
Comparison of Approaches for Querying
Formal Ontologies via Natural Language

Anicet Lepetit-Ondo1,*, Laurence Capus1, Mamadou Bousso2

1 Laval University, Department of Computer and Software Engineering,
Canada

2 Thies University, Department of Computer Science,
Senegal

anicet-lepetit.ondo1@ulaval.ca, laurence.capus@ift.ulaval.ca, mbousso@univ-thies.sn

Abstract. The Semantic Web relies on the use
of ontologies to ensure data sharing, reuse, and
interoperability, thereby representing knowledge
comprehensible to computers.However, querying
ontologies, often performed using the SPARQL
language, becomes a challenge, especially for
non-expert users. Barriers include linguistic challenges
due to syntactic complexity, the need to understand the
underlying ontology structure, potential errors in query
formulation, and difficulty expressing complex queries.
To make knowledge access more user-friendly, this
article explores ontology querying in natural language.
We propose a reflection aimed at guiding future domain
designers in the interrogation of ontologies in natural
language, orienting them in their choice of approach
according to the applications they will develop. The
study relies on the application of Natural Language
Processing (NLP) techniques, integrating tools such
as Owlready2, RDFLIB, Protégé2000, and the Python
programming language to achieve its goals. Three
distinct approaches were evaluated for this purpose.
The first approach, scenario-based, was tested on two
separate ontologies: one related to university concepts
and the other to estate settlement. This approach
demonstrates remarkable adaptability across various
ontologies. However, its effectiveness is closely linked
to the types of scenarios and the specific jargon of
the evaluated domain. The other two approaches,
one based on SPARQL query patterns and the other
on decision tree structure, were evaluated on a
specific ontology, estate settlement. They show robust
performance in terms of result accuracy. Nevertheless,
their effectiveness depends on model training for named
entity detection, node list management, and enrichment

of SPARQL query patterns, operating exclusively within
this particular ontology.

Keywords. Ontology, SPARQL language, natural
language processing, query patterns, decision trees.

1 Introduction

Formal ontologies are used to represent
the knowledge of a domain in a manner
understandable to machines [1]. In this context,
SPARQL stands out as the preferred language for
querying these knowledge representation models
[5]. However, due to its syntactic complexity, it can
prove challenging for individuals inexperienced in
the field to explore all the potential responses that
the ontology could offer.

Therefore, the imperative to exploit these data
sources in natural language becomes a major
challenge to overcome various obstacles, such
as linguistic barriers related to the syntactic
complexity of the language, the need to understand
the underlying structure of the ontology, potential
errors in query formulation, and the difficulty of
expressing complex queries.

In the scope of this study, we examine
three flexible approaches for querying ontological
sources to address this significant challenge. In
the following sections of this article, we will cover
the following aspects.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

ISSN 2007-9737



Fig. 1. Scenario-based approach

First, we will review prior work in this field to
contextualize our contribution. Subsequently, we
will describe our research methodology in detail,
including the tools and techniques employed. We
will then present our results and analyses. Finally,
we will conclude with discussion and perspectives.

2 Related Work

The early studies on SPARQL query generation
primarily focus on manual query creation,
particularly to assess the ability of ontology
systems to cover and infer within a domain, as
evidenced by the seminal works [3, 4].

With the aim of reducing the need for
manual intervention, the researchers turned
their attention to schema-based SPARQL query
generation. These templates function as shells,
i.e., standardized query forms with placeholders to
be filled, as indicated by references [2, 11].

These methods aim to create an intermediate
schematic representation of SPARQL queries.
Following the schema-based query generation
logic, other approaches have been developed to
associate specific keywords with a domain to
create a query model, as described by Zeng et

al. [12]. New ideas for automatic query generation
continue to emerge. For instance,Pradel et al. [8]
describe a process for translating the user’s query,
expressed in natural language, into a SPARQL
query suitable for querying a knowledge graph.

This method involves several steps: first, the
identification of named entities carrying domain
information in the user’s sentence. Next, an
analysis of syntactic dependencies is carried out,
followed by the creation of a pivot query. This pivot
query explicitly expresses the relationships inferred
from the substrings of the user’s query.

