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Abstract. Inspired by the unique behavioral patterns of 

mayflies, characterized by their brief lifespans and 
complex mating dynamics, the Mayfly algorithm 
represents a novel and effective optimization approach. 
Rooted in the principles of particle swarm optimization, 
this algorithm combines swarm intelligence with 
evolutionary mechanisms to achieve enhanced 
performance in solving computational problems. This 
study focuses on improving the Mayfly algorithm through 
the adaptive adjustment of its parameters, leveraging 
fuzzy logic for stability in exploration and exploitation. 
The proposed adaptation enhances the algorithm’s 
capability to address optimization tasks, demonstrating 
superior performance in convergence speed and 
solution reliability. Simulation results show the 
advantages of the hybrid approach. 

Keywords. Mayfly algorithm, evolutionary algorithms, 

fuzzy parameter adaptation, optimization techniques, 
exploration and exploitation, genetic algorithms. 

1 Introduction 

In everyday life, the decisions we make, 
consciously or unconsciously, often aim at 
maximizing benefits or minimizing losses. This 
process of selecting the best option among various 
alternatives is known as optimization [1]. Its goal is 
to find the most effective possible outcome, 
whether by maximizing or minimizing a result, with 
or without defined constraints. Optimization 
includes key elements, involving decision 
elements, constraints, and purposes, and it is 
essential for solving problems in various fields [2]. 

However, traditional nature inspired 
optimization methods, such as particle swarm 
optimization (PSO) or other swarm intelligence 

algorithms, often face challenges in handling high 
dimensional spaces or avoiding local optima, thus 
producing subpar performance in complicated 
situations [3].  

This work aims at tackling these limitations by 
introducing a hybrid approach that enhances 
algorithm performance in such environments. 

In optimization, the primary goal is to search 
within a solution space to identify the most 
advantageous option from a range 
of possibilities [4].  

Often, the search space is vast, resulting in 
extended time requirements for finding an optimal 
solution [5]. To tackle this issue, computational 
intelligence methods have been developed to 
enhance the process of finding a solution for 
optimization and search problems [6]. These 
approaches provide competitive outcomes, 
although not always the best ones. Alternatively, 
metaheuristic algorithms serve as effective 
methods, as they can identify near optimal 
solutions in a realistic timeframe, even without 
guaranteeing the absolute best result [7]. 

Metaheuristics are grouped into three main 
types: evolutionary, based on physics, chemistry, 
and swarm intelligence [8]. Evolutionary methods, 
like genetic or differential evolution algorithms, are 
inspired by natural selection. Physics- and 
chemistry-based algorithms mimic natural laws, 
such as the Big Bang Crunch algorithm. Swarm 
intelligence, or collective intelligence, draws from 
natural group behaviors like ant colonies or bird 
flocks and is widely researched to approach 
optimization challenges [9]. 

In this context, the Mayfly Algorithm (MA) is a 
modification of PSO (Kennedy & Eberhart, 1995), 
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combining the strengths of PSO, genetic 
algorithms (GA), and swarm intelligence-based 
algorithms [10].  

Inspired by mayfly behavior, the Mayfly 
Algorithm uses techniques, like genetic crossover 
and local search to enhance PSO’s performance, 
in complex multidimensional scenarios where 
adjustments are required to ensure optimal 
solutions [11]. This hybrid approach follows the 
trend of modified algorithms that combine the 
advantages of existing methods, which have been 
widely studied in the literature [12]. 

Fuzzy sets were first introduced by Zadeh in 
1965, with Mamdani being the pioneer in applying 
them to control in 1974. Both advancements 
enabled fuzzy controllers to be effectively 
implemented in various applications [13]. Fuzzy 
logic offers a systematic computation framework to 
handle linguistic information and enhances 
numerical computation by using linguistic labels 
defined through membership functions (MFs) [14]. 

This study introduces a fuzzy adaptation 
approach to the position update MA parameters, 
aiming to improve its effectiveness in optimizing 
various mathematical functions. By utilizing 
different fuzzy rules, it is possible to address 
stagnation in local optima, which is a common 
issue in swarm intelligence algorithms, such as 
PSO, ACO, and others. This strategy finds an 
effective balance between exploration and 
exploitation, leading to improved results. 

Mayfly with fuzzy parameter adaptation better 
addresses high dimensionality problems due to its 
ability to adapt to noise with the help of our fuzzy 
rules, unlike other classic methods such as PSO. 

The article is structured as: Section 2 offers the 
theoretical framework, including background of the 
Mayfly algorithm. Section 3 outlines the proposed 
method through a flowchart. In Section 4, the 
design of the fuzzy adapter is described in detail. 
Section 5 summarizes the results, and Section 6 
evaluates the parameters that have a significant 
influence on MA. Section 7 offers discussion of 
results and Section 8 the conclusions. 

2 Materials and Methods 

Evolutionary techniques, including techniques like 
genetic algorithms (GAs) and PSO, are powerful 

tools to address complex problems. PSO, inspired 
by bird flock behavior, balances exploration and 
exploitation in its seek optimal solutions, gaining 
popularity for its effectiveness in applications 
related to science and engineering [15]. 

