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Abstract. In dermatological practice, accurate 

identification and classification of skin lesions in various 
skin phototypes are essential for early and effective 
diagnosis. In this context, advances in artificial 
intelligence have highlighted the potential of 
Convolutional Neural Networks (CNNs) as powerful 
tools for generating realistic medical images. This study 
focuses specifically on dermatological image generation 
by applying Style Transfer (ST) of seven skin lesions in 
six skin phototypes (Fitzpatrick scale) using the CNN 
model (VGG19). Once generated, the images are 
evaluated using two metrics: the structural similarity 
index (SSIM) and the Kullback-Leibler (KL) divergence. 
This work aims to improve visual data availability to 
support computer-aided diagnosis. Beyond extending 
the existing dataset with traditional data augmentation 
methods, we seek to enrich the quality and diversity of 
the images generated for each skin phototype. Seven 
hundred clinical images of seven common skin lesions 
were collected from the HAM10000 dataset, and 420 
images were generated with the VGG19 model. 
Malignant and benign skin lesions were classified using 
the EfficienNet B0 and B1 models. The results suggest 
that the ST technique can be applied as an alternative 
method for diversifying skin phototypes in the 
HAM10000 data set. 

Keywords: Style transfer, skin phototypes, skin lesions, 

VGG19 model, EfficientNet, evaluation metrics. 

1 Introduction 

Understanding skin lesions is fundamental to 
diagnosing and treating numerous dermatological 
conditions, which fall into two broad categories: 
primary and secondary. Primary lesions emerge on 
previously healthy skin and are the first indication 
of pathology. They can arise from various internal 

causes, such as hormonal imbalances and 
allergies, or external causes, such as exposure to 
infectious agents. In contrast, secondary lesions 
result from the evolution or transformation of 
primary lesions. They may develop as a natural 
consequence of the progression of a lesion or due 
to external factors such as trauma, secondary 
infections, or even the patient's self-interventions. 
Physical examination alone is often insufficient to 
diagnose the lesion accurately, so it is necessary 
to perform complementary tests, including 
dermatological imaging. 

However, the quality of these images is strongly 
influenced by acquisition conditions, which can 
impact dermatologic diagnosis and the pre-
accuracy of computer-aided diagnostic systems. In 
addition, the public images currently available are 
limited to a specific population, which creates a 
bias in representing the wide variety of skin types 
and skin tones of a people group. The style transfer 
algorithm has emerged as a powerful tool to 
address texture problems, allowing the 
standardization of images. This study implements 
the VGG19 algorithm based on style transfer 
published by Leon A. Gatys [5] using CNNs. The 
CNN approach synthesizes textures from the 
original images while preserving their semantic 
content. The resulting images are evaluated using 
the Kullback-Leibler (KL) divergence and the 
Structural Similarity Index (SSIM) metrics. These 
evaluations demonstrate that the results obtained 
with these algorithms are promising. Fig. 1 
provides a graphical summary to help understand 
the implemented style transfer technique.  

The contribution of this research is based on 
two main points: 
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1. Generating images of dermatological lesions 
according to six different skin phototypes. 

2. Evaluating the produced images to assess 
their similarity and divergence from the 
original images. 

The rest of this investigation is structured as 
follows. Section 2 introduces the necessary 
background to understand this research. Section 3 
reviews related work. Section 4 details the 
proposed methodology. Section 5 presents the 
experimental study and discusses the results. 
Finally, Section 6 provides the conclusion and 
suggests paths for future research. 

2 General Background 

2.1  Deep Learning 

This work employs deep neural networks 
composed of processing units called artificial 
neurons or nodes [11]. A Convolutional Neural 
Network (CNN or ConvNet) is a network 
architecture that learns directly from data. They 
help identify image patterns to recognize objects, 
classes, and categories. In addition, they can be 
very effective for classifying audio, signal, and time 
series data. CNNs generally consist of input, 
output, and several hidden layers. They can have 
tens or hundreds of layers. Filters are applied to 
the training image at different resolutions, and the 
resulting output is used as input for the next layer. 
The three most common layers are convolution, 
activation or ReLU (Rectified Linear Unit), and 
clustering layers. Convolution applies a set of 
convolutional filters to the input data; each filter 
activates different features of the images. ReLU 
keeps positive values and sets negative values to 
zero, allowing faster and more efficient training. It 
is also known as activation since only activated 
features proceed to the next layer. Finally, 
clustering simplifies the output by nonlinear 
reduction of the sampling rate, which reduces the 
number of parameters the network must learn. 
These operations are repeated on tens or 
hundreds of layers; each layer learns to identify 
different features [2]. The convolution operation is 
a process in which a group of pixels is taken from 
the input image, and a scalar product is performed 

with a kernel; mathematically, a convolution of two 
functions, f, and g, is defined as: 