Since this pivot query is not directly
understandable by the graph, the final step
involves matching it with predefined query
templates (which are well-structured queries for
querying an ontology) to obtain a list of potential
results for the user’s query. An innovative approach
was presented that integrates the linguistic aspects
of a question with graphical data to optimize the
generation of SPARQL queries [9].

SGPT1 enhances the understanding of natural
language questions by using a generative model
and a stack of Transformer encoders, facilitating

1This abbreviation unveils its full significance when referenced
to source [9]

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Anicet Lepetit-Ondo, Laurence Capus, Mamadou Bousso2058

ISSN 2007-9737



Fig. 2. General architecture of the one approach based on SPARQL query patterns

the injection of additional knowledge into the query
generation process, such as entities. The goal is to
ensure a more precise and thorough generation of
SPARQL queries.

Another approach was proposed to generate
queries following a specific methodology. Initially,
it extracts named entities from the user’s sentence,
then, it constructs a dependency tree [13].

Query generation is based on the relationships
present in the tree, associating each found entity
or predicate with its syntactic equivalent in the
ontology to produce a SPARQL query. Having
reviewed articles in the field addressing similar
approaches, within our framework, we develop
three approaches with distinct goals:

Reducing manual interventions for consulting
ontologies, enhancing schema-based systems
using SPARQL query shell with innovative ideas,
as illustrated by the approaches based on SPARQL
query patterns and the decision tree structure
outlined below, and optimizing more accurate

SPARQL query generation to account for the
various updates a domain may undergo, as
demonstrated by the scenario-based approach.

3 Three Approaches Tested

Querying an ontology in natural language is a
complex task. This process requires the integration
of various language processing techniques, as
well as a language better adapted to ontologies.
Querying involves reconciling a language that is
close to human understanding with one that can
be understood by an ontology. In this section, we
describe three different approaches.

The first approach, based on user query
scenarios, demonstrates how we can automatically
construct a query from the triplets returned by the
ontology, based on the similarity of tokens present
in the user’s question. The second explores
SPARQL query models. This approach highlights

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Comparison of Approaches for Querying Formal Ontologies via Natural Language 2059

ISSN 2007-9737



Fig. 3. General architecture of the approach based on a decision tree structure

a mechanism for extracting a query expressing
the user’s needs from predefined SPARQL query
models. The third approach, based on the decision
tree structure, describes a graph traversal to
reach the potential node containing the information
sought by the user.

3.1 Scenario-based Approach

The approach employed is based on extracting
various triplet scenarios from an ontology to
form a query capable of addressing user needs
expressed in natural language. It aligns partially
with the logic of the work conducted by Zlatareva
and Amin [13]. However, we simplify it by
excluding the identification of named entities and
the dependency tree, because this entails the
need to extensively train our model for each
domain represented, since the effectiveness of this
approach depends heavily on the ability of the
training model to recognize more entities, creating
a dependency on the model’s performance on a
specific dataset. This could also substantially
extend the application time in various domains.
Given that we have a list of sentence tokens, we

instead explore a technique focused on identifying
similar triplets in the ontology.

This approach aims to reduce the potential
impact of a named entity recognition phase, as
the extraction of different triplets already defines
relationships between various entities. At this
stage, we can automatically generate queries from
triplets relevant to the sentence.

It is noteworthy that our approach also shares
some similarities with the work of Rony et
al. [9], which seeks to overcome challenges
related to adding new knowledge to the ontology,
avoiding continuous enrichment of predefined
query models.

This overcomes constraints of predefined
SPARQL query patterns approaches and those
based on the decision tree structure. For a better
understanding of the idea, let’s examine specific
scenarios for querying an ontology in Table 1.

Let: Rg = generated query. To = Similar
triplet(s) extracted from the ontology:

∀t ∈ T0, = {s, p, o} , (1)
{s = subject, p = predicate, o = object}. (2)

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Anicet Lepetit-Ondo, Laurence Capus, Mamadou Bousso2060

ISSN 2007-9737



Let Lo be a list of identified entities (class,
data properties, object properties, and instances)
in To, with:

Co classes identified in To,=
Pdo data properties in To,=
Poo object properties in To,=
Io instances in To.=

We obtained :

Rg = f(Lo). (3)

The approach operates in several phases.
Initially, in the first step, it extracts key tokens from
the user-provided sentence and stores them in a
list. Next, it proceeds to extract triplets from the
ontology using the Owlready2 module developed
by [6], storing them in a set of lists. Finally, it
implements the similarity measurement using the
’fuzz.ratio()’ function,elaborated by Kumari et al.
[7], integrated into the library fuzzywuzzy2.