On the other hand, evolutionary algorithms 
emulate biological processes, like mutation, 
recombination, and natural selection to improve 
solutions in a search space [16].  

Genetic algorithms, introduced by John 
Holland, work with populations of solutions 
encoded as chromosomes, using genetic 
operators to continuously refine answers. These 
techniques stand out for their capacity to identify 
the best solutions in complex multimodal spaces 
efficiently and adaptively [17]. 

The MA is a method based on the social 
behavior of mayflies (Ephemeroptera). These 
insects spend most of their life as aquatic nymphs, 
but once they mature, males gather in swarms to 
perform a "nuptial dance" in the air to attract 
females, who then lay eggs in the water. This 
mating process serves as the inspiration for the 
algorithm, which simulates the search for ideal 
solutions in multi-dimensional environments [18]. 

2.1 PSO Algorithm 

The main idea of the algorithm is to simulate social 
behaviour as particles in a solution space, where 
each particle represents a potential solution. The 
position of each particle is adjusted based on its 
personal better position (pbest) and the best global 
position (gbest) of the swarm [9]. 

In this approach, the control of velocity is 
regarded as a key element, as it serves as the 
primary mechanism for adjusting a particle's 
position to explore the solution domain in pursuit of 
an optimal solution [19]. 

Eberhart analyzed the maximum velocity 
values and evaluated outcomes across various 
velocity settings. The velocity of particle k within 
the swarm is updated during the (i+1)th step 
calculated using the equation below: 

vij
t+1 = vij

t + c1r1
tyij−
t xij

t  + c2r2
tyij−
t xij

t , (1) 

where vij(t) is the velocity of particle i in dimension 
j at time t, c1 is the cognitive factor (importance of 
the particle's best previous position), c2 is the 
social factor (importance of the swarm's best global 
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position), r1 and r2 represent randomly generated 
numbers within the specified limits [0, 1], yj(t) Is the 
best position of particle i in dimension j,xij(t) Is the 
new position of particle i in dimension j,yj(t) is the 
best global position of the swarm in dimension j. 

The position of each particle i is updated at 
every (i+1)-th iteration based on the equation: 

𝑥𝑘
𝑡+1 = 𝑥𝑘

𝑡 + 𝑣𝑘
𝑡+1 , (2) 

where xi is the position of particle k, t is the current 
iteration, vi is the velocity of particle k [20]. 

2.2 Mayfly Algorithm 

Mayfly is an insect with a clear purpose, to 
reproduce before extinguishing; therefore, the 
Mayfly algorithm is inspired by the frantic search 
for a mate by Mayfly insects, enhancing the 
convergence of PSO by constantly updating 
particle positions, thus achieving a more efficient 
and faster search for optimal solutions [21]: 

xi t+1 =  xti + vi t+11, (3) 

vij t+1 =  vij t +dr, (4) 

vij
t+1 = vij

t + a1e
−βrp

2
(pbestij − xij

t )

+ a2e
−βrg

2
(gbestj − xij

t ), 
(5) 

where Vtij is the velocity of Mayfly i in dimension 
j=1-n at time step t,𝑥 𝑡 𝑖𝑗 is the position of 
ephemeral i in dimension j at time step t, a1 y a2 
are positive attraction constants used to scale the 
contribution of the cognitive and social 
components, respectively, pbest: is the best local 
position, gbest is the best global position , β is a 
fixed visibility coefficient [22]. 

In contrast to males, female mayflies do not 
form swarms. Instead, they move toward males for 
mating purposes. Assuming that y_it it represents 
the recent position of a female mayfly in the 
problem domain at time step t, her position is 
refreshed by adding a velocity component to the 
current position, as follows: 

𝑦𝑖
𝑡+1 = 𝑦𝑖

𝑡+ 𝑣𝑖
𝑡+1 , (6) 

𝑣𝑖𝑗
𝑡+1 =

𝑣𝑖𝑗
𝑡 + 𝑎2𝑒

−𝛽𝑟𝑚𝑓
2

(𝑥𝑖𝑗
𝑡 − 𝑦𝑖𝑗

𝑡 ),   𝑖𝑓 (𝑓(𝑦𝑖) > 𝑓(𝑥𝑖))

𝑣𝑖𝑗
𝑡 + 𝑓𝑙𝑟,           𝑖𝑓 (𝑓(𝑦𝑖) ≤ 𝑓(𝑥𝑖) ) ,

 (7) 

where v_ij^t denotes the velocity of the female 
mayfly in dimension j at time step t, and y_ij^t 
denotes her position in the same dimension and 
time step. The parameter a2 is a positive attraction 
constant, and β is a fixed visibility coefficient [18].  

The distance between the male and female 
mayflies, rmf. Lastly, fl is a random walk coefficient 
used when the female is not drawn toward a male, 
causing her to fly randomly, with r being a random 
value within a specified range (-1, 1) [23]. 

2.3 Dynamic Elite Strategy Mayfly Algorithm 
(DESMA) 

The DESMA algorithm employs an elite selection 
strategy around the global optimal solution to avoid 
local optima, enrich population diversity, and 
expand the search scope [24].  

