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Abstract. Automatic Text Summarization (ATS) has 

played an essential role in condensing textual 
information from digital documents. Since 2001, the 
development of ATS has been significant, aiming to 
emulate the creation of human-like summaries. Thus, 
most of the methods and approaches are usually 
evaluated through ROUGE; however, it does not 
evaluate if human references are not available. Due to 
this, the Evaluation of Text Summaries (ETS) without 
human references has been proposed. In this sense, 
ROUGE-C, LSA, and SIMetrix have been presented as 
methods that compare the content between summaries 
and source documents. Although previous studies have 
demonstrated that combining these methods has 
improved automatic evaluation, it is still far from manual 
assessment. We assume this situation is due to the 
presence of different complexity levels in evaluation 
measures and source documents. Therefore, the 
performance of automatic evaluation varies according to 
the complexity level of each evaluation measure. In this 
paper, we propose a selection of content evaluation 
measures through a Genetic Algorithm (GA) to 
determine the most suitable evaluations for each 
summary. Calculating complexity levels in source 
documents and content measures may help to select the 
best measures to evaluate summaries without human 
references. Experiments in the DUC01 and DUC02 
datasets demonstrate that the proposed selection 
improves the performance of this task. 

Keywords Evaluation of text summaries content 

evaluation measures genetic algorithm text 
complexity indexes. 

1 Introduction 

In recent times, text documents have become the 
most essential resource for the user in daily life. 
Such documents show useful information in 
different formats (e.g., books, scientific/news 

articles, monographs, and social media comments) 
that satisfy users' requirements. Nevertheless, 
they grow exponentially on the Internet, causing an 
information overload. For this reason, the 
Automatic Text Summarization (ATS) seeks to 
solve this problem because it is considered the 
most recognized kind of text condensation [1]. 

Over the last two decades, several methods 
have been proposed in the ATS that generate 
summaries of different characteristics (single- and 
multi-document; extractive, abstractive, and 
hybrid; generic and query-based; monolingual, 
multilingual, and cross-lingual) [2]. However, the 
Evaluation of Text Summaries (ETS) is a complex 
task that requires exhaustive studies to determine 
suitable criteria to assess summaries [3]. 

According to Jones and Galliers [4], each 
evaluation method may be extrinsic or intrinsic. 
The extrinsic evaluation measures the usefulness 
of summaries in another task, such as document 
categorization, relevance assessment, and web 
search [5, 6]. On the other hand, the intrinsic 
evaluation focuses on the suitability of the 
summarization approach in terms of text quality 
and content analysis [7]. 

In other words, it analyzes the summary's 
content, coherence, and informativeness [8]. Most 
of these methods generally compare the content 
between a summary to be evaluated (candidate 
summary) and a set of summaries written by the 
human expert (human references). 

Depending on the degree of human 
intervention, an evaluation method may be 
manual, semi-automatic, or automatic. Manual 
assessment involves human judgments to decide 
whether a summary shows the essential 
information from one or more documents. 
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Nevertheless, this evaluation faces two 
drawbacks: (i) it is time-consuming, and (ii) several 
assessors are required to evaluate many 
summaries [8]. Considering the issues mentioned 
above, automatic evaluation has been proposed. 

For this evaluation, ROUGE (Recall-Oriented 
Understudy for Gisting Evaluation) is the most 
representative package in the state-of-the-art that 
includes some measures, such as ROUGE-N, L, 
W, and S to evaluate the content of summaries [9]. 
However, these measures are inadequate when 
they do not have human references. Due to this 
situation, the ETS without human references has 
been proposed. 

The ETS without human references has 
attracted attention since traditional methods are 
impractical and expensive. In this regard, ROUGE-
C [10], LSA [7], and SIMetrix [11] have been 
proposed as methods that compare the candidate 
summary's content concerning its source 
document(s). These methods consider source 
documents as references because they contain 
enough information, providing helpful knowledge 
about the topic, but they are still far from manual 
assessment [12]. 

To solve this issue, previous studies have 
proposed the linear optimization of content 
measures through Genetic Algorithms (GAs) to 
improve automatic evaluation [3, 13]. The outcome 
of this research was SECO-SEVA, an evaluation 
package that combines 31 content measures 
derived from ROUGE-C, LSA, and SIMetrix. 
However, the GA's optimization assumes the 
presence of different levels of complexity in each 
evaluation measure. 

In this paper, we propose a selection of content 
measures for the ETS without human references, 
using the GA. We assume that assigning a 
complexity value to each source document and 
measure may be a suitable indicator to estimate an 
adequate evaluation measure for each summary. 
For this, we have employed 13 complexity indexes 
known in the state-of-the-art and 31 evaluation 
measures used in [13]. 

The paper is organized as follows. In Section 
“Related Works”, we present a brief description of 
related works of this research. In Section “State-of-
the-Art Evaluation Measures and Text Complexity 
Indexes”, we describe state-of-the-art evaluation 
methods and complexity indexes. 

The proposed method is presented in Section 
“Proposed Method”. In Section “Experiments and 
Results”, we display the results of the proposed 
selection of measures and a comparison to other 
state-of-the-art methods. Finally, the conclusions 
and future works are drawn in Section 
“Conclusions and Future Works”. 

2 Related Works 

Over the last few years, several studies have been 
conducted to improve automatic evaluation. Some 
perform the linear optimization of measures 
through the Monte Carlo method [14], linear 
regression [15], and GA [13]. Other works employ 
single and ensemble learning classifiers that use 
evaluation measures as features to predict the 
score of summaries [16, 17]. 

Although such works seek the combination of 
evaluation methods to improve automatic 
evaluation, it does not always guarantee a better 
approximation toward human judgments. We 
assume this because if we include more 
perspectives to solve a problem, the complexity of 
the task is increased. This situation is similar to 
other Natural Language Processing (NLP) tasks. 

In [18], García-Calderón et al. proposed a 
hybrid method based on a selection of Text Line 
segmentation (TLS) methods, using a complexity 
index called TLS-ICI (Text Line Segmentation 
Intrinsic Complexity Index). The TLS-ICI index is 
shown in Eq. (1), which is the average of four 
normalized subindexes that measure the amount 
of information presented in an individual 
interlinear space. 

Let an image I composed of an interlinear 
space from a handwritten document; therefore, the 
complexity of such space is calculated using the 
Horizontal Projection Profile (HPP), the Vertical 
Projection Profile (VPP), the Histogram of Color of 

the Bitmap (HCB), and the Histogram of Color of 

the Ink (HCI): 

𝑇𝐿𝑆 − 𝐼𝐶𝐼(𝐼)

=
𝐻𝑃𝑃(𝐼) + 𝑉𝑃𝑃(𝐼) + 𝐻𝐶𝐵(𝐼) + 𝐻𝐶𝐼(𝐼)

4
. 

(1) 

Once the complexity of an interlinear space is 
calculated, it is estimated the overall complexity of 
a document according to Eq. (2), where 𝐷 
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represents the handwritten text document 

composed of 𝑘 images of interlinear spaces (𝐼𝑘
𝐷). 

Thus, the overall complexity is the average TLS-
ICI of their interlinear spaces [18]: 

𝑇𝐿𝑆 − 𝐼𝐶𝐼(𝐷) =
1

𝑘
∑𝑇𝐿𝑆 − 𝐼𝐶𝐼(𝐼𝑖

𝐷).