This function is based on the Levenshtein
algorithm (edit distance),it assesses the similarity
between the character strings present in the
ontology’s triplet lists and the tokens extracted
from the user’s expressed need. To better
understand the process of calculating this distance,
let’s consider the position indices i and j in the
two strings between which we seek to apply
Levenshtein’s distance: Deducting the first two
values by :

d(0, 0) = 0, (4)

d(0, i) = d(i, 0) = i. (5)

And we have the recurrence:

d(i, j) = min


d(i− 1, j) + 1,

d(i, j − 1) + 1 si c(i) ̸= c(j),

d(i− 1, j − 1) si c(i) = c(j).

(6)

Taking into consideration the nomenclature
of entities in our ontology, which includes
class names such as “area of expertise” or
simply “area”,we have implemented a method for
extracting individual words or relevant adjacent

2pypi.org/project/fuzzywuzzy/

words in the context of the ontology using unigram,
bigram, and trigram groupings.

The goal of employing these n-gram models is
to increase the chances of finding similar values
in the dataset, even in the presence of slight
variations in user input. This is primarily aimed at
optimizing similarity search by taking into account
partial matches or adjacent words.

Following the first phase, we obtain one or
more lists of similar triplets extracted from the
ontology. The second phase consists of generating
a SPARQL query. The query generated will depend
on the types of entities present in our list of similar
triplets in our ontology. Figure 1 illustrates the
scenario-based approach to user queries.

3.2 Approach based on SPARQL
Query Patterns

The process begins with a named entity
recognition phase, clarifying the user’s research
domain. Named entities play a crucial role,
preventing misunderstandings and dispelling
confusion between the user’s query and the
associated knowledge domain. We employed
named entity recognition on a corpus of 300 to
500 questions, manually processed using the
Doccano3 software . The data was converted into
JSON format, and a SpaCy 4 model was trained to
recognize entities in user questions.

This approach is based on the principles
outlined by Pradel et al. [8], but we simplify
it by focusing exclusively on the named entities
identified in the user’s query. These entities contain
crucial information regarding the user’s intent. The
main goal is to provide the user with a response
based on their formulated query. To achieve this,
the user’s question undergoes a preprocessing
pipeline to be associated with the corresponding
SPARQL query in the predefined query model.

The question undergoes various preprocessing
steps with SpaCy and NLTK5, including
normalization and named entity recognition.
Then, the construction of extracted token lists
will be performed after these treatments. We

3https://doccano.github.io/doccano/
4realpython.com/natural-language-processing-spacy-python/
5realpython.com/nltk-nlp-python/

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Comparison of Approaches for Querying Formal Ontologies via Natural Language 2061

ISSN 2007-9737



(a) University ontology

(b) Ontology of estate liquidation

Fig. 4. Ontology artefacts

limit ourselves to using named entities without
considering their type. For example, for the named
entity ’Notaire,’ we take the identified value ’notaire’
as the named entity, rather than its type, which
could be ’personne’.

To make this intent understandable for our
ontology, we identified a maximum set of questions
that the ontology could answer. These questions,
often referred to as domain competency questions
[10], were then translated into SPARQL language
and integrated into a Python file.

At this stage, we applied a technique based
on similarity aggregation to predict the most
suitable query class that aligns with the user’s
formulated need. To achieve this, our approach
relies on the similarity between two token lists:
one containing named entities considered as
keywords representing the user’s intent, and the
other based on keywords, particularly the variable
nomenclature in SPARQL queries.