(f*g) (i) =∑ 𝑔(𝑗) .  𝑓(𝑖 − 𝑗 +
𝑚

2
)

𝑚

𝐽=1
, (1) 

where f y g are two functions; f is the input function, 
and g is the kernel. i is the index at which the 
convolution is being evaluated. m is the length of 
the convolution kernel. The symbol * denotes the 
discrete convolution operation. The summation ∑ 
is performed over the index J from 1 to m. The 

expression 𝑔(𝑗) .  𝑓(𝑖 − 𝑗 +
𝑚

2
)within the summation 

is the value of the function f at the index  𝑖 − 𝑗 +
𝑚

2
. 

2.2 Image Evaluation Metrics 

An image evaluation metric is a technique used to 

measure the quality and similarity between two 

images. They are essential for evaluating the 

accuracy and efficiency of image processing 

algorithms, such as segmentation and 

classification. Some image evaluation metrics 

include structural similarity index (SSIM), Kullback-

Leibler divergence (KL), peak signal-to-noise ratio 

(PSNR), and mean squared error (MSE). Each 

metric has advantages and disadvantages, and 

choosing the appropriate metric for the task at 

hand is essential. For example, the (SSIM) metric 

is used to evaluate the quality of compressed 

images. At the same time, the (KL) helps compare 

probability distributions; the (PSNR) and (MSE) 

metrics are commonly used to evaluate the 

accuracy of segmentation and 

classification algorithms. 

Structural Similarity Index (SSIM). Structural 

Similarity Index (SSIM) is a metric used in image 

processing to evaluate the quality and similarity 

between two images, Wang Z. et al. [16]. It was 

proposed by [16] in 2002 as an improvement of the 

Universal Image Quality Index (UIQI) metric, which 

had only first and second-order statistics of the 

original and distorted images. It is considered an 

unstable metric and does not correlate well with 

subjective evaluation, which led Wang & Bovik to 

propose the Structural Similarity Index (SSIM) as 

an improvement. 
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The SSIM is calculated by dividing the original 
and distorted images into blocks of size 8 x 8, 
converting them into vectors, and calculating the 
images mean, standard deviation, and covariance. 
The comparison of luminance, contrast, and 
structure based on statistical values is calculated 
using the metric (UIQI). The formula (2) gives the 
measure of the structural similarity index between 
the images a and b:  

𝑆𝑆𝐼𝑀 (𝑎, 𝑏) =  (2μaμb +  C1)(2σaσb 

+  C2)((μ2a +  μ2b      

+  C1)(σ2a +  σ2b +  C2)), 

(2) 

where μa y μb are the means of the images a and b, 

σa and σb are their standard deviations, and σab 

is the covariance between the images a and b. The 

constants C1 and C2 are used to avoid division by 

zero and stabilize the calculation. SSIM is 

considered a stable metric. 

Kullback-Leibler Divergence (KL). The Kullback-
Leibler (KL) divergence [17] is a metric used to 
calculate the difference between two probability 
distributions. It measures the amount of 
information lost when one distribution is used to 
approximate another and is applied in several 
areas, such as machine learning and information 
theory. The formula for the Kullback-Leibler 
divergence is as follows: 

DKL  (𝑃 || 𝑄) =  ∑ 𝑃(𝑥) 𝑙𝑜𝑔 (𝑃(𝑋)
𝑄(𝑥)

)
 

  𝑥 € 𝑋 
. (3) 

In this equation, P and Q are the probability 
distributions to be compared. The Kullback-Leibler 
divergence is used in various applications, such as 
detecting biases in data, comparing machine 
learning models, and assessing the quality of 
estimates. In addition, it can be used to define 
other metrics, such as the Jensen-
Shannon distance. 