𝑘

𝑖=1

 (2) 

                                                      
1 𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 is an evaluation measure based on counting the 

number of one-to-one matches between the areas detected by 
the TLS method and the areas in the ground truth [57]. 

Based on TLS-ICI calculates the complexity of 
handwritten documents, it likewise provides an 
order of complexity to collections of documents. 
Such an order establishes that the first collections 
show lower complexities than the subsequent 
ones. For the experimentation stage, this order 
was obtained from eight collections of 
contemporary and ancient texts written in English, 
Spanish, Arabic, Chinese, Greek, Khmer, Persian, 
Bengali, Oriya, Kannada, and Nahuatl [19, 20, 21, 
22, 23, 24, 25, 26]. 

Fig. 1 shows the average TLS-ICI for each 
collection. As observed, all collections are sorted 
from lower to higher complexity values. According 
to the collection, M.AmoXVII shows the highest 
complexity. Therefore, it would be expected that, in 
principle, the most sophisticated method performs 
best the task in this collection. On the other hand, 
collections of lower complexities (e.g., M.Alaei11 
or M.Saabni14) should be analyzed by 
straightforward TLS methods. 

In addition to collections, measuring the 
complexity of state-of-the-art TLS methods was 
also necessary. Based on this, the authors 
selected Ptak [20], Arvanitopoulos [27], García 
[28], and Arivazhagan [29] methods since they are 
considered the best ones for the TLS. 

Afterward, the complexity of each method was 
calculated by the maximum complexity threshold 
with 95% of the accuracy of 𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒.1 Fig. 2 
shows the complexity of TLS methods. According 
to Fig. 2, the Ptak method shows the lowest 
complexity because it worked well in documents of 
the lowest complexity, followed by the 
Arvanitopoulos and Arivazhagan methods, 
showing higher complexities. 

The García method displays the most 
increased complexity, which means this method 
can analyze more complex documents. Based on 
the values shown in Fig. 2, the complexity values 
of each TLS method were used to determine the 
ranges that each method should be selected, 
creating a Hybrid Method (HM). The 𝐻𝑀 method is 

formally described in Eq. (3), where 𝑑 is the image 

of the input document and 𝑇𝐿𝑆 − 𝐼𝐶𝐼(𝑑) is the 
complexity value of 𝑑. 

 

Fig. 1. Ranking of average TLS-ICI for each collection 

of historical documents [18] 

 

Fig. 2. Complexity values of each TLS method 
according to 95% of the accuracy of MatchScore 
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As observed, the 𝐻𝑀 method consists of four 
TLS methods, such that only one is applied 
according to the complexity of the input document: 

𝐻𝑀(𝑑)

=

{
 

 
𝑃𝑡𝑎𝑘(𝑑), 0 ≤ 𝑇𝐿𝑆 − 𝐼𝐶𝐼(𝑑) ≤ 0.00528,

𝐴𝑟𝑣𝑎𝑛𝑖𝑡𝑜𝑝𝑜𝑢𝑙𝑜𝑠(𝑑), 0.00528 ≤ 𝑇𝐿𝑆 − 𝐼𝐶𝐼(𝑑) < 0.02416,

𝐴𝑟𝑖𝑣𝑎𝑧ℎ𝑎𝑔𝑎𝑛(𝑑), 0.02416 ≤ 𝑇𝐿𝑆 − 𝐼𝐶𝐼(𝑑) < 0.03615,

𝐺𝑎𝑟𝑐𝑖𝑎(𝑑), 0.03615 ≤ 𝑇𝐿𝑆 − 𝐼𝐶𝐼(𝑑).

 
(3) 

For instance, if a document obtains a 𝑇𝐿𝑆 − 𝐼𝐶𝐼 
value equal 0.02011, the 𝐻𝑀 method selects the 

Arvanitopoulos method (𝐴𝑟𝑣𝑎𝑛𝑖𝑡𝑜𝑝𝑜𝑢𝑙𝑜𝑠(𝑑)). On 
the other hand, if 𝑑 gets a 𝑇𝐿𝑆 − 𝐼𝐶𝐼 value equal or 

higher than 0.03615, the 𝐻𝑀 method selects the 

best available method (𝐺𝑎𝑟𝑐𝑖𝑎(𝑑)). 

3 State-of-the-Art Evaluation 
Measures and Text Complexity 
Indexes 

Content-based measures and text complexity 
indexes are two groups of measurements that help 
to estimate specific attributes of texts. While the 
first group is typically used to evaluate summaries 
with or without human references [30], the second 
group employs different formulas that estimate the 
degree of ease or difficulty a text can be 
understood according to its vocabulary [31], 
readability [32], or word morphology [33]. In this 
section, we briefly describe evaluation measures 
and text complexity indexes that are part of 
this study. 

 Evaluation Methods and Measures 

The ETS without human references has been an 
active area of research in recent years since 
traditional methods are expensive and impractical. 

Based on this, ROUGE-C, LSA, and SIMetrix have 
been proposed as methods that compare the 
content between summaries and their source 
document. Below, we briefly describe these 
methods and their underlying measures. 

ROUGE-C. For automatic assessment, 
ROUGE is a well-known evaluation package of 
four measures (ROUGE-N, L, W, and S) that 
estimate the similarity between the automatic 
summary and its human references. For instance, 
ROUGE-N calculates the overlap of n-grams 
between the summary and its human references 
(𝐻𝑅), as shown in Eq. (4): 

𝑅𝑂𝑈𝐺𝐸⎼𝑁

=
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆𝑆 ∈ {𝐻𝑅}

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆𝑆 ∈ {𝐻𝑅}
, 

(4) 

where 𝑛 is the n-gram length. 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛) 
is the maximum number of n-grams that co-occur 
between the summary and 𝐻𝑅 [9]. However, 
ROUGE-N and the other measures depend on 
creating human references. Thus, they cannot 
work without these documents. To address this 
situation, ROUGE-C has been proposed in [10]. 

Unlike ROUGE, ROUGE-C employs source 
documents to measure their similarity concerning 
the automatic summary. Fig. 1 exhibits the 
differences between ROUGE and ROUGE-C. As 
observed, ROUGE measures receive human 
references and automatic summaries as model 
and test documents, respectively. On the contrary, 
ROUGE-C inverts the order of both documents, 
where the source document is used as a test, and 
the summary is used as a model. 

Based on the differences shown in Fig. 1m 
ROUGE-N, L, W, S, and SU4 measures can be 
adapted, generating the following variants: 
ROUGE-C-N, L, W, S, and SU4. As an example, 
the evaluation of ROUGE-N without human 
references is called ROUGE-C-N, which is formally 
defined in Eq. (5): 

𝑅𝑂𝑈𝐺𝐸⎼𝐶⎼𝑁 =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛𝑔𝑟𝑎𝑚𝑚∈ 𝑆 )𝑆 ∈ {𝑆𝑢𝑚}

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛∈ 𝑆𝑆 ∈ {𝑆𝐷𝑆𝑢𝑚}

, (5) 

where 𝑛 stands for the length of the n-grams 
(𝑔𝑟𝑎𝑚𝑛). 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛) is the maximum 
number of n-grams that co-occur between the 
summary (𝑆𝑢𝑚) and its source document (𝑆𝐷𝑆𝑢𝑚). 
In other words, ROUGE-C-N measures the ratio of 

 

Fig. 1. Differences between ROUGE and ROUGE-

C [10] 
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n-grams between the summary and its source 
document(s). Therefore, it is a precision-
based measure. 