We aggregated the Jaccard similarity6 metric
with the Cosine similarity7, assigning weights to
the measures based on their relative importance
and calculated a weighted average. This is done
to capture a more accurate semantic similarity
between our two lists. We followed this procedure:

– Phase 1: Let A and B be two sets formed from
our lists. We obtain our Jaccard similarity using
the following formula. Similarity of Jaccard:

Jaccard =
A ∩B

A ∪B
. (7)

– Phase 2: Let u and v be two vector
representations formed from our lists. We obtain
our Cosine similarity using the following formula:
The cosine similarity between two vectors u and
v in the FastText embeddings space is given by
cosine similarity:

(u,v) =
u · v

∥u∥ · ∥v∥
, (8)

where · represents the dot product between the
vectors, and ∥v∥ represents the Euclidean norm
of vector v.

– Phase 3: In the end, we obtain our
weighted average:

Final Similarity = w1 · Jaccard Sim + w2 · Cosine Sim (9)

With w1 and w2 being the associated weights,
such that w1 + w2 = 1. After applying this
average, we extract the SPARQL query with a high
similarity value. This query is then executed with
our ontology, and the corresponding response is
sent back to the user. Figure 2 illustrates our
approach based on SPARQL query patterns.
6www.learndatasci.com/glossary/jaccard-similarity/
7www.learndatasci.com/glossary/cosine-similarity/

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Anicet Lepetit-Ondo, Laurence Capus, Mamadou Bousso2062

ISSN 2007-9737



Table 1. Some ontology query scenarios

Type of Question Possible scenarios (SC) SPARQL Queries Generated

Unary questions: Questions
involving a single constraint or
parameter. They generally ask
for the list of instances of a class.

Sc1: Instance values of classes,
we have: RG = f(Co)

SELECT ?Var WHERE{?Var

rdf:type table:Co.}

Binary questions: Questions
involving two constraints or
parameters. They can include
queries with specific property
values or relations
between classes.

Sc2: List of instances of a class
with their respective values in a
specific property. We have:
Rg = f(Co, Pdo)

SELECT ?Var1 ?Var2 WHERE

{?Var1 rdf:type table:Co.

?Var1 table:Pdo1 ?Var2.}

Sc3: An specific instance with a
particular property value. This
corresponds to:
Rg = f(Co, Pdo, Io)

SELECT ?Var1 ?Var2 WHERE

{?Var1 rdf:type table:Co.?Var1

table:Pdo1 ?Var2. FILTER

(?Var1 = table:Io)}

Sc4: The instances of a class
with the specific relationship
they have with the instances of
another class. We have:
Rg = f(Co1, Co2, Poo)

request Sc2(substituting Pdo

by Poo) + UNION {{? Var2

rdf:type table:Co2. ?var2

table:Poo ? Var2.

Sc5: The specific instance of a
class with the specific
relationship it has with the
instances of another class. It
gives us:
Rg = f(Co1, Co2, Poo, Io)

SELECT ? var1? var2 WHERE

{{{{Var1 rdf:type table:Co1. ?

Var1 table:Poo ?Var1. FILTER

(?var1 = table:Io).} }} UNION

{{ ? Var2 rdf:type table:

Co2.?var2 table:Poo ?Var2.

FILTER (?var2 = table:Io).} }}

Ternary Questions: Questions
involving three constraints or
parameters. They can include
queries with two
instance-specific
property values.

Sc6: Obtaining the instances of
a class with two specific property
values. This corresponds to:
Rg = f(Co, Pdo1, Pdo2)

SELECT ?Var1 ?Var2 ?Var3 WHERE

{ ?Var1 rdf:type table:Co.

?Var1 table:Pdo1 ?Var2. ?Var1

table:Pdo2 ?Var3.}

Sc7: Obtaining the two specific
property values of a particular
instance of a class. This
corresponds to:
Rg = f(Co, Pdo1, Pdo2, Io)

request Sc6 FILTER (?Var1 =

table:Io)

3.3 The Approach based on a Decision
Tree Structure

As with the pattern-based approach, we began
with a named entity recognition phase, thereby
clarifying the user’s research domain. This
approach provides a progressive method to

present the problem to the user, moving from
generality to specificity. It allows starting from the
user’s expressed intent in their query to present a
central point of the problem, from which multiple
branches emerge, representing specific ideas that
can be deduced.