3 Related Work 

In texture transfer, the goal is to synthesize a 
texture from a source image while constraining 
texture synthesis to preserve the semantic content 
of a target image. For example, Efros and Freeman 
[4] introduce a correspondence map with target 
image features, such as image intensity, to 

constrain the texture synthesis procedure. 
Hertzman et al. [5] use image analogies to transfer 
texture from a stylized image to a target image. 
Ashikhmin [6] focuses on transferring high-
frequency texture information while preserving the 
scale of the target image. Lee et al. [7] improve this 
algorithm by additionally informing texture transfer 
with edge orientation information. Convolutional 
Neural Networks trained with sufficient labeled 
data on specific tasks, such as object recognition, 
have been shown to learn to extract high-level 
image content in generic feature representations 
that are generalized across datasets (J. Donahue 
et al. [8]) and even to other visual information 
processing tasks (M. Kümmerer et al. [9]), and 
texture recognition (M. Cimpoi et al. [10]). In this 
paper, we explore using generic feature 
representations learned by convolutional neural 
networks (CNNs) to process both content and style 
of images. We implement the neural network-
based algorithm with the VGG19 architecture, 
according to the work of L. A. Gatys et al. [11], to 
perform style transfer. 

On the other hand, Wang Z. et al. [16] 
introduced an alternative, complementary 
framework for quality assessment based on the 
degradation of structural information. They 
developed a structural similarity index as a specific 
example of this concept. They demonstrated that 
human visual perception is highly adapted to 
extracting structural information from a scene 
through intuitive examples and comparing 
subjective ratings and state-of-the-art objective 
methods on a compressed image database. 
Likewise, Kullback and Leibler [17] developed a 
non-symmetric measure of the similarity or 
difference between two probability distribution 
functions. The divergence is not a distance metric; 
it is not symmetric and is a particular case of a 
broader class of divergences. It was introduced as 
a directed divergence in two distributions and can 
be derived from the Bregman divergence. This 
paper explores using generic feature 
representations learned by convolutional neural 
networks (CNNs) to process images' content and 
style. An algorithm based on the VGG19 neural 
network is implemented to perform style transfer, 
and two evaluation metrics, SSIM and KL, are 
applied to test the similarity and divergence of the 
produced images. Finally, malignant and benign 
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skin lesions were classified using the EfficienNet 
B0 and B1 models. This approach combines a 
CNN-based parametric texture model with a 
method to invert the image representation, which 
allows for effective style fusion. This model not only 
stands out as an effective pre-processing strategy 
for deep learning-based applications but also has 
the potential to significantly improve the visual 
diagnosis performed by dermatologists in skin 
lesion analysis. 

4 Methodology 

4.1 Dataset 

The HAM10000 database [13] is a fundamental 
reference in dermatology and computer vision, 
widely used to research and develop skin disease 
detection algorithms. This database contains high-
resolution dermatoscopic images, including benign 
and malignant skin lesions. For this particular 
study, 700 images were carefully selected. They 

are evenly distributed (100 for each type of lesion), 
covering the seven most common classes of 
lesions: Actinic keratoses (AKIEC), basal cell 
carcinoma (BCC), benign keratosis-like (BKL), 
dermatofibroma (DF), melanoma (MEL), 
melanocytic nevu (NV) and vascular lesions 
(VASC). These images were primarily collected by 
the ViDIR Group of the Department of Dermatology 
at the Medical University of Vienna and by the 
Australian Skin Cancer Bureau, specifically the 
University of Queensland Medical School. 

4.2 Skin Phototypes According to the 

Fitzpatrick Scale 

The Fitzpatrick scale is a skin classification system 

developed by dermatologist Thomas Fitzpatrick in 

1975 [14]. This scale is based on the skin's 

response to sun exposure and the amount of 

melanin Fig. 1. It classifies skin into six phototypes, 

from phototype I (light skin that always burns and 

never tans) to phototype VI (very dark skin that 

never burns and always tans, producing a dark 

brown tone). This work used six shades 

representing the six skin phototypes to create the 

styled images. Figure 2 presents the images with 

the shades of the six phototypes. 

4.3 Image Style Transfer using CNN 

Style transfer, an artificial intelligence technique 
based on convolutional neural networks (CNNs), is 
a process where a new image (output image) is 
created from two input images (a content image 
and a style image) using the style transfer 
algorithm [11]. This algorithm extracts structural 
features from the content image, such as edges or 
general shape, while it extracts information, such 
as texture or color, from the style image. This 
information is combined to generate the new 
output image, blending both input images. In 
dermatology, style transfer is used to enhance 
image quality and standardization. Both 
techniques, in turn, can profoundly impact 
diagnostic accuracy, ensuring more precise 
diagnoses and the efficiency of diagnostic support 
systems, enabling faster and more effective patient 
care. Previously, these algorithms required 
significant computational power. However, they 

 

Fig. 1. Skin Phototypes According to the Fitzpatrick 

Scale [14] 

 

Fig. 2. Shades of the six phototypes for human skin 
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have become more accessible and do not require 
excessive computational cost. The most critical 
hyperparameters and parameters of the transfer of 
estimate are shown in Table 1. 