Latent Semantic Analysis (LSA). The LSA is 
a matrix processing method that represents, 
extracts and relates the contextual meaning of 
terms from a document in a “latent” semantic 
space [34]. For the ETS, the LSA evaluates 
summaries by measuring the contextual similarity 
between the summary and its source document(s) 
[7]. In general, the LSA consists of the 
following steps: 

1 Preprocessing. The summary and its source 

document(s) are preprocessed by eliminating 

stopwords and performing stemming. After 

this, the remaining terms are grouped into n-

grams of different lengths, preserving their 

order in sentences. 

2 Represent input documents as matrices. 

The summary and its source document must 

be represented into two matrices 𝐴 of 𝑚 × 𝑛 

dimensions, where 𝑛 and 𝑚 are the number of 

sentences and terms, respectively. Each value 

of 𝐴 (𝑎𝑖𝑗) weights the importance of each 𝑖𝑡ℎ 

term in the 𝑗𝑡ℎ sentence. To weigh the 

importance of terms, we use term-weighting 

formulas proposed in [35]. 

3 Singular Value Decomposition (SVD). The 

matrices 𝐴 of both documents are 

decomposed into individual matrices via SVD 

[36]. The SVD is a matrix factorization method 

defined in Eq. (6): 

𝐴 = 𝑈𝛴𝑉𝑇, (6) 

where 𝑈 is an 𝑚 × 𝑛 column-orthonormal 

matrix whose columns are left singular 

vectors. 𝛴 is a diagonal matrix of 𝑛 × 𝑛, whose 

main diagonal includes nonnegative singular 

values sorted in descending order. The matrix 

𝑉 has 𝑛 × 𝑛 dimensions, where columns are 

called right singular vectors. Furthermore, 

each matrix needs to be reduced in 𝑟 

dimensions, obtaining the most important 

topics of each document. Thus, the order of 𝑈 

is 𝑚 × 𝑟, 𝛴 is 𝑟 × 𝑟, and 𝑉𝑇 is 𝑟 × 𝑛. 

4 Matrix similarity calculation. Once the SVD 

has been performed, the resultant matrices of 

both documents are compared through Main 

Topic Similarity (MTS) or Term Significance 

Similarity (TSS). While MTS extracts and 

measures the similarity between the first left 

singular vector of the summary and source 

document, TSS extracts singular values and 

left singular vectors to measure the similarity 

between the summary and the 

source document. 

Summary Input similarity Metrics (SIMetrix). 
SIMetrix is an evaluation package that employs 10 
similarity and distance measures to evaluate 
summaries without human references [11]. Some 
measures are based on vector space similarity, 
word probability distributions, and topic signature 
words between the summary and the source 
document. However, the measures with the best 
correlation results derive from the Kullback-Leibler 
(𝐷𝐾𝐿) and Jensen-Shannon (𝐷𝐽𝑆) divergences. 

Divergence measures are based on the 
concept of probabilistic uncertainty or entropy [37], 
whose use was originally proposed to quantify the 
loss of information between two communication 
signals [38, 39]. Nevertheless, both measures 
were later proposed to measure the loss of 
information between the summary concerning its 
source document. Formally, 𝐷𝐾𝐿 is defined in Eq. 

(7), where 𝑃 and 𝑄 represent the distribution of 
words of the source document and the candidate 
summary, respectively: 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) =
1

2
∑𝑃𝑤𝑙𝑜𝑔2

𝑃𝑤
𝑄𝑤

𝑤

. (7) 

Although 𝐷𝐾𝐿 provides nonnegative values, it 
does not have the symmetric property, it does not 
satisfy the triangular inequality, and resultant 
values tend to infinity. For these reasons, the 𝐷𝐽𝑆 

divergence was proposed, which is formally shown 
in Eq. (8): 

𝐷𝐽𝑆(𝑃 ∥ 𝑄) =
1

2
[∑ 𝑃𝑤𝑙𝑜𝑔2

2𝑃𝑤

𝑃𝑤+𝑄𝑤
𝑤 +

𝑄𝑤𝑙𝑜𝑔2
2𝑄𝑤

𝑃𝑤+𝑄𝑤
], 

(8) 

where 𝑃𝑤 is the probability distribution of the term 

𝑤 in the source document. On the other hand 𝑄𝑤 

is the probability distribution of the term 𝑤 in the 
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summary. The probability distribution of each term 
𝑤 is calculated according to Eq. (9): 

𝑃𝑤 =
𝐶𝑤
𝑇

𝑁
,𝑄𝑤 =

{
 
 

 
 𝐶𝑤

𝑆

𝑛𝑆
, 𝑖𝑓 𝑤 ∈ 𝑆,

𝐶𝑤
𝑇 + 𝛿

𝑁 + 𝛿 × 𝐵
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (9) 

where 𝑃𝑤 stands for the ratio between the number 
of occurrences of the term 𝑤 in the source 

document or 𝑇 (𝐶𝑤
𝑇), and the number of terms 

obtained from the source document and the 
summary (𝑁 = 𝑛𝑇 + 𝑛𝑆). 

On the other hand, 𝑄𝑤 represents the ratio 

between the number of occurrences of the term 𝑤 

in the evaluated summary or 𝑆 (𝐶𝑤
𝑆 ), and the 

number of terms retrieved from the summary (𝑛𝑆), 
if the term 𝑤 appears at least once in 𝑆. Otherwise, 

we employ a smoothing operation, where 𝛿 =
0.005 and  𝐵 = 1.5|𝑉|. Based on these conditions, 
SIMetrix can use smoothed and unsmoothe 
versions of the 𝐷𝐽𝑆  divergence. 

 Text Complexity Indexes 

According to CCSSO [40], text complexity is the 
inherent difficulty of reading and understanding a 
text, whose measurement depends on several 
factors. Some of them involve the text's readability, 
the text's levels of meaning or purpose, text 
structure, the language's conventionality, and the 
knowledge demands of the text [41]. Therefore, 
there are different manners to measure text 
complexity. This section briefly describes text 
complexity indexes. 