The algorithm adjusts the search range derived 
from the evaluation between the current global 
optimal solution and previous generations. If the 
current solution is superior to the previous one, the 
search area expands; otherwise, it contracts to 
maintain the previous global optimum [24]: 

R={
R ∗ c1, if f(cgbest) < f(lgbest)

R ∗ c2, if f(cgbest) ≥ f(lgbest)
 , (8) 

where R is the search range in a particular space, 
c1 is an increase factor, set to 1.05, c2 is a 
reduction factor, set to 0.95, cgbest is the current 
global optimal position, and lgbest is the previous 
optimal position: 

r1 = 2* rand (1, n)-1, (9) 

 

Fig. 1. Fuzzy parameter adaptation in MA 
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where r1 is a random number in [−1,1], and n is 

the dimension: 

egbest=egbest + r1 * R, (10) 

where egbest is the elite mayfly within the search 

range, and cgbest is the current global 

optimum [24]. 

2.4 Modified Mayfly Algorithm (MODMA) 

The original MA algorithm shows fast 
convergence, but struggles with local optima [19]. 
To address this, the MODMA algorithm enhances 
the exploration capability and convergence speed 
of MA through a new crossover operator, a 
strategy to balance exploration and exploitation, 
and adaptive Cauchy mutation to 
increase diversity:  

g = gmin + exp (1 −
 itermax

itermax − iter + 1
) ,

∗ (gmax − gmin), 
(11) 

where gmax and gmin denote the largest and 
smallest weights, In sequence. The present and 
overall number of cycles are expressed as iter and 
itermax, sequentially. 

This algorithm improves by employing 
horizontal crossover in order to enhance 
exploration capability and improve convergence 
speed [26].  

{
 

 
𝑟1 = 𝐿 ∗  𝑚𝑎𝑙𝑒 + (1 − 𝐿) ∗ 𝑓𝑒𝑚𝑎𝑙𝑒 +

𝑐1 ∗ (𝑚𝑎𝑙𝑒 − 𝑓𝑒𝑚𝑎𝑙𝑒),

𝑟2 = 𝐿 ∗  𝑓𝑒𝑚𝑎𝑙𝑒 + (1 − 𝐿) ∗ 𝑚𝑎𝑙𝑒 +

𝑐2 ∗ (𝑓𝑒𝑚𝑎𝑙𝑒 −𝑚𝑎𝑙𝑒),

 (12) 

where c1 and c2 are arbitrary values between -1 
and 1 generated by a consistent distribution. The 
horizontal crossover operation divides the 
multidimensional problem-solving space into 

 

Fig. 2. Stages of the Fuzzy Adaptation Development 

Table 1. Test functions 

Function Name 

F1 Sphere 

F2 Rastrigin 

F3 Ackley 

F4 Griewank 

F5 Schwefel 

F6 Powell 

F7 Rosenbrock 

F8 Alpine 

F9 Zakharov 

F10 Sum squares 

F11 Styblinskitang 
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median populations of hypercubes, allowing for 
sampling of new points on the periphery of the 

hypercube with low probability [25].                            …..      

….                             