Style and content features are generated using 
a VGG19 network. This network consists of 
multiple convolutional and clustering layers that 
learn hierarchical representations of the visual 
features in the images. Activations are extracted 
from the intermediate convolutional layers of the 
network to create style features. These activations 
represent texture and style patterns present in the 
reference style image.  

On the other hand, activations are extracted 
from a specific convolutional layer that captures 
high-level semantic information in the network to 
generate content features. This layer is generally 
located near the network output, where the 
activations represent abstract images. Once the 
style and content features have been extracted 
from the images, they are used to compute the 
Gram matrices of the style and content layer 
activations. These matrices capture the statistical 
correlations that combine a reference style image 
with a reference content image. 

The loss functions used are the style and 
content loss functions. Lstyle loss is calculated by 
comparing the Gram matrices of the style layer 
activations between the generated and the 
reference style images. The style loss function is 
defined as the difference between the Gram 
matrices of the style layer activations of the 
generated image and the reference style image.  

The goal is to minimize this difference so that the 
generated image is styled similarly to the reference 
style image. The content loss Lcontent is calculated 
by comparing the activations of a content layer 
between the generated image and the reference 

content image. The content loss function is defined 
as the difference between the activations of the 
content layer of the generated image and the 
reference content image. The objective is to 
minimize this difference so that the generated 
image retains the semantic content of the 
reference image. 

These losses are combined in a loss function:   

𝐿_𝑡𝑜𝑡𝑎𝑙 =  𝛼𝐿_𝑐𝑜𝑛𝑡𝑒𝑛𝑡 +  𝛽𝐿_𝑠𝑡𝑦𝑙𝑒, (4) 

where:    Ltotal       is the total loss, Lcontent    is the 
content loss, Lstyle  is the style loss, α   is a weight 
parameter (tends to 1), and β is a weighing 
parameter (tends to 0). 

This loss function is minimized using 
optimization algorithms such as stochastic gradient 
descent (SGD). By minimizing this loss function, 
the optimization algorithm adjusts the pixels of the 
generated image so that both the style and the 
content resemble the reference images. The 
formulas used in the context of the style transfer 
algorithm to optimize a generated image so that it 
matches both content and style to a reference 
image are as follows: 

𝐿_𝑠𝑡𝑦𝑙𝑒 =  ∑ 𝑊𝑙 𝐸𝑙, (5) 

𝐿_𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =  ∑ (𝐹𝑙 −  𝑃𝑙 )², (6) 

𝐿_𝑡𝑜𝑡𝑎𝑙 =  𝛼 𝐿_𝑐𝑜𝑛𝑡𝑒𝑛𝑡 +  Ꞵ 𝐿_𝑠𝑡𝑦𝑙𝑒.  (7) 

These formulas calculate the losses. The style 
loss equation (5) focuses on capturing the style 
characteristics of the reference image. Meanwhile, 
the content loss equation (6) focuses on 
maintaining the essential content of the original 
image. The total loss equation (7) combines both 
to guide the optimization process toward a final 
image that achieves the desired balance between 
content and style.  

In Figure 3, an example of the result of applying 
the style transfer algorithm to a skin lesion image 
(dermatofibroma) with a phototype I is presented. 

Algorithm 1 shows the pseudocode describing 
the style transfer process using the method 
proposed by [5], implemented in this work. 

Algorithm 1    Style transfer  

1: Image pre-processing ▷ Loads the content 

and style images to start processing 
 

Table 1. Hyperparameters and parameters 

Hyperparameters Parameters 

Number of layers of 
filters: 19 

Kernel size: 3 x 3 

Epochs: 50 

Learning rate: 1e-2 

Value of alpha α: 1 

Activation function: ReLU 

Image size: 512 * 512 

Max pooling: 2 x 2 

Value of beta β: 1e-4 

Optimizer: SGD 
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2: Initialisation of the generated image ▷ 

Initialises the image by combining 

3: Feature extraction ▷ Extracts features from 

the style and content images using the 
VGG19 architecture. 

4: Optimization loop ▷ Iterates a specified 

number of times to optimize the generated image. 

a: Forward propagation ▷ Feature computation 

b: Loss calculation ▷ Calculates the losses of 

the input images. 

c: Back-propagation ▷ Back propagates total 

losses to adjust network weights. 

d: Update generated image ▷ Update the image 

using the gradient 

5: Post-process the generated image ▷ Make 

adjustments to improve the visual quality of 
the image. 