Type-Token Relationship (TTR). The TTR 
index measures the linguistic diversity of any text 
document [31]. To calculate the TTR of an input 
document (𝑑), we use Eq. (10), where #𝑇𝑦𝑝𝑒𝑠 are 

the number of word types appearing in 𝑑. The term 
#𝑇𝑜𝑘𝑒𝑛𝑠 represents the number of tokens/words of 

𝑑. TTR values closer than 1 indicate a higher 
diversity of words in the document, which also 
shows a greater complexity: 

𝑇𝑇𝑅(𝑑) =
#𝑇𝑦𝑝𝑒𝑠

#𝑇𝑜𝑘𝑒𝑛𝑠
. (10) 

Ratio of Stopwords (RSW). For many NLP 
tasks, stopwords are usually uninformative terms 
that represent noise (e.g., the, of, is, are). Based 
on this, we employ the RSW index, which 

measures the overall presence of these terms of 𝑑. 
Formally, the RSW is shown in Eq. (11), where 
𝑆𝑡𝑜𝑝𝑊𝑜𝑟𝑑𝑠(𝑑) is a function that counts the total 

number of stopwords in 𝑑. #𝑇𝑜𝑘𝑒𝑛𝑠 represent the 

length of 𝑑. RSW values near 1 indicate a high 
presence of these terms in 𝑑, representing noise 
and greater complexity: 

𝑅𝑆𝑊(𝑑) =
𝑆𝑡𝑜𝑝𝑊𝑜𝑟𝑑𝑠(𝑑)

#𝑇𝑜𝑘𝑒𝑛𝑠
. (11) 

Ratio of Inflected Words (RIW). Word 
inflection is present in several languages around 
the world. For instance, in English, the word 
organize may be modified into multiple forms (e.g., 
organizing, organization). Therefore, this 
characteristic is essential in determining the 
complexity of terms. In this sense, the RIW is a 
complexity index that measures the proportion of 
inflected words from a document. 

Formally, it is shown in Eq. (12), where 𝑑 
represents the input document, and 
𝐼𝑛𝑓𝑙𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑑𝑠(𝑑) is a function that counts the 
total number of words that belong to some 
derivation. #𝑇𝑜𝑘𝑒𝑛𝑠 represent the number of 

tokens or words of 𝑑. RIW values closer than 1 

indicate many inflected words in 𝑑, meaning 
greater complexity: 

𝑅𝐼𝑊(𝑑) =
𝐼𝑛𝑓𝑙𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑑𝑠(𝑑)

#𝑇𝑜𝑘𝑒𝑛𝑠
. (12) 

Average of Characters per Word (ACW). The 
ACW index measures the mean word length from 
one or more documents [15]. Formally, it is shown 
in Eq. (13), where 𝑑 represents the text document, 

𝑙𝑒𝑛𝑔𝑡ℎ(𝑤𝑖) is a function that counts the number of 

characters for each 𝑖𝑡ℎ word (𝑤𝑖), and 𝑛 represents 

the number of words in 𝑑. This index has been 
widely used for readability assessment since it 
allows for calculating how long the words of a 
document can be. While longer words are included 
in 𝑑, the more complex the document is: 

𝐴𝐶𝑊(𝑑) =
1

𝑛
∑ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑤𝑖)
𝑛
𝑖=0 . (13) 

Average of Words per Sentence (AWS). 
Sentence length is a feature that indicates how 
understandable and readable a sentence can be. 
Therefore, this feature is a helpful indicator of 
complexity in text documents. According to this 
assumption, we define the AWS in Eq. (14), where 
𝑑 represents the text document, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑖) is the 

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2261–2278
doi: 10.13053/CyS-28-4-5291

Jonathan Rojas-Simón, Yulia Ledeneva, René Arnulfo García-Hernándezo2266

ISSN 2007-9737



 

number of words in the 𝑖𝑡ℎ sentence (𝑠𝑖), and 𝑚 is 

the number of sentences in 𝑑. Thus, while AWS 
values are higher, it indicates longer sentences 
in 𝑑: 

𝐴𝑊𝑆(𝑑) =
1

𝑛
∑𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑗)

𝑚

𝑗=0

. (14) 

Automated Readability Index (ARI). The ARI 
measures the degree of readability of text 
documents, considering word and sentence 
lengths [42]. This index is formally shown in Eq. 
(15), where #𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠, #𝑊𝑜𝑟𝑑𝑠, and 

#𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 are the number of characters, words, 

and sentences in 𝑑, respectively. The ARI values 
vary from 0 to 14, indicating the grade level needed 
to comprehend 𝑑: 

𝐴𝑅𝐼(𝑑) = 4.71 (
#𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

#𝑊𝑜𝑟𝑑𝑠
) +

0.5 (
#𝑊𝑜𝑟𝑑𝑠

#𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) − 21.43. 

(15) 

Coleman-Liau Index (CLI). The CLI was 
proposed to gauge the understandability of texts by 
using the number of characters and sentences per 
100 words [43]. Formally, this index is shown in Eq. 
(16), where 𝐿 represents the average number of 
characters per 100 words, and 𝑆 is the average 
number of sentences per 100 words. CLI values 
usually vary from 0 to 17, indicating the degree of 
comprehension of documents: 

𝐶𝐿𝐼(𝑑) = (0.0588 × 𝐿) − (0.296 × 𝑆) − 15.8. (16) 

Word Entropy (𝑯𝒘). According to [44], entropy 
is a measure that calculates the average 
uncertainty of a single random variable. For text 
complexity, Conroy et al. employed entropy to 
measure the complexity of documents at word and 
sentence levels [45]. Particularly, word entropy 
(𝐻𝑤) is calculated according to Eq. (17), where 𝑝𝑖 
represents the probability value for the 𝑖𝑡ℎ term in 

𝑑. The probability of each word is obtained by 

dividing the overall frequency of the term 𝑖 and the 

total number of terms (𝑛): 𝑝𝑖 = 𝑡𝑓𝑖/𝑛. Resultant 𝐻𝑤 
values vary from 0 to 1, where 0 means all words 
have the same lengths, and 1 represents 
the opposite: 

𝐻𝑤(𝑑) = −
1

ln 𝑛
∑ 𝑝𝑖 ln 𝑝𝑖
𝑛
𝑖=0 . (17) 

Sentence Entropy (𝑯𝒔). Also known as 
sentence length uniformity [46], this index is 

calculated the same way as word entropy but 
employs the sum of term probabilities of each 
sentence. That is, it calculates the average 
uncertainty of sentence lengths. The 𝐻𝑠 index is 

shown in Eq. (18), where �̅�𝑗 is the probability value 

of the 𝑗𝑡ℎ sentence, the letter 𝑚 represents the 

number of sentences of document 𝑑, and 𝑛 is the 

number of terms of each 𝑗𝑡ℎ sentence. The 
resultant values of 𝐻𝑠 vary from 0 to 1, where 0 
means a high uniformity of sentences, and 1 
represents the opposite: 

𝐻𝑠(𝑑) =
1

ln𝑚
∑ �̅�𝑗 ln �̅�𝑗
𝑚
𝑗=0 , �̅�𝑗 = ∑ 𝑝𝑖

𝑛
𝑖=0 . (18) 

ROUGE-N-based complexity indexes. As 
explained in Section 3.1, ROUGE-N measures the 
similarity between 𝑆 and 𝐻𝑅 by overlapping n-
grams. Resultant values are expressed in terms of 
Recall (𝑅), Precision (𝑃), and F-measure (𝐹) [9]. 
However, these measures have been used as text 
complexity indexes by estimating the overlap of n-
grams (𝑔𝑛) between the source document (𝑑𝑠𝑟𝑐) 
and a summary that represents the first 𝑊 words 
extracted from 𝑑𝑠𝑟𝑐 (𝑆(𝑊)) [47], as shown in Eqs. 
(19-21): 

𝑅𝑅𝑂𝑈𝐺𝐸―𝑁(𝑑𝑠𝑟𝑐 , 𝑆(𝑊)) =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑛)𝑔𝑟𝑎𝑚𝑛 ∈ 𝐷𝐷 ∈ {𝑑𝑠𝑟𝑐}