Table 2. Analysis of the a1 parameter for 50 dimensions 

Function a1=1 a1=3 a1=10 

F1 
 2.662x10-18 8.606x10-18 3.152x10-18 

s 4.304x10-18 2.117x10-17 7.270x10-18 

F2 
 2.036x101 2.023x101 2.001x101 

s 7.531x100 5.771x100 3.972x100 

F3 
 3.111x100 3.123x100 3.125x100 

s 4.198x10-2 3.947x10-2 3.641x10-2 

F4 
 1.070x10-17 2.624x10-9 5.344x10-18 

s 2.294x10-17 1.437x10-8 1.020x10-17 

F5 
 9.866x10-4 5.766x10-4 1.600x10-3 

S 3.212x10-3 5.766x10-4 4.100x10-3 

F6 
 2.075x104 2.075x104 2.075x104 

S 2.686x100 3.007x100 2.730x100 

F7 
 1.562x103 1.592x103 1.626x103 

s 6.374x102 6.418x101 5.569x101 

F8 
 1.242x10-31 1.005x10-31 7.025x10-32 

s 2.916x10-31 1.450x10-31 1.168x10-31 

F9 
 8.458x101 9.203x101 5.183x101 

s 3.895x101 4.820x101 1.735x101 

F10 
 4.682x10-78 3.052x10-97 1.903x10-86 

s 8.549x10-79 1.658x10-96 1.042x10-85 

Table 3. Analysis of the a2 parameter for 50 dimensions 

Function a2=1 a2=3 a2=10 

F1 
 7.770x10-18 6.007x10-1 1.143x101 

s 1.491x10-17 4.835x10-1 3.718x100 

F2 
 2.148x101 1.041x102 3.291x102 

s 1.133x101 6.560x101 5.415x101 

F3 
 2.148x101 3.421x100 4.267x100 

s 1.135x101 3.042x101 3.324x10-1 

F4 
 4.991x10-18 3.205x10-1 1.055x101 

s 1.384x10-17 3.501x10-1 3.465x100 

F5 
 9.031x10-4 1.000x10-2 3.2400x10-1 

s 3.500x10-3 1.150x10-2 8.260x10-2 

F6 
 2.075x104 2.075x104 2.075x104 

s 3.693x100 3.730x100 3.133x100 

F7 
 1.751x103 1.689x103 1.488x103 

s 5.053x101 6.103x101 7.758x101 

F8 
 4.910x10-30 4.060x10-2 1.117x10-1 

s 1.134x10-29 2.238x10-2 1.065x10-1 

F9 
 3.450x10-15 7.049x100 2.486x102 

s 3.106x10-15 8.0035x100 8.5808x101 

F10 
 1.852x10-155 1.183x10-8 2.486x102 

s 1.041x10-154 2.700x10-8 8.580x101 
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Fig. 3. Impact of parameters on the sphere function 

 

Fig. 4. Impact of parameters on the Rastrigin function 

 

Fig. 5. Impact of parameters on the wood benchmark 

function 

 

 

Fig. 6. Fuzzy adapter structure 

Table 4. Analysis of the β parameter for 50 dimensions 

Function β =1 β =3 β =10 

F1 
 2.662x10-18 8.606x10-18 3.152x10-18 

s 4.304x10-18 2.117x10-17 7.270x10-18 

F2 
 2.036x101 2.023x101 2.001x101 

s 7.531x100 5.771x100 3.972x100 

F3 
 3.111x100 3.123x100 3.125x100 

s 4.198x10-2 3.947x10-2 3.641x10-2 

F4 
 1.070x10-17 2.624x10-9 5.344x10-18 

s 2.294x10-17 1.437x10-8 1.020x10-17 

F5 
 9.866x10-4 5.766x10-4 1.600x10-3 

s 3.212x10-3 2.219x10-3 4.100x10-3 

F6 
 2.075x104 2.075x104 2.075x104 

s 2.686x100 3.007x100 2.730x100 

F7 
 1.562x103 1.592x103 1.626x103 

s 6.374x102 6.418x101 5.569x101 

F8 
 1.242x10-31 1.005x10-31 7.025x10-32 

s 2.916x10-31 1.450x10-31 1.168x10-31 

F9 
 8.458x101 9.203x101 5.183x101 

s 3.895x101 4.820x101 1.735x101 

F10 
 4.682x10-78 3.052x10-97 1.903x10-86 

s 8.549x10-79 1.658x10-96 1.042x10-85 
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2.5 Mayfly Modification (MMFO) Algorithm 

The MMFO algorithm introduces a novel 
metaheuristic approach to problem solving. In 
response to observed limitations in the 
convergence of the conventional Mayfly algorithm 
mechanism is proposed that adjusts candidate 
positions if they overlap  with both the best and 
global positions [27].  

Candidates with velocities approaching zero 
cease flying and converge to the best position, 
although not always the global optimum, which 
may lead to early convergence.   

Additionally, this algorithm introduces a novel 
strategy for updating candidate positions, inspired 
by the whale hunting process as per the whale 
optimization algorithm, where whales pursue their 
prey by spiraling around it. By integrating this 
mechanism into the MFO algorithm, the following 
is obtained [28]: 

𝑥𝑖𝑗 = (𝑡 + 1) = 𝐷𝑒
𝑏𝑙 cos(2𝜋𝑙) + 𝑥𝑖𝑗(𝑡), (13) 

D = |xij(t) − xkj(t)| , (14) 

where "b" is a constant influencing the spiral's 
structure, "l" represents a random value between 0 
and 1, and "D" indicates the distance of the i-th 
individual to the best solution, establishes a spiral 
strategy for the prospective solution adjacent to the 
best, keeping it centered [27]. 

2.6 OCMA Algorithm 

To enhance diversity and efficiency, OCMA 
incorporates mutation strategies. It utilizes 
Opposition-based Learning (OBL) and Cauchy 
mutation to mutate the global optimum solution, 
while artificial mutation operates on the 
offspring [29]. 

Inspired by OBL, a hybrid mutation strategy is 
cascaded to propose opposition-based solutions, 
preventing local optima, Cauchy mutation reduces 
the chance of falling into local optima. The 
integration of OBL and Cauchy mutation in the 
updated positions of mayflies forms the OCMA 
algorithm, aiming for improved exploration and 
convergence [30]: 

𝑥𝑔𝑏𝑒𝑠𝑡
𝑡′ = 𝑢𝑏 + 𝑟3 ∗ (𝑙𝑏 − 𝑥𝑔𝑏𝑒𝑠𝑡

𝑡 ), (15)                     

   𝑥𝑛𝑒𝑤
𝑡+1 = 𝑎4 ∗(𝑥𝑔𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑔𝑏𝑒𝑠𝑡
𝑡′ ), (16) 

where xgbest
t  represents the global best result of 

each step, x_gbest^(t^' ) is the solution based on 
the opposition of x_gbest^t, ub and lb are the upper 
and lower bounds of the parameters, r3 is a 
uniformly distributed random matrix, a4 is the 
coefficient of information exchange, and 
x_new^(t+1)is the new target solution [29]. 