 

5 Experimental Study 

5.1 Key Elements of the Method 

Key elements of the method are described 
as  follows: 

Dataset Selection: The HAM10000 dataset, 
widely used in dermatology and computer vision, 
collected 70 clinical images of seven common 
skin lesions. 

Neural Network Model used (VGG19): The 
VGG19 convolutional neural network model was 
employed for dermatological image generation of 
skin lesions. This architecture is known for its 
efficiency in extracting visual features from images.  

Style Transfer: The technique based on the 
algorithm proposed by Leon A. Gatys was 
implemented using convolutional neural networks. 
This technique allows combining the content of one 
image with the style of another, thus generating 
new images that preserve structural 
and  characteristics. 

Image Pre-processing: Before applying for the 
style transfer, images were pre-processed to 
adjust to the appropriate size and format for the 
VGG19 model. 

Hyperparameter Optimization: The style transfer 
algorithm's hyperparameters, such as image size, 
optimizer, learning rate, and number of epochs, 
were adjusted to obtain optimal results.  

Evaluation of Generated Images: Image 
evaluation metrics, such as Structural Similarity 
Index (SSIM) and Kullback-Leibler (KL) 
Divergence, were used to measure the quality and 
similarity between the generated images and the 
reference images.  

Classification of Skin Lesions:   Malignant and 
benign skin lesions were classified using the 
EfficientNet B0 and B1 models. 

Results and Analysis: The results obtained by 
applying the style transfer algorithm to different 
types of skin lesions and skin phototypes were 
presented. In addition, the results were analyzed in 
terms of the evaluation metrics used. 

These elements constitute the primary 
methodology of the study and hopefully provide a 
better understanding of how the style transfer 
technique was applied. 

5.2 Retrained Architectures 

Seventy representative images of seven benign 
and malignant skin lesions were selected equally 
from the HAM10000 dataset. These images were 
distributed into seven sets, each comprising ten 
images corresponding to the seven most common 
skin lesions.  

The style transfer algorithm (CNN) was 
implemented during this stage using the VGG19 
architecture. Finally, two evaluation metrics, SSIM 
and KL, were applied. 

 

Fig. 3. Style transfer using a CNN and the 
VGG19 architecture 
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4(a) 

 

Structural Similarity Index (SSIM) 

ISIC_0030555 (df) % Similarity 

 Phototype I 70% 

 Phototype II 70% 

Original Phototype III 72% 

 Phototype IV 79% 

 Phototype V 81% 

 Phototype VI 67% 

Kullback-Leibler Divergence (KL) 

ISIC_0030555 (df) # Kullback-Leibler 

 Phototype I 0.004365028 

 Phototype II 0.004370869 

Original Phototype III 0.007321706 

 Phototype IV 0.003406945 

 Phototype V 0.00253431 

 Phototype VI 0.009104976 

 

4(b) 

 

Structural Similarity Index (SSIM) 

ISIC_0032692 (vasc) % Similarity 

 Phototype I 83% 

 Phototype II 81% 

Original Phototype III 78% 

 Phototype IV 76% 

 Phototype V 82% 

 Phototype VI 65% 

Kullback-Leibler Divergence (KL) 

ISIC_0032692 (vasc) # Kullback-Leibler 

 Phototype I 0.004321001 

 Phototype II 0.006010112 

Original Phototype III 0.013061916 

 Phototype IV 0.028637263 

 Phototype V 0.018409639 

 Phototype VI 0.082019384 

 

4 
(c) 

 

Structural Similarity Index (SSIM) 

ISIC_0034540 (nv) % Similarity 

 Phototype I 64% 

 Phototype II 64% 

Original Phototype III 65% 

 Phototype IV 67% 

 Phototype V 68% 

 Phototype VI 48% 

Kullback-Leibler divergence (KL) 

ISIC_0034540(nv) # Kullback-Leibler 

 Phototype I 0.003121713 

 Phototype II 0.00353262 

Original Phototype III 0.005296909 

 Phototype IV 0.001632994 

 Phototype V 0.001356791 

 Phototype VI 0.007845924 

 

 Fig. 4 (a-c). Applicatoin of VGG19 style transfer 
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4(d) 

 

Structural Similarity Index (SSIM) 

ISIC_0035196 (mel) % Similarity 
 Phototype I 64% 

 Phototype II 64% 

Original Phototype III 63% 

 Phototype IV 68% 

 Phototype V 69% 

 Phototype VI 48% 

  

Kullback-Leibler divergence (KL) 

ISIC_0035196 (mel) # Kullback-Leibler 
 Phototype I 0.020066526 

 Phototype II 0.020634282 

Original Phototype III 0.030157181 

 Phototype IV 0.015944848 

 Phototype V 0.007044723 

 Phototype VI 0.048140983 
 

4(e) 