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑛)𝑔𝑛 ∈ 𝐷𝐷 ∈ {𝑑𝑠𝑟𝑐}
, 

(19) 

𝑃𝑅𝑂𝑈𝐺𝐸―𝑁(𝑑𝑠𝑟𝑐 , 𝑆(𝑊))

=
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑛)𝑔𝑛 ∈ 𝐷𝐷 ∈ {𝑑𝑠𝑟𝑐}

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑛)𝑔𝑛 ∈ 𝐷𝐷 ∈ {𝑑𝑠𝑟𝑐}
 +  ∑ 𝐶𝑜𝑢𝑛𝑡𝑢𝑛𝑚𝑎𝑡𝑐ℎ(𝑔𝑛)𝑔𝑛 ∈ 𝑆𝐵:𝑓

, (20) 

𝐹𝑅𝑂𝑈𝐺𝐸―𝑁(𝑑𝑠𝑟𝑐 , 𝑆(𝑊)) =
2 × 𝑃𝑅𝑂𝑈𝐺𝐸―𝑁 × 𝑅𝑅𝑂𝑈𝐺𝐸―𝑁

𝑃𝑅𝑂𝑈𝐺𝐸―𝑁 + 𝑅𝑅𝑂𝑈𝐺𝐸―𝑁
. 

(21) 

Based on such equations, resultant values near 
0 indicate that the most essential information is 
dispersed throughout the entire 𝑑𝑠𝑟𝑐, and 1 implies 
the most important information is in the 
first sentences. 

Average Complexity Index (ACI). Besides 
previous indexes, the arithmetic average of all 
indexes has been used in [47] to estimate the 
overall complexity for each source document in the 
DUC01 and DUC02 datasets. Formally, the ACI is 
displayed in Eq. (22), where 𝑑𝑠𝑟𝑐 is the input source 

document, 𝐼𝑛𝑑𝑒𝑥𝑖 is the 𝑖𝑡ℎ complexity index that 

receives 𝑑𝑠𝑟𝑐, and 𝑛 represents the number of 
complexity indexes included: 
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𝐴𝐶𝐼(𝑑𝑠𝑟𝑐) = ∑ 𝐼𝑛𝑑𝑒𝑥𝑖(𝑑𝑠𝑟𝑐)
𝑛
𝑖=0 . (22) 

Furthermore, previous works have employed 
the before-mentioned 12 indexes (𝑛 = 12), which 
were normalized in the range [0 − 1] because it 
allows assigning the same degree of importance to 
each one in the process. 

4 Proposed Method 

In this section, the proposed method is described, 
which is based on the GA to optimize the selection 
of measures derived from ROUGE-C, LSA, and 
SIMetrix methods. 

 Computational Cost 

The selection of evaluation measures involves 
assigning each measure a level of complexity, 
allowing us to determine in what situations an 
evaluation measure should be selected. Therefore, 
it is necessary to obtain a vector of values that 
indicate a selection of appropriate measures 
depending on the text complexity of the source 
document. This vector must consider real values 
between 0 and 1 with five precision digits. Thus, 
there are 10,000 possible values for just one 
measure and 310,000 for 31 measures. Finding a 
balance of these values to improve automatic 
evaluation needs to be addressed by optimization 
techniques, such as the GA. 

 Genetic Algorithm 

The Genetic Algorithm (GA) is one of the most 
used evolutionary techniques in the state-of-the-
art, based on Darwin's natural selection principles 
to solve optimization problems. Like other 
evolutionary techniques, the GA represents the 
solution of a problem through chromosomes [48]. 
The chromosome is a simple data structure whose 
genes represent individual variables of the 
problem, and a set of them depicts a population. 
This population is updated according to genetic 
operators that intend to explore and manipulate the 
abovementioned variables. 

Firstly, the GA generates a random initial 
population of chromosomes. This population is 
then evaluated according to a fitness function, 

which quantifies the degree of suitability of each 
solution. The result of this evaluation is obtaining a 
fitness value per chromosome. As an a priori 
appraisal, some chromosomes may have better 
characteristics than others, which are selected 
through the parent selection operator. 

Once parents are chosen, the crossover 
operator is applied to mix different solution 
characteristics. However, the chromosomes of this 
population usually repeat several characteristics. 
To solve this, the mutation operator is used by 
modifying the minimum parts of chromosomes of 
the population. 

Finally, we obtain a new population of 
chromosomes, evaluated by the fitness function, 
and then reintroduced to the selection, crossover, 
and mutation operators until a stop condition is 
reached (e.g., number of generations). As the GA 
iterates the genetic operators, we obtain better 
solutions to the problem. 

 Proposed Genetic Operators 

Below, it is described what genetic operators were 
used to select content evaluation measures. 
Moreover, we explain the preprocessing steps, 
chromosome encoding, and the fitness function 
used in the GA. 

Preprocessing. Summaries and source 
documents must be preprocessed by eliminating 
stopwords and performing stemming. These steps 
are suggested for each evaluation measure 
because previous studies have demonstrated that 
removing unnecessary words and suffixes may 
improve the precision of evaluation methods [11]. 
The result of applying evaluation measures is 
obtaining scores, which will be used for the 
proposed fitness function. Moreover, source 
documents are computed by all complexity indexes 
described in Section 3.2, bringing the ACI for 
each document. 

Chromosome's encoding. For the proposed 
GA, we employ binary encoding, whose 
chromosome's genes are binary values (1 and 0). 

The length of each chromosome is defined by 
𝑁 segments. Each segment must contain 𝑀 genes, 
as shown in Eq. (23): 
𝑋𝑖(𝑔) = [𝑠1, 𝑠2, … , 𝑠𝑁], 𝑠𝑗
= [𝑋𝑖,1(𝑔), 𝑋𝑖,2(𝑔), … , 𝑋𝑖,𝑀(𝑔)], 𝑋𝑖,𝑘(𝑔) ∈ {0,1}. 

(23) 
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The expression 𝑋𝑖(𝑔) represents each 𝑖𝑡ℎ 

chromosome in the 𝑔 generation. The variable 𝑁 
represents the number of evaluation measures 
involved in the proposed selection; the variable 𝑀 
is used to specify the complexity value (henceforth 
𝐶(𝑎𝑗) = [0 − 1]) and precision for each evaluation 

measure in binary values. Therefore, each 𝑗𝑡ℎ 
segment provides the complexity value for each 

𝑗𝑡ℎ   measure. 

Initial population. Once we have defined the 
chromosome's encoding, we must initialize a 
population of 𝑁𝑝𝑜𝑝 chromsomes. The most usual 

way to initialize such a population (when 𝑔 = 0) is 

by generating random binary values for each 𝑘𝑡ℎ 

gene from each 𝑖𝑡ℎ chromosome (𝑋𝑖,𝑘(0) =

𝑅𝑎𝑛𝑑𝑜𝑚[0,1]). Thus, each gene of each 𝑗𝑡ℎ 
segment must select binary values between 0 and 
1, but the chain of genes of the same segment 
must represent real values between 0 and 1. 