Although this approach is inspired by different

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Comparison of Approaches for Querying Formal Ontologies via Natural Language 2063

ISSN 2007-9737



(a) Approach 1

(b) Approach 2

(c) Approach 3

Fig. 5. Evaluation of approaches

methodologies of [2, 11], the schema-based one,
it nonetheless exhibits a very distinctive operation.
Its principle is as follows: we construct a tree
composed of different nodes in the form of
token lists, each representing a subgraph of the
represented domain.

The decisions to be made depend on
pre-defined conditions or criteria based on
the maximum similarity values obtained between
specific entities in the query and the nodes of the
tree. Each branch connecting the nodes to the
maximum similarity indicates the path of decisions
to present to the user.

Just like in the pattern-based SPARQL query
approach, Jaccard and cosine metrics were used
for this purpose, where the output represents a
weighted sum of the obtained similarity scores.
Regarding query generation, we establish a
predefined SPARQL query model representing the
general structure of a formal SPARQL query.

Then, we assign the necessary information to
each node of the graph to complete this structure
so that it can query our ontology. Consequently, the
finalized query output will depend on the selected
node branch. Figure 3 illustrates the approach
based on a decision tree structure.

4 Experiments

To test our approaches and assess their
effectiveness in a real-time user-friendly
environment, we practically implemented them.
Specifically, we utilized a conversational bot based
on Django 8 technology with Python.

Thus, experiments were conducted on two
distinct datasets: one focusing on an ontology
related to the liquidation of an estate, and the other
on a university ontology. This section introduces
the ontology artifacts used to test our approaches
and outlines the various conducted tests.

4.1 Ontology Artefacts

In order to carry out our experiments, it was
essential to test our approaches on a dataset
adhering to the design standards of a formal
ontology describing a specific domain.

To demonstrate the generality of our first
approach, we chose to implement two distinct
ontologies: one focusing on university concepts
and the other on estate liquidation.

8dev.to/documatic/build-a-chatbot-using-python-django-46hb

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Anicet Lepetit-Ondo, Laurence Capus, Mamadou Bousso2064

ISSN 2007-9737



The creation of these two artifacts was
done using the Protégé20009 tool from Stanford
University for graphical ontology creation, as
well as Lamy’s Owlready2 library [6], enabling
the editing of our ontologies using the Python
language. To verify the coherence of our
ontologies, we used the Hemit reasoner integrated
into the Protégé 2000 tool. Our two test ontologies
are illustrated in Figures 4- (a)(b).

4.2 Test and Results

We evaluated our three approaches on two distinct
ontologies using domain-specific competency
questions extracted from forums discussing the
two separate subjects. The results presented
in this section were obtained using the estate
settlement ontology, while the university ontology
was used solely to assess the versatility of our first
approach. The process involved:

For our first approach, we employed a total of 45
questions. Some were reformulated in two or three
different ways, while others were unique. The test
initially involved creating a dataset containing 45
new question reformulations, each associated with
a desired SPARQL query, manually generated.

Then, using these questions, we let the model
automatically generate its own SPARQL queries,
based on its understanding, into a separate JSON
file. Finally, we evaluated both the manually
defined desired queries and those automatically
generated by our approach.

For our second approach, we used a total of
65 questions. Some of these questions were
reformulated in two or three different ways, while
others were unique.

The test involved first manually creating a
test file containing these 65 questions, each
accompanied by its desired SPARQL query. Then,
we let the model generate its own SPARQL
queries into a separate JSON file for different
needs. Finally, we evaluated the model’s ability
to correctly map the right queries across all 65
questions based on the previously established
desired SPARQL queries.

For our third approach, we worked with a total
of 65 questions. Some of these questions were
9protege.stanford.edu/

reformulated in two or three different ways, while
others were unique. The goal of the test was
to evaluate whether each question posed to the
chatbot could be correctly associated with the right
node in our decision tree.

Given that our objective was to assess the
model’s ability to generate an appropriate SPARQL
query or select the correct decision tree node for
the entire set of questions, we utilized recall as the
primary evaluation metric. We also highlight that
the approach employed in designing your ontology
involved defining competency questions to which
our ontology should respond.