 

Structural Similarity Index (SSIM) 

ISIC_0035450 (bcc) % Similarity 
 Phototype I 75% 

 Phototype II 75% 

Original Phototype III 76% 

 Phototype IV 79% 

 Phototype V 80% 

 Phototype VI 66% 

  

Kullback-Leibler divergence (KL) 

ISIC_0035450 (bcc) # Kullback-Leibler 
 Phototype I 0.006133231 

 Phototype II 0.007218897 

Original Phototype III 0.011248598 

 Phototype IV 0.003655802 

 Phototype V 0.002898504 

 Phototype VI 0.086185315 

 

4(f) 

 

Structural Similarity Index (SSIM) 

ISIC_0034675 (bkl) % Similarity 
 Phototype I 84% 

 Phototype II 84% 

Original Phototype III 86% 

 Phototype IV 87% 

 Phototype V 87% 

 Phototype VI 57% 

  

Kullback-Leibler divergence (KL) 

ISIC_0034675 (bkl) # Kullback-Leibler 
 Phototype I 0.003315362 

 Phototype II 0.002782388 

Original Phototype III 0.00229128 

 Phototype IV 0.000838517 

 Phototype V 0.000726395 

 Phototype VI 0.009796556 

Fig. 4 (d-f). Cont. 

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 551–562
doi: 10.13053/CyS-29-2-5570

Nohemí Sánchez-Medel, Victor Romero-Bautista, et al.558

ISSN 2007-9737



5.3 Implementation of Style Transfer Algorithm 

Fig. 3 shows the result obtained by applying the 
VGG19 style transfer algorithm in skin phototype I 
and the results of the evaluations generated by the 
two metrics applied to seven different skin lesions. 

5.4 Results of Style Transfer Algorithm and 
Evaluation Metrics 

Figs. 4a to 4g show the results obtained by 
applying the VGG19 style transfer algorithm to 
seven images corresponding to seven skin lesions 
in six different skin phototypes and the results of 

the evaluations generated by the two metrics 
applied to seven different types of skin lesions. 

5.5 Classification of Phototype VI Skin Lesions 
using the EfficientNet Model 

Images corresponding to phototype VI were 
generated to classify skin lesions. They were 
equally distributed between malignant and benign 
lesions of the most common classes, such as 
Actinic Keratosis (AK), Benign Keratosis (BKL), 
Basal Cell Carcinoma (BCC), Seborrheic Keratosis 
(SK), Carcinoma (C), Dermatofibroma (DF) and 
Melanoma (MEL).  

4(g) 

 

Structural Similarity Index (SSIM) 

ISIC_0031211 (akiec) % Similarity 
 Phototype I 77% 

 Phototype II 77% 

Original Phototype III 77% 

 Phototype IV 81% 

 Phototype V 83% 

 Phototype VI 56% 

  

Kullback-Leibler Divergence (KL) 

ISIC_0031211 (akiec) # Kullback-
Leibler 

 Phototype I 0.00851994 

 Phototype II 0.007704469 

Original Phototype III 0.01093089 

 Phototype IV 0.001667059 

 Phototype V 0.001089583 

 Phototype VI 0.007222013 

 

Fig. 4 (g). Cont. 

 

Fig. 5. This figure shows the most common skin lesions: (A) Dermatofibroma (df), (B) Melanoma (mel), (C) 

Benign keratosis (bkl), (D) Melanocytic nevu (nv), (E) Basal cell carcinoma (bcc), and (F) Vascular lesion 
(vasc) 

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 551–562
doi: 10.13053/CyS-29-2-5570

Style Transfer Technique for Dermatological Imaging of Skin Lesions in Various Phototypes 559

ISSN 2007-9737



One hundred forty images were generated from 
the HAM10000 dataset using the style transfer 
technique implemented in this work, thus obtaining 
a new brown skin database, PhotoVI BS.  

The following figure, Fig. 5, shows images of 
the most common skin lesions in the 
HAM10000  dataset. 