3 Proposal 

In this Section, we find an illustration of the 
proposal to enhance the convergence of the 
MA (Fig. 1). 

In Fig. 1 we illustrate the Mayfly algorithm, 
where we first initialize the population, search for 
global solutions, evaluate according to the 
termination criterion, update velocities and 
solutions, then reproduce, reevaluate, and update 
the solution. In this new method, fuzzy adaptation 
of a2 and mu is introduced to escape local minima. 

Evaluating the impact of the main parameters, 
a1, a2, and β is the first step in this research. This 
involves analyzing various dimensions and 
benchmark functions, followed by plotting the 
results to identify the parameters that significantly 
influence the algorithm's performance.  

Table 5. Fuzzy rules 

Number 
 rule 

Rule description 

1 IF iteration is very small then 𝑎2 is very big 

2 IF iteration is small then 𝑎2 is big 

3 IF iteration is medium then 𝑎2 is medium 

4 IF iteration is big then 𝑎2 is small 

5 IF iteration is very big then 𝑎2 is very small 

Table 6. Membership functions 

Mfs a b c 

IMP(Very tiny  iteration) 0.00 0.00 0.21 

IP(Tiny iteration) 0 0.22 0.50 

IM(Médium  iteration) 0.28 0.54 0.78 

IG(Big iteration) 0.53 0.75 1 

IMG(Very big  iteration) 0.75 1 1 
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Table 7. Fuzzy rules for two-input, two-output fuzzy adapter 

Number rules Fuzzy rules description 

1 IF iteration is small  and diversity is low then 𝑎1 is low y 𝑎2 is high. 

2 IF iteration is small  and diversity is medium then 𝑎1 is medium low and 𝑎2 is medium high. 

3 IF iteration is small  and diversity is high then 𝑎1 is medium and 𝑎2 is medium 

4 IF iteration is medium and diversity is low then 𝑎1 es media baja and 𝑎2 is medium high 

5 IF iteration is medium and diversity is medium then 𝑎1 is medium and 𝑎2 is medium. 

6 IF iteration is medium and diversity is high then 𝑎1 is medium high and 𝑎2 is medium low 

7 IF iteration is high and diversity is low then 𝑎1 is medium and 𝑎2 is medium. 

8 IF iteration is high and diversity is medium then 𝑎1 is medium high and 𝑎2 is medium low. 

9 IF iteration is high and diversity is high then 𝑎1 is high and 𝑎2 is low. 

 

Fig. 7. Fuzzy adapter with two inputs and two outputs 

Table 8. Input membership functions for the two-input fuzzy adapter 

Mfs a b c d 

IB (Low iteration) 0 0 0.1 0.33 

IM (Medium iteration) 0.24 0.41 0.57 0.76 

IA (High iteration) 0.66 0.91 1 1 

DB (Low diversity) 0 0 0.1 0.33 

DM (Medium diversity) 0.24 0.43 0.59 0.74 

DA (High diversity) 0.66 0.89 1 1 

Table 9. Output MFs for the two-input fuzzy adapter 

Mfs a B c d 

A1L(a1 low) 1.09 1.24 1.27 1.42 

A1ML(a1 medium low) 1.27 1.39 1.48 1.61 

A1M(a1 medium) 1.47 1.57 1.65 1.77 

A1MH(a1 medium high) 1.64 1.76 1.84 1.98 

A1H(a1 high) 1.83 1.98 2.01 2.16 

A2L(a2 low) 0.42 0.58 0.62 0.78 

A2ML(a2 medium low) 0.62 0.78 0.82 0.97 

A2M(a2 medium) 0.85 0.97 1.02 1.15 

A2MH(a2 medium high) 1.02 1.18 1.22 1.38 

A2B(a2 Big) 1.22 1.38 1.42 1.58 
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This process helps in selecting one or more of 
these parameters for designing the fuzzy rules 
[31]. When designing the fuzzy parameter adapter, 
it is essential to go through several testing phases. 
Starting with a complex adapter is not feasible, as 
it could lead to unnecessary or overly complicated 
calculations without yielding improved results. 

Therefore, it is recommended to begin with a 
simple adapter featuring one input and one output, 
as well as triangular MFs [32]. 

One challenge we face when implementing 
fuzzy adaptation is that membership functions 
cannot be fully optimized through trial and error 
due to the excessive time required to test all 

possibilities, which is due to the complexity of 
variations and the algorithm's execution time. 

 Therefore, the use of evolutionary algorithms 
for this purpose is often a convenient 
approach  [33]. 

In Fig. 2, we can find the outline of the process 
carried out for the design of our fuzzy adapters, 
where it is shown that the process begins with a 
study of the parameter impact through evaluations 
with benchmark functions.  

For this, the dimensions and values of each of 
the parameters involved in the position update 
are  varied. 