Fitness function. The proposed fitness 
function is based on the formula shown in Eq. (24), 
where 𝑎𝑙𝑗 represents the evaluation score of the 

measure 𝑗 for each 𝑙𝑡ℎ candidate summary. The 𝑗𝑡ℎ 

measure belongs to the set of 𝑁 measures, and it 

is selected if its complexity value (𝐶(𝑎𝑗)) is greater 

than or equal to the ACI calculated from the 
corresponding source document (𝐴𝐶𝐼(𝑑𝑠𝑟𝑐)): 

𝑓(𝑋𝑖(𝑔)) =
1

𝑅
∑ 𝑟𝑚(𝑎𝑙𝑗 , 𝑏𝑙)
𝑅
𝑚=1 , 𝑎𝑗 ∈

{𝑎1, … , 𝑎𝑁}, 𝑎𝑗  𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑓 𝐶(𝑎𝑗) ≥

𝐴𝐶𝐼(𝑑𝑠𝑟𝑐). 

(24) 

Notice that this selection is performed for each 

𝑙𝑡ℎ candidate summary to evaluate. Therefore, we 
seek to maximize the correlation between the 
selection of measures and human judgments (𝑏𝑙), 
considering 𝑅 correlation coefficients, where 𝑟𝑗 is 

the correlation value from the 𝑗𝑡ℎ coefficient. Based 
on 𝑁 as a parameter, we have optimized under the 
Pearson, Spearman, and Kendall coefficients. 

Parent selection. Parent selection operators 
employ the fitness value of chromosomes to select 
and introduce the best ones to the next genetic 
operators. Typically, selection tends to choose 
chromosomes of high fitness, following the 
evolution principle (i.e., if they are crossed, they 
generally produce better offspring). However, 
generated offspring could be worse in some cases. 
Therefore, we have used two genetic operators. 

The first one is called elitism selection, which 

chooses 𝑛𝑒𝑙𝑖𝑡𝑒 chromosomes with the highest 
fitness from the population to pass them to the next 
generation. On the other hand, the remaining 
chromosomes are selected through tournament 
selection, randomly generating 𝑁𝑝𝑜𝑝 − 𝑛𝑒𝑙𝑖𝑡𝑒 

samples of 𝐾𝑇𝑜𝑢𝑟𝑛 chromosomes. Afterward, the 
chromosome with the highest fitness is chosen 
from each sample, obtaining a population 
of parents. 

Crossover. As mentioned in previous studies 
[13], crossover operators perform the genetic 
exchange of chromosomes to obtain better 
offspring. For the proposed GA, we have used the 
uniform crossover. This operator generates 
varying cut points between couples of 
chromosomes to interchange their genes, as 
shown in Fig. 4 

The chromosomes 𝑋𝑝1(𝑔) and 𝑋𝑝2(𝑔) are two 

previously selected parents from the tournament 
selection operator. Both parents are introduced to 
the uniform crossover operator, mixing their genes 
based on cut points to obtain 𝑌𝑝1(𝑔) and 𝑌𝑝2(𝑔). 

Each gene may be selected as a cut point, 
depending on the probability value specified as 
a parameter. 

Typically, this probability is set to 0.5, 
establishing uniform cut points [49]. Furthermore, 
this operator considers an additional parameter 
(𝑃𝑐), determining whether each couple of parents 
crosses their genes. 

Mutation. The mutation randomly selects 

genes from a population of 𝑌𝑖(𝑔) chromosomes, 
replacing their values with other information to 
generate a new population (𝑍𝑖(𝑔)). For the 
proposed GA, we employed the flipping operator, 

which inverts the value of the 𝑚 gene in the 

chromosome 𝑌𝑖(𝑔), according to Eq. (25): 

 

Fig. 4. Uniform crossover 
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𝑍𝑖,𝑚(𝑔) = {
𝑅𝑎𝑛𝑑𝑜𝑚[0,1], 𝑖𝑓 0 < 𝑝𝑚 ≤ 𝑃𝑚

𝑍𝑖,𝑚(𝑔), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (25) 

where 𝑃𝑚 represents the mutation probability in a 

range of [0.0⎼1.0]. Therefore, if the random value 

𝑝𝑚 is in the range (0⎼𝑃𝑚], the following random 
function is applied: 𝑅𝑎𝑛𝑑𝑜𝑚[0,1]. Otherwise, the 

gene 𝑚 is not modified (𝑌𝑖,𝑚(𝑔)). 

In addition to the flipping operator, the 
cataclysmic mutation operator is also included, 
preserving the diversity of chromosomes through 
the restart procedure [50]. This operator is applied 
in the last generation of the GA, selecting the best 
chromosome from such generation. 

Afterward, the remaining chromosomes are 
randomly generated to initialize a new population 
of 𝑁𝑝𝑜𝑝 chromosomes and restart the GA again 

[51]. Considering this procedure, the number of 
restarts (#𝑅𝑠𝑡) is used as a parameter in the 
proposed GA. 

Stop condition. Once the GA has applied the 
genetic operators, it generates a new population of 
chromosomes. However, it requires iterating these 
operators several times to explore the search 
space. Typically, the GA runs until it reaches a 
certain number of generations (𝐺). Thus, we have 

used 𝐺 for the proposed GA. 

5 Experiments and Results 

This section is divided as follows: First, we present 
and describe the datasets used to evaluate 
summaries and select content measures. Second, 
we describe the configuration of evaluation 
measures employed for the proposed method. 
Third, we show the tuning of GA parameters that 
maximizes the correlation between the proposed 
selection of measures and human judgments. 
Fourth, we compare the performance of the 
proposed selection with state-of-the-art evaluation 
measures. Finally, we describe the analysis of the 
obtained results. 

 Datasets 

To evaluate the performance of the proposed 
selection of measures, we have employed the 
DUC01 and DUC02 datasets. Indeed, previous 
studies suggest using these datasets because they 

have been widely used to generate and evaluate 
summaries [2, 3]. The DUC01 dataset contains 
309 newspaper documents written in English, 
which are grouped into 30 collections. Each 
collection comprises 10 documents that address a 
particular topic (e.g., natural disasters, 
bibliographic information, etc.). 

This dataset is commonly used for Single- and 
Multi-document summarization tasks of 100 words, 
leading to ATS systems being evaluated according 
to well-defined criteria. In particular, DUC01 holds 
1776 summaries evaluated using 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑤 as a 
human judgment criterion [52]. 

On the other hand, the DUC02 dataset contains 
567 newspaper documents written in English, 
which are grouped into 59 collections. Each has 
between 5 and 12 documents addressing topics 
such as technology, food, politics, natural 
disasters, finances, etc. Like DUC01, this dataset 
is used for Single- and Multi-document 
summarization tasks of 100 words. In addition, 
DUC02 contains 4107 summaries evaluated 
through Coverage as a human judgment 
criterion [53]. 

 Configuration of Evaluation Methods 

According to the overall description of evaluation 
methods shown in Section “Evaluation Methods 
and Measures”, we have established certain 
parameters from them to generate several 
measures. Below, it is explained the configuration 
of each. 

ROUGE-C. Besides eliminating stopwords and 
performing stemming, it is necessary to specify 
what measures were obtained from ROUGE-C. 
From ROUGE-C-N, we extracted n-grams from 1 
to 5 to generate RC-1, 2, 3, 4, and 5, respectively. 
Furthermore, we employed Longest Common 
Subsequences (LCS) and skip-bigrams to obtain 
RC-L and RC-SU4, respectively. 