5.6 Result of Classification of Skin Lesions 
by CNN 

The following table (Table 2) shows the values 
obtained and the plot of the accuracy measure. A 
new database was generated by applying the style 
transfer (ST) technique, specifically phototype VI 
(PhotoVI BS). Some examples of this new dataset 

Table 2. Results of the classification 

Databases Model CNN 
Epochs 

30 100 500 1000 1500 2000 5000 

HAM 
10000 

EfficientNet 
B0 

55.00% 40.00% 69.00% 65.00% 65.00% 70.00% 68.75% 

PhotoVI 
(BS) 

EfficientNet 
B0 

64.28% 67.85% 71.42% 71.42% 57.14% 60.71% 67.85% 

HAM 
10000 

EfficientNet 
B1 

43.75% 75.00% 68.75% 56.25% 68.75% 50.00% 68.75% 

PhotoVI 
(BS) 

EfficientNet 
B1 

57.14% 64.28% 60.71% 71.42% 64.28% 75.00% 67.85% 

 

 

Fig. 6. Skin lesions (PhotoVI BS). 
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are shown in Figure 6. We used 140 images from 
the HAM10000 and PhotoVI BS datasets, equally 
distributed between malignant and benign 
categories, with 70 images in each category (the 
number of images is reduced to facilitate training 
without excessive use of computational 
resources). The images were divided into training 
and validation sets, with a 90% and 10% ratio, 
respectively. At this stage of the work, the two 
models used (EfficientNet B0 and B1) were 
retrained and adjusted. 

It can be observed that the best value obtained 
in the HAM10000 database (white skin) using the 
EfficientNet B0 model was 70% with 2000 epochs, 
while for the PhotoVI BS database, it was 71.42% 
with 500 and 1000 epochs, respectively. 
Furthermore, for the EfficientNet B1 model, the 
HAM10000 database obtained 75% with 100 
epochs, equaling PhotoVI BS with the same value 
but with 2000 epochs. These results show that it is 
possible to classify skin lesions in dark skin 
(phototype VI) using our PhotoVI BS database. 

5.7 Final Remarks 

This work has shown that skin phototypes are 
essential as they significantly influence the 
accuracy of dermatological lesion analysis. The 
reasons can be diverse, such as the amount of 
training data, the contrast of the lesions, the 
illumination at the imaging time, and the model's 
generalization. For phototype V, which represents 
a more common skin tone in Mexico, the model has 
been trained more effectively due to the availability 
of a significant amount of training data. However, 
the model has difficulty distinguishing between the 
different classes for phototype VI, which has fewer 
common features in the dataset and shares 
similarities with other classes, such as color, 
texture, and borders. This resulting confusion 
contributes to lower accuracy in skin lesion 
classification for phototype VI compared to 
phototype V. 

6 Conclusion 

This study demonstrates the feasibility of using 
convolutional neural networks (CNN), specifically 
the VGG19 architecture, to perform style transfer.  

Also, the study demonstrates the outstanding 
performance of the proposed approach. An 
essential part of this work was the application of 
similarity and divergence evaluation metrics, which 
allowed us to assess the technique's effectiveness 
accurately. These metrics revealed positive 
results, demonstrating that Style Transfer 
enhances and standardizes images, synthesizes 
textures, and preserves the original content, thus 
generating consistent, high-quality images. In 
addition, Style Transfer was found to facilitate 
image analysis, which is important because, in 
dermatological diagnostics, image quality and 
clarity are essential for accurate assessment. Style 
transfer is a promising technique to improve image 
generation quality, and applying evaluation metrics 
to these images will undoubtedly be crucial to 
validate their performance. These metrics need to 
be further explored and refined to ensure 
reliable evaluations.  

7   Future Work 

For future research, it is suggested that other 

neural network architectures be included in 

addition to the one analyzed in this study. 

Evaluating color consistency techniques with other 

metrics and on different data sets is recommended 

to compare and evaluate their performance. 

References 

1. Qamar, R., Ali Zardari, B. (2023). Artificial 
Neural Networks. Mesopotamian Journal of 
Computer Science, Vol. 2023, pp. 130–139. 
DOI: 10.58496/ MJCSC/2023/015. 

2. O´Shea, K., Nash, R. (2015). An Introduction 
to Convolutional Neural Networks.  Vol. 1, pp. 
1–10 DOI: 10.48550/ arXiv.1511.08458. 

3. De la Torre, J. (2023). Redes Generativas 
Adversarias (GAN) Fundamentos Teóricos y 
Aplicaciones. DOI: 10.48550/arXiv. 
2302.09346. 

4. Efros, A.A., Freeman, W.T. (2001). Image 
quilting for texture synthesis by and transfer. 
Proceedings of the 28th annual Conference on 

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 551–562
doi: 10.13053/CyS-29-2-5570

Style Transfer Technique for Dermatological Imaging of Skin Lesions in Various Phototypes 561

ISSN 2007-9737



Computer Graphics and Interactive 
Techniques, pp. 341–346, ACM.  