 

Fig. 8. Fuzzy adapter with two inputs and two outputs (a1 and mu) 

Table 10. Input MFs for the mu fuzzy adapter 

Mfs a b c d 

IB (small iteration) 0 0.1 0.23 0.32 

IM(medium iteration) 0.25 0.42 0.56 0.67 

IA (big iteration) 0.63 0.74 0.86 1 

DB(small diversity) 0 0.13 0.24 0.34 

DM(medium diversity) 0.27 0.42 0.54 0.64 

DA (big diversity) 0.58 0.71 0.83 1 

Table 11. Output MFs for the mu fuzzy adapter 

MFs A b c d 

A1S (a1 small) 1.20 1.33 1.36 1.49 

A1MS(a1moderately small) 1.36 1.47 1.55 1.66 

A1M (a1 moderate) 1.53 1.62 1.70 1.80 

A1MA(a1 moderately big) 1.69 1.79 1.86 1.98 

A1B (a1 big) 1.85 1.98 2.01 2.14 

MuB (a2 small) 0 0.00 0.01 0.02 

MuMB(mu moderately small) 0.01 0.02 0.03 0.03 

MuM (mu moderate) 0.03 0.04 0.04 0.05 

MuMA(mu moderately big) 0.05 0.05 0.06 0.07 

MuA (mu big) 0.06 0.07 0.08 0.09 
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4 Impact of the Parameters 

This section evaluates the influence on MA 
performance, when varying its main velocity 
update components, namely the a1, a2, 
and β parameters. 

For this study the parameter values were set as 
follows: β =1,a1=1.5 and a2=1.5 so that they 
remained in the same configuration as the original 
Mayfly [18]. 

The solution range for out test with 
mathematical functions was set to [-10,10] for 50 
dimensions, using a 5th generation i7 computer 
with 8gb of RAM, the implementation of mayfly and 
the experiments were conducted in MATLAB, with 
a total of 30 executions from which the average 
and standard deviation were calculated. 

Table 1 presents the main mathematical 
functions that will be used, along with the 
corresponding names assigned to each for the 
sake of simplifying the subsequent tables.  

Table 2 shows the analysis of the a1 parameter 
for 50 dimensions.  

Table 3 lists the results for the a2 parameter for 
50 dimensions. Table 4 summarizes the Analysis 
of the β parameter for 50 dimensions. 

In Fig. 3, we observe the behavior of the Sphere 
benchmark function, where the a2 parameter is 
remarkable in its impact on the productivity of 
the  MA. 

In Fig. 4, we evaluate the effect of the MA on 
the Rastrigin function. Here, we detect that a1 has 
a higher effect when varied. 

In Fig. 5, we study the influence of the MA on 
the Wood function, where a2 shows a stronger 
influence when varied. 

In the parameter impact study, it was 
determined that the beta parameter does not 
considerably affect the capabilities of the MA, and 
therefore, it has been excluded from the fuzzy 
adaptation. However, the a1 and a2 parameters 
exhibited a sharp impact in the algorithm's 
performance, so they will be selected to be part of 
the fuzzy adapter designs [34]. 

5 Designed Fuzzy Adapters 

Fuzzy adapters were designed to address the 
challenge of stagnation in local optima. To tackle 

this issue, a series of sophisticated fuzzy adapters 
were developed to dynamically enhance diversity 
whenever necessary [35].  

These adapters are carefully engineered to 
respond in real time to the absence of effective 
solutions, ensuring continuous adaptability and 
resilience.  

The application of these advanced techniques 
has led to remarkable success, significantly 
surpassing the performance of the original 
Mayfly  algorithm.  

By refining its exploratory capabilities and 
mitigating premature convergence, these fuzzy 
allow the algorithm to explore intricate complex 
solution domains more competently and identify 
superior solutions [36]. 

5.1 Designed Fuzzy Adapter with One Input 
and One Output 

A fuzzy adapter was planned to address the rapid 
convergence of MA, which tends to have low 
exploration and high exploitation. This adapter 
fuzzily adjusts the parameter a2, aiming at helping 
the algorithm in evading local optima, considering 
diversity and the number of iterations encountered. 

In Fig. 6, we can observe the structure of the 
first fuzzy adapter, where the iteration was used as 
the input and the parameter a2 as the output to 
accelerate the convergence of the original Mayfly 
algorithm. The fuzzy rules are listed in Table 5. For 
this purpose, triangular membership functions 
were used: 

f(x; a, b, c) =

{
 
 

 
 

0, x ≤ a
x − a

b − a
, a ≤ x ≤ b

c − x

c − b
0,

,
b ≤ x ≤ c
c ≤ x

   , (17) 

In Equation 17, we have triangular MF where 
the values of a, b, and c will be provided in the 
Table 6 [37]. 

