divided into m x n blocks, where each
block is part of the set B, = {B1,Bs,..., Bmn}-
A character string « is assigned to each b; <
B, through some mapping f, such that f(b;) =
a. This document presents two mappings:
conversion to characters by averaging grayscale
and image-to-hash code conversion. Thus, each
image is represented by a text file, and the
generated text files form the corpus that feeds the
information retrieval system.
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Table 2. Strings with Levenshtein distance less than or
equal to 3

File Position Distance
frame_13.txt (5,7) 0
frame_11.txt (5,7) 1
frame_12.txt (5,7)
frame_967.txt (17, 1) 3
frame_1106.ixt (20, 0)
frame_1114.ixt (20, 0)
frame_1113.ixt (20, 0)
frame_1109.ixt (20, 0)
frame_1111.ixt (20, 0)
frame_1115.ixt (20, 0)
frame_1110.txt (20, 0)
frame_1112.txt (20, 0)
frame_1107.txt (20, 0)
frame_1108.txt (20, 0)
frame_501.txt (18, 4)
frame_14.txt (5,7)
frame_862.txt (19, 4)
frame_500.txt (20, 4)
frame_503.txt (25, 4)

4 Experiments

For the following experiments, a 5-hour video
recording an office at a tax agency in the United
States was downloaded from the internet.

4.1 First Experiment: Conversion to
Characters by Averaging Grayscale

Based on the idea presented in section 3 for
obtaining textual representations, the following
process is carried out to obtain a text corpus:

1. A frame is obtained every 1.5 seconds.
2. A partition of each frame is obtained as follows:

(a) Each image, I;, is divided into N rows
and M columns, forming a matrix of
sub-images.
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(b) Each sub-image, S,., is divided

into P elements.

3. Each element, P,, undergoes a mapping f,
where this mapping transforms each element
into grayscale values, then the average of the
grayscale colors is obtained, and this average
is associated with one of the 26 letters of the
English alphabet.

4. The letters are joined to form a character string.

5. The document will have N rows with M
character strings.

For this experiment, the parameters are as
follows: N = 30, M = 10, and P = 9. In Fig.
5, the process for partitioning frame 13 (Fig. 5)
obtained from the video is shown. For this purpose,
the frame is divided into 30 rows (Fig. 5) and 10
columns (Fig. 5). Subsequently, each sub-image is
divided into 9 elements (Fig. 5). This division can
be interpreted as a text document consisting of 30
lines, with each line containing 10 words composed
of 9 letters.

Once the division process is complete, the
mapping f is applied, thus obtaining a textual
representation for each sub-image and a text
document by concatenating all the representations
following steps 5 and 6 presented in this section.
The document obtained after applying this process
is shown in Fig. 3.

After setting frame 13 as the scene of interest,
a manual search was conducted in the nearby
frames. As a result, it was found that the scenes
from frame 11 to frame 20 are very similar.
Observing Fig. 4, it is inferred that the only
significant change occurring from frame 11 to
frame 20 is the movement of a person.

In frame 13, focus is placed on the hat of the
person near the door, specifically on the hat band.
Fig. 2 shows this focus, and the associated string
for this element is jjjlqrsrr. When performing a
search in the information retrieval system, it is
found that the only file containing the string jjjlqrsrr
is frame 13, and this string is found on line 5 and
column 7. If a search is conducted for the tokens
representing this band, it is noticed that this band
appears in the same position in frames 11 and 20
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(the extreme frames of the manual search). The
strings in that position are:

— Frame 11 -> jjjlqrsstr.

— Frame 20 -> jkkkoqsst.

It is observed that the only difference between
the string obtained from frame 11 is the letter ’s’
(highlighted in red), while in frame 20 there is a
greater difference in the strings.

If it is considered that the string jjjlqrsrr
obtained from frame 13 is a word and that this
word is correctly spelled, it can be considered
that the strings obtained in frames 11 and 20 are
misspelled words, and their correction should be
the string jjjlqrsrr.

In this case, we could apply an algorithm
present in fault-tolerant information retrieval, which
calculates the Levenshtein distance [13]. For
example, the Levenshtein distance between the
strings jjjlqrssr and jjjlqrsrr is 1, as only the letter
's’” (highlighted in red) needs to be changed to r’ in
the first string to obtain the second string.