LSA. The measures derived from the LSA 
depend on the combination of term-weighting 
formulas proposed in [35]. 

Based on this, 16 measures were generated 
from this method using the MTS (see Section 
“Evaluation Methods and Measures). Table 1 
shows the name of each measure. 

SIMetrix. As mentioned in Section “Evaluation 
Methods and Measures”, the best measures of 
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SIMetrix derive from 𝐷𝐾𝐿 and 𝐷𝐽𝑆 divergences. 

However, we do not consider the 𝐷𝐾𝐿 divergence 
because it is not symmetrical and generates 
nonfinite divergence values. From the 𝐷𝐽𝑆 

divergence, we employed n-grams from 1 to 4 to 
extract different features and generate various 
measures. In addition to this, we used smoothing 
functions to obtain smoothed and non-smoothed 
𝐷𝐽𝑆 divergence measures. In total, eight measures 

were generated, of which four do not use 
smoothed functions (𝐽𝑆1, … , 𝐽𝑆4), and the remaining 

four so (𝐽𝑆―𝑆1, … , 𝐽𝑆―𝑆4). 

 Tuning of GA Parameters 

The GA parameters described in Section 
“Proposed Genetic Operators” are frequently used 
in other studies to adjust the performance of each 
genetic operator. Thus, we adjusted these 
parameters to improve the selection of evaluation 
measures described in the previous section. Table 
2 shows the most representative tunings of GA 

parameters, where each was executed thrice. As 
observed, we have focused on modifying 𝐺 and 
𝑁𝑝𝑜𝑝 to enable more diversification of 

chromosomes. Such modifications vary from 100 
to 500 generations and 100 to 1000 chromosomes. 
On the other hand, we keep similar 𝑃𝑐 values. 

Regarding 𝑃𝑚 and #𝑅𝑠𝑡, minor variations were 
performed across all experiments, since we sought 
to improve intensification for each generation of the 
GA and when the population converged in the last 
generation. Finally, it is worth mentioning that 
𝐾𝑇𝑜𝑢𝑟𝑛 remains with the same value (2) in all 
experiments because this value typically performs 
better in the GA exploration process. 

For each experiment shown in Table 2, training 
and test sets were defined to evaluate the 
performance of the proposed GA under the 
Pearson (P), Spearman (S), and Kendall (K) 
correlations. Nevertheless, DUC01 and DUC02 do 
not explicitly consider both partitions of data. 

Due to this, we have translated the documents 
of both datasets into Spanish using the Google 
Translate API, which is currently available in a 
Python library (https://pypi.org/project/ 
googletrans). After that, the English documents 
were used as a training set to optimize the 
selection of measures, and translated documents 
were used as a test set to evaluate the 
performance of the GA. 

The translation of documents allows us to 
evaluate whether the proposed selection of 
measures is suitable for different languages. It is 
also necessary because neither DUC01 nor 
DUC02 provide enough evaluation data to test the 
proposed method. Previous studies [54] suggest 
translating documents as an alternative that seeks 
to preserve the performance of individual 
evaluation measures when datasets do not provide 
enough human judgment data. 

Table 3 shows the correlation results between 
the proposed GA-based selection of measures and 
human judgments on the DUC01 dataset, 
considering the tuning of GA parameters shown in 
Table 1 and Table 2. 

According to the correlation results shown in 
Table 3, the performance of the proposed selection 
of measures in the English language (training set) 
is improved when we increment 𝐺, 𝑁𝑝𝑜𝑝, and 𝑃𝑚. 

However, the performance of the GA in the test set 
is decreased. In other words, the GA produces 

Table 1. LSA-based measures 

Local 
Global 

FW BW AW LW 

NW LSA-1 LSA-2 LSA-3 LSA-4 

ISF LSA-5 LSA-6 LSA-7 LSA-8 

GF LSA-9 LSA-10 LSA-11 LSA-12 

EF LSA-13 LSA-14 LSA-15 LSA-16 

Table 2. Tuning of GA parameters 

No. 𝑮 𝑵𝒑𝒐𝒑 𝑲𝑻𝒐𝒖𝒓𝒏 𝑷𝒄 𝑷𝒎 #𝑹𝒔𝒕 

1 100 100 2 0.98 0.00175 3 

2 300 800 2 0.98 0.00190 5 

3 100 800 2 0.98 0.00190 3 

4 100 200 2 0.98 0.00175 3 

5 200 200 2 0.98 0.00175 3 

6 200 200 2 0.98 0.00180 5 

7 200 200 2 0.95 0.00190 5 

8 200 500 2 0.90 0.00175 5 

9 200 500 2 0.95 0.00175 5 

10 200 500 2 0.97 0.00175 5 

11 200 500 2 0.98 0.00175 5 

12 200 500 2 0.98 0.00195 5 

13 300 500 2 0.98 0.00175 3 

14 300 500 2 0.98 0.00190 3 

15 300 800 2 0.98 0.00190 3 

16 500 800 2 0.98 0.00190 3 

FW: Frequency Weight, BW: Binary Weight, AW: Augmented 
Weight, LW: Logarithmic Weight, NW: No Weight, ISF: Inverse 
Sentence Frequency, GF: GFidf, and EF: Entropy Frequency. 
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overfitting. Despite this, the best correlations are 
obtained from the parameters of the 5th experiment 

 (𝐺 = 200, 𝑁𝑝𝑜𝑝 = 200, 𝐾𝑇𝑜𝑢𝑟𝑛 = 2, 𝑃𝑐 = 0.98, 𝑃𝑚 =

0.00175, and #𝑅𝑠𝑡 = 3), obtaining 0.4094 on 
average (P: 0.4671, S: 0.4480, and K: 0.3131). 
Even obtaining the highest correlations (as shown 
in the 7th experiment) in the training set does not 
guarantee better performance in the test set. 

However, we noticed higher correlation results 
by incrementing crossover probability and slightly 
reducing mutation probability. Finally, it is 

observed that the remaining experiments show 
lower correlation results. 

Table 4 shows the correlation results between 
the proposed selection of measures and human 
judgments on the DUC02 dataset, considering the 
tuning of GA parameters shown in Table 1. 

Unlike previous correlation results, the best 
correlations are obtained when the parameters of 
the 4th experiment were employed (𝐺 = 100, 
𝑁𝑝𝑜𝑝 = 200, 𝐾𝑇𝑜𝑢𝑟𝑛 = 2, 𝑃𝑐 = 0.98, 𝑃𝑚 = 0.00175, 

and #𝑅𝑠𝑡 = 3), obtaining 0.5640 on average (P: 

Table 3. Correlation results between the proposed selection of measures and human judgments (𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑤) on the 

DUC01 dataset, considering the tuning of GA parameters 

No. 
English (Train) Spanish (Test) 

P S K P S K 

1 0.4910 0.4784 0.3348 0.4675 0.4398 0.3071 

2 0.5110 0.4850 0.3406 0.4287 0.4341 0.3040 

3 0.4981 0.4803 0.3368 0.4624 0.4319 0.3013 

4 0.5017 0.4731 0.3311 0.4390 0.4270 0.2980 

5 0.5044 0.4851 0.3411 0.4671 0.4480 0.3131 

6 0.4969 0.4731 0.3318 0.4585 0.4296 0.3008 

7 0.5175 0.4886 0.3433 0.4502 0.4198 0.2923 

8 0.4805 0.4694 0.3297 0.4569 0.4298 0.2996 

9 0.5058 0.4864 0.3408 0.4492 0.4239 0.2948 

10 0.5093 0.4866 0.3419 0.4654 0.4376 0.3054 

11 0.4999 0.4777 0.3340 0.4463 0.4163 0.2907 

12 0.5048 0.4800 0.3369 0.4435 0.4118 0.2869 

13 0.5018 0.4787 0.3355 0.4561 0.4298 0.3005 

14 0.5044 0.4813 0.3378 0.4476 0.4194 0.2917 

15 0.5006 0.4964 0.3482 0.4118 0.3985 0.2764 

16 0.5030 0.4813 0.3380 0.4440 0.4172 0.2898 

Note: The best results are highlighted in bold. 