In Table 5, we can notice that there is a total of 
5 fuzzy rules for this first fuzzy adapter. In these 
rules, the parameter a2 is manipulated. 
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Table 12. Performance of the MA for different mathematical functions at 20 dimensions 

   Function           MA FMA(Two inputs and two outputs) MUFMA(Fuzzy mu Mayfly) 

F1 
 1.177x10-83 1.177x10-83 2.006x10-84 

S 4.617x10-82 4.617x10-82 7.205x10-84 

F2 
 2.853x100 2.853x100 1.359x100 

S 2.546x100 2.546x100 1.153x100 

F3 
 2.982x100 2.982x100 2.980x100 

S 1.160x10-2 1.160x10-2 1.355x10-15 

F4 
 1.810x10-2 1.810x10-2 7.401x10-18 

S 5.670x10-2 5.670x10-2 4.053x10-17 

F5 
 8.301x103 8.301x103 8.301x103 

S 8.300x103 8.300x103 5.550x10-12 

F6 
 6.151x1-102 6.151x10-102 9.159x10-43 

S 3.369x10-101 3.369x10-101 5.016x10-42 

F7 
 3.060x10-2 3.060x10-2 4.400x10-3 

S 1.641x100 1.641x100 1.219x100 

F8 
 2.903x10-15 2.903x10-15 1.567x10-16 

S 1.624x10-7 1.624x10-7 2.899x10-16 

F9 
 1.085x10-29 1.085x10-29 8.282x10-28 

S 5.134x10-29 5.134x10-29 4.383x1027 

F10 
 6.199x10-83 6.199x10-83 1.793x10-79 

S 3.142x10-82 3.142x10-82 9.823x10-79 

Table 13. Performance of the MA for different mathematical functions at 50 dimensions 

   Function           MA FMA(Two inputs and two outputs) MUFMA(Fuzzy mu Mayfly) 

F1 
 1.177x10-7 8.345x10-17 8.345x10-17 

S 4.520x10-7 5.103x10-17 5.103x10-17 

F2 
 1.190x101 1.127x101 1.127x101 

S 3.820x100 3.792x100 3.792x100 

F3 
 0.000x100 3.122x100 3.122x100 

S 0.000x100 2.910x10-2 2.910x10-2 

F4 
 4.140x10-3 9.024x10-4 9.024x10-4 

S 1.290x10-2 3.800x10-3 3.800x10-3 

F5 
 3.880x100 2.075x104 2.075x104 

S 8.830x10-1 2.958x100 2.958x100 

F6 
 5.280x10-49 3.998x10-127 3.998x10-127 

S 1.650x10-48 2.190x10-122 2.190x10-122 

F7 
 6.770x101 5.521x101 5.521x101 

S 3.987x101 2.300x101 7.918x10-4 

F8 
 3.346x10-8 7.918x10-4 7.918x10-4 

S 1.624x10-7 2.100x10-3 2.100x10-3 

F9 
 1.713x10-1 6.876x101 6.876x101 

S 8.373x10-2 1.305x102 1.305x102 

F10 
 7.392x10-6 3.694x10-15 3.694x10-15 

S 2.579x10-5 5.609x10-15 5.609x10-15 
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5.2 Designed Fuzzy Adapter with Two Inputs 
and Two Outputs 

This fuzzy adapter was designed to provide greater 
control over exploration and exploitation during 
each iteration of the MA.  

By using iteration and diversity as inputs, the 
sliding diversity method is applied, allowing for a 
weighted average that helps determine whether 
there is high or low diversity in the algorithm [38].  

As output parameters, a1 and a2 were chosen, 
as they are the main attraction constants that 
directly influence the algorithm's performance.  

This adaptive technique secures the algorithm 
can dynamically adjust its behavior, promoting 
effective exploration when diversity is low and 
focusing on exploitation when diversity is high [39].  

Thereby enhancing its overall efficiency and 
ability to escape local optima. In Table 7, we can 
find that a total of 9 fuzzy rules were used for this 
fuzzy adapter, through which we manipulate the 
main attraction components a1 and a2, the first is 
kept low and the second high if we want to increase 
diversity, and vice versa in the opposite case. 

In Fig. 7, we can appreciate the design of the 2-

input, 2-output fuzzy adapter, which was chosen 

based on achieving an equilibrium between 

exploration and exploitation in the MA. This design 

ensures that the algorithm can effectively adapt its 

behavior in response to dynamic conditions, 

optimizing performance throughout the 

search process. 

5.3 Designed Fuzzy Adapter Two Inputs and 
Two Outputs a1 and mu 

In Section 5.3, we design another fuzzy adapter, 
with the difference that we use the most impactful 
parameters in the velocity update, which are a1, 
and mu. The use of mutation has not been 
explored in depth, so we will include a range from 
0.01 to 0.10 based on the typical configuration [40].  

This way, we help the Mayfly algorithm escape 
local optima. In Fig. 8, we can find the general 
design of the fuzzy adapter, with iteration and 
diversity as inputs, and a1 and mu as outputs.  

This design allows for real time adjustments to 
the parameters based on the algorithm's current 
state, ensuring improved adaptability and 

performance during the optimization process. 
Table 10 shows the parameters of the input MFs 
and Table 11 lists the parameters of the 
output  MFs: 

𝑑 =
1

ns
∑ √∑ (xij(t) − Xj(t))

2ns
j=1

ns
i=1  . (18) 

Equation 18 represents the calculation of 
diversity, which has been used to determine one of 
the inputs for the fuzzy adapters [41]. However, 
after calculating it, the value is normalized and a 
sliding calculation is performed to determine how it 
increases or decreases in each 
mathematical function.  