5. Hertzmann, A., Jacobs, C.E., Oliver, N., 
Curless, B., Hertzmann, D.H.A., Jacobs, 
C.E., Oliver, N., Curless, B., Salesin, D.H. 
(2001). Image analogies. Proceedings of the 
28th annual Conference on Computer 
Graphics and Interactive Techniques, pp. 327–
340. DOI: 10.1145/3832 59.383295. 

6. Ashikhmin, N. (2003). Fast texture transfer. 
IEEE Computer Graphics and Applications, 
Vol. 23, No. 4, pp. 38–43. DOI: 
10.1109/MCG.2003.1210863. 

7. Lee, H., Seo, S., Ryoo, S., Yoon, K. (2010). 
Directional Texture Transfer. NPAR '10, 
Proceedings of the 8th International 
Symposium on Non-Photorealistic Animation 
and Rendering, pp. 43–48, ACM. DOI: 
10.1145/1809939.180994. 

8. Donahue, J., Jia, Y., Vinyals, O., Hoffman, 
J., Zhang, N., Tzeng, E., Darrell. T. (2013). 
DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition. DOI: 
10.48550/arXiv.1310. 1531. 

9. Kummerer, M., Theis, L., Bethge, M. (2015). 
Deep Gaze I: Boosting Saliency Prediction 
with Feature Maps Trained on ImageNet.  
Computer Vision and Pattern Recognition. 
DOI: 10.48550/ arXiv.1411.1045. 

10. Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A. 
(2015). Deep filter banks for texture 
recognition and segmentation. Proceedings of 
the IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 3828–3836.  DOI: 
10.48550/arXiv.1507.02620. 

11. Gatys, L.A., Ecker, A.S., Bethge, M. (2015). 
Texture Synthesis Using Convolutional Neural 
Networks. Advances in Neural Information 
Processing Systems, Vol. 28, pp. 3828–3836, 
ICLR Workshop. DOI:  10.48550/arXiv.1505. 
07376. 

12. Güclü, U., Gerven, M.A.J.v. (2015). Deep 
Neural Networks Reveal a Gradient in the 
Complexity of Neural Representations across 
the Ventral Stream. The Journal of 
Neuroscience, Vol. 35, No. 27, pp. 10005–

10014. DOI: 10.1523/JNEUROSCI.5023-
14.2015. 

13. Tschandl, P., Rosendahl, C., Kittler, H. 
(2018). The HAM10000 dataset is a large 
collection of multi-source dermatoscopic 
images of common pigmented skin lesions. 
ArXiv. DOI: 10.1038/ sdata.2018.161.  

14. Fitzpatrick, T.B.  (1975). Soleil et peau. J Med 
Esthet. Vol. 2, pp. 33.  

15. Quintini, J. (2021). Digital Health Consultant 
Medical Affairs. Gerencia Médica. Data 
Science. Machine Learning. Inteligencia 
Artificial.  

16. Wang, Z., Bovik, A.C., Sheikh, H.R., 
Simoncelli, E.P. (2004). Image quality 
assessment: From error visibility to structural 
similarity. IEEE Transactions on Image 
Processing, Vol. 13, No.  4, pp. 600–612. DOI: 
10.1109/TIP.2003.819861.   

17. Kullback, S., Leibler, R.A. (1951). On 
information and sufficiency. Annals of 
Mathematical Statistics. Vol. 22, No. 1, pp. 79–
86.  

18. Wang, Z., Bovik, A.C. (2002). A universal 
image quality index. IEEE Signal Processing 
Letters, Vol. 9, No. 3, pp. 81–84. DOI: 
10.1109/97.995823.  

19. Di Biasi, L., De Marco, F., Auriemma 
Citarella, A., Barra, P. (2022). Hybrid 
approach for the design of cnns using genetic 
algorithms for melanoma classification. 
International Conference on Pattern 
Recognition. Springer Nature Switzerland. 
DOI: 10.1186/S12859-023-05516-5.  

20. Sánchez-Medel, N., Romero-Bautista, V., 
Díaz-Hernández, R., Altamirano-Robles, L. 
(2024). Dermatological imaging of skin lesions 
in different skin phototypes using style transfer. 
International Symposium on Computer-Based 
Medical Systems. DOI: 10.1109/ 
CBMS61543.2024.00098. 

Article received on 17/06/2024; accepted on 15/08/2024. 
*Corresponding author is Leopoldo Altamirano-Robles. 

 

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 551–562
doi: 10.13053/CyS-29-2-5570

Nohemí Sánchez-Medel, Victor Romero-Bautista, et al.562

ISSN 2007-9737