With that in mind, we evaluate the returned
responses across the entire set of responses
deemed positive. The results obtained are
presented in Figures 5 (a, b, and c). As an
illustration of how our chatbot effectively responded
to questions, we present in Figure 6(a and b) a few
screenshots of the application.

5 Discussion and Perspectives

Our contribution revolves around several
innovative aspects. Firstly, we have developed
a straightforward method for matching SPARQL
queries to predefined patterns based solely on
named entities extracted from the sentence.
Indeed, these entities already carry the essential
information needed for query extraction, thus
avoiding the complexity of a syntax tree.

Additionally, we propose a dynamic method
for automatically generating SPARQL queries by
extracting named entities from a sentence and
utilizing the syntactic values of keywords returned
by RDF triple lists from the ontology.

This approach allows for flexibility in application
across different ontologies, as the formed queries
are not predefined, thereby offering adaptability to
various knowledge contexts. Lastly, we leverage an
innovative approach that segments a knowledge
domain into a decision tree format, where each
node represents the needs of a subgraph of
knowledge, thus providing intuitive interaction with
knowledge bases.

The results obtained from the tested
approaches are promising, demonstrating very
high precision (Figure 5). The three tested

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Comparison of Approaches for Querying Formal Ontologies via Natural Language 2065

ISSN 2007-9737



(a) Approach 1 (b) Approach 3

Fig. 6. Chatbot test

approaches each have their advantages and
limitations. However, due to the frequent
updates that a knowledge domain may undergo,
the pattern-based and decision tree-based
approaches would take longer to integrate new
updates into the ontology.

Indeed, because of their less adaptable
structures, each new piece of knowledge added to
the ontology would require additional enrichment
of query patterns for the pattern-based approach,
as well as the addition of more nodes to address
new requirements in the case of the decision
tree-based approach.

It is important to highlight that pattern-based
and decision tree-based approaches show a
marked sensitivity to specific elements, such
as model training for accurate named entity

management, and their effectiveness in the context
of a particular ontology.

The significant limitation associated with the
continuous updates that a knowledge domain
may undergo, observed in the two previous
approaches, further underscores the relevance of
the scenario-based approach in this context.

This approach has proven to be perfectly
suited to address questions related to two
distinct ontologies, aligning its responses with
the logic of the scenarios used to validate
our method. In contrast to the pattern-based
SPARQL query approach and the decision
tree-based approach, which focus on a specific
ontology, the scenario-based approach excels
across different ontologies.

Despite the remarkable performance observed
for this approach, its effectiveness is closely tied

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Anicet Lepetit-Ondo, Laurence Capus, Mamadou Bousso2066

ISSN 2007-9737



to the types of scenarios and the specific jargon of
the evaluated domains. Therefore, our goal is to
further refine more complex scenarios to address
more demanding questions, such as those that link
one entity to several others in the ontology.

Our current studies aim to significantly enhance
our approach based on predefined SPARQL query
patterns to automatically generate queries after a
learning phase on new knowledge.

To achieve this goal, we have initiated a series
of tests integrating two Transformers models, T5
and GPT2. This will enable us to perform optimal
classification and generation of the user’s query
formulated in SPARQL language, while minimizing
errors resulting from linguistic variations present in
user queries, thus reducing rigid dependency on
predefined patterns.

6 Conclusion

In our article, the main objective was to test
three approaches designed to facilitate querying
ontologies in natural language. This initiative
stems from the desire to simplify access for
users seeking to explore ontologies, avoiding the
complexity of SPARQL, commonly used to query
these semantic databases. The implementation
of these approaches required the application of
natural language processing techniques.

The approaches we deployed demonstrated
robust performance in terms of result accuracy.
The scenario-based approach stands out for its
ability to query any ontological source, but its
effectiveness heavily depends on the types of
scenarios and the nomenclature of entities present
in the ontology.

On the other hand, the two latter approaches
(pattern-based and decision tree-based)
seamlessly map each question to its corresponding
category in predefined SPARQL query patterns or
the associated node in the tree, respectively.

Whether formulating the question with or
without the use of domain-specific synonyms, they
respectively detect the corresponding query in the
pattern or identify the node where the user will find
the answers to their needs with high precision.