All  documents containing tokens with a
Levenshtein distance less than or equal to 3
from the token jjjlqrsrr were retrieved, resulting
in 19 tokens. Table 2 shows the results. Out of
the 19 results, only 4 documents are within the
desired range.

4.2 Second Experiment: Conversion to
Hash Code

For the second experiment, the following steps
are followed:

1. A frame is obtained every 1.5 seconds.

2. Each frame is partitioned as follows: Each
image, I;, is divided into N rows and M
columns, forming a matrix of sub-images.

3. Each sub-image, S; ;, is mapped using function
f to obtain a hash code.

Fig. 6 shows the partition of frame 13 into
30 rows and 10 columns. Fig. 7 shows the text
document associated with frame 13. Again, the
section of frame 13 with a person wearing a hat is
analyzed, focusing on the hash code representing
the hat’s stripe. Fig. 5 shows this image segment
to be analyzed.

Searching for the string 7f0f0f1fc70f1f1f in
the information retrieval system retrieves two
documents: frame 13 and frame 12. Similar to
the previous experiment, the hat stripe appears
in that position from frame 11 to frame 20. The
corresponding hash codes are as follows:

— Frame 11 -> 5f0f0f1fc70f1f1f.
— Frame 20 -> 7e0f0f0fc7670f1f.

Again, if we consider that the strings in frames
11 and 20 are misspelled, we can apply the
Levenshtein algorithm. Searching for tokens with
a distance less than or equal to 3 from the token
7f0fof1fc70f1f1f retrieves 11 results, which are
presented in Table 1. Out of the 11 results, 9 fall
within the manually found range.

5 Discussion

It is important to consider the following points
regarding resource usage and time. For the
first experiment:

— 1,237 text files were obtained.

— The process of obtaining the corpus took
approximately 15 minutes and 40 seconds,
meaning each image took 0.75 seconds
to process.

— The total weight of the text files is approximately
3.7 MB.

For the second experiment, the following
information is available:

— 1,237 text files were obtained.

— The process took approximately 14 minutes
and 32 seconds, approximately 0.70 seconds
per frame.
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Fig. 7. Text associated with frame 13 in the second experiment

— The total weight of the text files is approximately
6.3 MB.

This data indicates that the use of computational
resources is very low compared to the use of neural
networks since it is not necessary to store large
amounts of images or use a GPU for training neural
network models.

Additionally, the required time is less since not
only is the construction of a specialized dataset
for the task avoided, but also the training time and
adjustment of deep learning models.

When analyzing the results presented in Table 2
(referring to the first experiment where the average
grayscale is used as mapping), it is observed that
4 out of the 19 recovered frames correspond to the
scene in the video where the hat’s stripe appears.

On the other hand, in Table 1 (referring to the
second experiment which applies a Hash code
as mapping), it is observed that 9 out of the
10 recovered frames correspond to the scene of
interest. This suggests that converting image to
text using Hash code leads to better performance
in the retrieval system.

By using an evaluation metric, it is possible
to obtain a more concrete data to assess these
two experiments. The precision metric is used
to compare their results, and it is given by the
following formula:

[relevant docs N recovered docs)|
recovered docs '

(1)

Accuracy =
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Considering that there are 10 relevant
documents (from frame 11 to frame 20) and
taking into account the results from Tables 2 and
1, for the first experiment we have a precision of:

4
Accuracy = T 0.21. (2

And for the second experiment we have a
precision of:

Accuracy = % =0.81. (3)

This indicates that using Hash code as mapping
yields better results compared to using the average
grayscale as mapping.

6 Conclusions

Currently, the development of artificial intelligence
greatly contributes to the advancement of
technologies. However, it is important to note
that not all organizations and individuals have
access to the computational resources required
for these algorithms, as well as the time invested
in this area. Therefore, it is vital to continue
researching alternative techniques.

This article demonstrates that it is possible to
find parts of an object of interest in an image
through information retrieval. However, with the
results presented here, it is considered possible to
find objects in their entirety and not just a section of
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them, without the need for deep learning. With the
results generated through this research, a possible
efficient method for retrieving scenes of interest in
long-duration videos is opened without the need for
high computational resources.
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