Table 4. Correlation results between the proposed selection of measures and human judgments (Coverage) on the 

DUC02 dataset, considering the tuning of GA parameters 

No. 
English (Train) Spanish (Test) 

P S K P S K 

1 0.6467 0.6171 0.4483 0.6396 0.6058 0.4393 

2 0.6469 0.6176 0.4488 0.6385 0.6047 0.4383 

3 0.6449 0.6136 0.4455 0.6412 0.6072 0.4405 

4 0.6443 0.6102 0.4429 0.6409 0.6091 0.4419 

5 0.6481 0.6193 0.4499 0.6257 0.5963 0.4317 

6 0.6466 0.6142 0.4461 0.6271 0.5983 0.4334 

7 0.6459 0.6151 0.4465 0.6363 0.6025 0.4365 

8 0.6483 0.6204 0.4511 0.6346 0.6012 0.4354 

9 0.6479 0.6196 0.4502 0.6221 0.5932 0.4292 

10 0.6439 0.6123 0.4444 0.6211 0.5950 0.4319 

11 0.6462 0.6127 0.4451 0.6323 0.6023 0.4371 

12 0.6465 0.6153 0.4469 0.6305 0.6032 0.4372 

13 0.6462 0.6198 0.4505 0.6320 0.5999 0.4346 

14 0.6467 0.6148 0.4465 0.6257 0.5986 0.4337 

15 0.6457 0.6124 0.4448 0.6326 0.6032 0.4374 

16 0.6503 0.6220 0.4521 0.6281 0.5976 0.4330 

Note: The best results are highlighted in bold. 
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0.6409, S: 0.6091, and K: 0.4419). Moreover, we 
noticed similar results when the parameters of the 
3rd experiment were used, obtaining 0.5630 
on average. 

On the other hand, we have observed that the 
proposed GA reaches higher correlation results in 
the training set when we improve exploration and 
intensification over the next experiments. 
However, the performance in the test set is 
reduced. That is, it produces overfitting. Therefore, 
focusing on exploration over exploitation is 
necessary because while selecting measures 
would be more specific, it is not generalizable. 

Regarding complexity levels of content 
measures, Fig. 5 shows an overall ranking of 
complexity values obtained by the proposed GA to 

state-of-the-art evaluation measures. In particular, 
we have observed that the LSA-2, 7, 14, 3, 10, 1, 
and RC-1 have obtained the lowest complexity 
values in the ranking, which are lower than 0.1.  

This lets us assume that these measures 
evaluate a small portion of summaries because 
their corresponding source documents have 
complexities lower than 0.1. Additionally, the 
following measures have obtained similar 
complexities: RC-4, JS-S4, LSA-13, RC-5, 
and LSA-11. 

On the other hand, we noticed that the SIMetrix 
divergence measures, LSA-6, 5, and RC-L, have 
obtained higher complexity values, which in turn 
may indicate that these measures are more 
frequently selected to evaluate summaries. In 
other words, the complexity values of their 
corresponding source documents have achieved 
similar results. 

Finally, it is worth mentioning that the remaining 
measures have obtained complexities near the 
highest complexity value possible (1.0). This is 
because some measures were selected because 
their source documents obtained similar 
complexities. Moreover, we have noticed that LSA-
4 and LSA-15 were chosen not to evaluate any 
summary. It means that the proposed GA tends to 
exclude some measures, assigning them very high 
or low complexities implicitly. 

From the above results, we have chosen the 
best correlation results (4th and 5th experiment) to 
compare the performance between the proposed 
selection of measures and state-of-the-art 
measures. Table 5 shows this comparison of 
DUC01 and DUC02 datasets translated into 
Spanish. The purpose of such a comparison is to 
highlight the importance of how the proposed 
selection of measures may be affected across a 
different language that is not English. 

Moreover, how individual measures (e.g., 𝐽𝑆1) 
and SECO-SEVA [13] may vary in other 
languages. In addition, we have considered a 
baseline selection of measures (Avg), averaging 
the Pearson, Spearman, and Kendall correlations 
of individual measures to obtain their 
complexity values. 

According to the obtained results, the proposed 
selection of measures has achieved the highest 
Spearman and Kendall correlation results on the 
DUC01 dataset, obtaining 0.4480 and 0.3131, 

 

Fig. 5. Complexity values of the proposed selection 
of measures 
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respectively. Moreover, its performance on the 
Pearson correlation (0.4671) shows closeness to 
the highest result (0.4674). In general, these 
results suggest that the proposed selection 
improves automatic evaluation even if summaries 
and source documents are not in English. 
Moreover, it is worth mentioning that if we only 
consider the baseline approach, the results would 
be far from the best evaluation measures. 

However, the performance of the proposed 
selection of measures is competitive with the best 
measures on the DUC02 dataset, obtaining P: 
0.6409, S: 0.6091, and K: 0.4419. Compared to 
SECO-SEVA and 𝐽𝑆1, it shows proximity on 
Pearson, Spearman, and Kendall correlations. 
Although its performance is lower, it shows more 
stability because all correlations show proximity to 
the best results. 

6 Conclusions and Future Works 

In this paper, we propose a selection of content 
measures to evaluate summaries without human 
references using a Genetic Algorithm (GA). In 
addition, 12 text complexity indexes were used to 
measure source documents' degree of ease or 
difficulty (see Section “Text Complexity Indexes”). 
Moreover, we have proposed a GA that seeks to 
assign complexity values to content measures. 
The employed fitness function measures the 
correlation between the optimized selection of 
measures and human judgments. 

According to the results obtained from several 
experiments, the proposed selection of measures 
achieves the best correlations on the DUC01 
dataset, improving the evaluation of text 

summaries without human references. Despite the 
proposed selection of measures shows lower 
correlations to the best individual measures, it still 
shows competitive performance, showing 
proximity to the highest correlation results. 

This also suggests that the selection of 
measures captures the strengths of several 
individual content measures. For this reason, we 
propose as future work the inclusion of other 
evaluation measures (e.g., MoverScore [55] or 
BERTScore [56]). In addition to this, we seek the 
inclusion of other text complexity indexes that may 
help to measure other aspects of complexity of 
source documents. 

Finally, it is worth highlighting that using other 
GA operators and parameters may improve the 
process of exploration and intensification of the 
GA. Moreover, it would be useful using the 
proposed selection of measures to improve other 
NLP tasks such as ATS, and Text Classification. 
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