However, their performances are influenced by
factors such as model training for named entity

detection, the list of nodes, and the enrichment
of SPARQL query patterns. Additionally, these
approaches operate within a specific ontology.

It’s worth noting that our article provides
insights to guide future designers in the field
toward querying ontologies in natural language,
helping them choose an approach based on the
applications they will develop.

References

1. Abderrahmane, K. (2017). Développement
d’un environnement pour l’alignement des
ontologies: Une approche à base d’instances.
PhD Thesis, Université Ahmed Ben Bella.

2. Bagan, G., Bonifati, A., Ciucanu, R.,
Fletcher, G. H. L., Lemay, A., Advokaat,
N. (2017). Gmark: Schema-driven generation
of graphs and queries. IEEE Transactions on
Knowledge and Data Engineering, Vol. 29,
No. 4, pp. 856–869. DOI: 10.1109/tkde.2016.
2633993.

3. Guo, Y., Pan, Z., Heflin, J. (2005). LUBM: A
benchmark for owl knowledge base systems.
Journal of Web Semantics, Vol. 3, No. 2–3,
pp. 158–182. DOI: 10.1016/j.websem.2005.
06.005.

4. Haase, P., Mathäß, T., Ziller, M. (2010). An
evaluation of approaches to federated query
processing over linked data. Proceedings of
the 6th International Conference on Semantic
Systems, pp. 1–9. DOI: 10.1145/1839707.
1839713.

5. Lasolle, N. (2022). Un système d’interrogation
flexible pour le Web sémantique: Application
au corpus de la correspondance d’Henri
Poincaré. PhD Thesis, Université de Lorraine.

6. Jean-Baptiste, L. (2021). Ontologies with
python: Programming owl 2.0 ontologies with
python and owlready2. Apress. DOI: 10.1007/
978-1-4842-6552-9

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Comparison of Approaches for Querying Formal Ontologies via Natural Language 2067

ISSN 2007-9737



7. Kumari, V., Godbole, P., Sharma, Y. (2023).
Automatic subjective answer evaluation.
Proceedings of the 12th International
Conference on Pattern Recognition
Applications and Methods, pp. 289–295.
DOI: 10.5220/0011656000003411.

8. Pradel, C., Haemmerlé, O., Hernandez, N.
J. (2013). Passage de la langue naturelle à
une requête SPARQL dans le système SWIP.
24èmes Journées francophones d’Ingénierie
des Connaissances.

9. Rony, M. R. A. H., Kumar, U., Teucher,
R., Kovriguina, L., Lehmann, J. (2022).
SGPT: A generative approach for sparql query
generation from natural language questions.
IEEE Access, Vol. 10, pp. 70712–70723. DOI:
10.1109/access.2022.3188714.

10. Thiéblin, E., Haemmerlé, O., Trojahn,
C. (2021). Automatic evaluation of complex
alignments: an instance-based approach.
Semantic Web, Vol. 12, No. 5, pp. 767–787.
DOI: 10.3233/sw-210437.

11. Unger, C., Bühmann, L., Lehmann,
J., Ngonga-Ngomo, A., Gerber, D.,
Cimiano, P. (2012). Template-based question
answering over RDF data. Proceedings
of the 21st international conference on
World Wide Web, pp. 639–648. DOI:
10.1145/2187836.2187923.

12. Zenz, G., Zhou, X., Minack, E., Siberski, W.,
Nejdl, W. (2009). From keywords to semantic
queries—incremental query construction
on the semantic web. Journal of Web
Semantics, Vol. 7, No. 3, pp. 166–176.
DOI: 10.1016/j.websem.2009.07.005.

13. Zlatareva, N., Amin, D. (2021). Natural
language to SPARQL query builder for
semantic web applications. Journal of Machine
Intelligence and Data Science, Vol. 2, pp.
44–53. DOI: 10.11159/jmids.2021.006.

Article received on 14/04/2024; accepted on 29/06/2024.
*Corresponding author is Anicet Lepetit-Ondo.

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2057–2068
doi: 10.13053/CyS-28-4-5309

Anicet Lepetit-Ondo, Laurence Capus, Mamadou Bousso2068

ISSN 2007-9737