The trapezoidal MFs are presented in Equation 
19, in which the values a, b, c, and d will determine 
the different degrees of membership for our 
fuzzy adapter: 

f(x; a, b, c, d) =

{
 
 

 
 

0,    if(x < a) o (x > d)
x − a

b − a
, if a ≤ x ≤ b

1,
d − x

d − c

,
if b ≤ x ≤ c
if c ≤ x ≤ d

. (19) 

Equation 19 presents the trapezoidal 
membership functions, in which the values a, b, c, 
and d will determine the different degrees of 
membership for our fuzzy adapter. 

6 Results 

In this section, the results of the previously 
introduced fuzzy adapters are presented, exploring 
variations in dimensionality and employing a set of 
mathematical functions to compare the original 
method with the proposed approach, as well as 
with other metaheuristics or swarm intelligence 
algorithms.  

In Table 12, we can see the performance of 
Mayfly and the three parameter adaptations that 
were implemented for 20 dimensions.  

In Table 13, we can see the performance of 
Mayfly and the three parameter adaptations that 
were implemented for 50 dimensions.  

In Table 14, we have statistical tests for the 10 
mathematical functions used with 50 dimensions, 
comparing them with the fuzzy adapter that takes 
iteration and diversity as inputs and outputs the 
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variables a1 and a2. Here, we can observe that a 
total of 5 tests are passed. 

In Table 15, we can see the performance of 
Mayfly and statistical test for 15 different 
mathematical functions. 

Finally, we show the results for 100 dimensions 
to verify that the method still behaves well with a 
higher complexity. 

7 Discussion of the Results 

When analyzing the impact of the parameters 
(Tables 3-5), it was confirmed how the three main 
position update parameters affect the performance 
of the Mayfly algorithm. Beta was discarded for the 
design of our fuzzy adapter because it did not show 
a significant impact.  

However, the parameters a1 and a had a strong 
influence on the algorithm, with a2 clearly having 
the most significant effect on Mayfly's 
performance. This observation aligns with 
Equation 5, which indicates that a2 is multiplied by 

the global best solution, making it a highly 
important parameter. 

To visualize the impact of the parameters, 
graphs were generated and are shown in Figures 
3-7. These figures clearly demonstrate that a2 has 
a greater influence on the algorithm's performance 
when evaluated using various mathematical 
benchmark functions. However, in some functions, 
a1 showed a higher impact, which is why both 
parameters were used in the final fuzzy adapter. 

Regarding the performance shown by Mayfly, 
as observed in Table 12, the algorithm performs 
quite well at low dimensions. Therefore, applying 
fuzzy parameter adaptation at lower dimensions 
does not significantly improve performance, as the 
fuzzy adapter cannot be fully utilized in such cases. 

Table 13 provides a clearer view of how fuzzy 
parameter adaptation improves the Mayfly 
algorithm. It shows that the more complex the 
dimensionality of the problem, the more effective 
the fuzzy adapter becomes in handling uncertainty 
and, most importantly, in enhancing the robustness 

Table 14. Stadistic test for different mathematical functions at 50 dimensions for FMA 

   Function 
FMA(two inputs and two 

outputs) 
Mayfly 

 

F1 
 8.345x10-17 1.177x10-7 

-1.767 
S 5.103x10-17 4.520x10-7 

F2 
 1.127x101 1.190x101 

-0.641 
S 3.792x100 3.820x100 

F3 
 3.122x100 0.000x100 

0 
S 2.910x10-2 0.000x100 

F4 
 9.024x10-4 1.290x10-2 

-1.648 
S 3.800x10-3 1.290x10-2 

F5 
 2.075x104 8.830x10-1 

0 
S 2.958x100 8.830x10-1 

F6 
 3.998x10-127 5.280x10-49 

-1.852 
S 2.190x10-122 1.650x10-48 

F7 
 5.521x101 6.770x101 

-1.647 
S 2.300x101 3.987x101 

F8 
 7.918x10-4 3.346x10-8 

2.065 
S 2.100x10-3 1.624x10-7 

F9 
 6.876x101 1.713x10-1 

2.877 
S 1.713x10-1 8.373x10-2 

F10 
 3.694x10-15 7.392x10-6 

-1.769 
S 7.392x10-6 2.579x10-5 
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and fine-tuning of the evolutionary algorithm, which 
could not achieve this improvement on its own. 

In terms of statistical testing, we obtained a 
result of 5 out of 10 for the first fuzzy adapter with 
two inputs and two outputs. Consequently, 
additional tests were conducted using the fuzzy 
adapter that utilized μ and a2 as output 
parameters, with a total of 15 tests, 9 of which were 
successful, demonstrating its effectiveness in high-
dimensional problems. These results can be found 
in Tables 14 and 15, respectively. 

As a final test, a total of 100 dimensions were 
used to compare the effect of the fuzzy adapters 
on the Mayfly algorithm. Improvements were 
observed in 8 out of the 10 mathematical functions 

tested across the different fuzzy adapters. 
However, the best results were achieved using 
iteration and diversity as inputs and a1 and a2 
as outputs. 

8 Conclusions 

In conclusion, the Mayfly algorithm demonstrates 
excellent exploration capabilities but tends to 
struggle with avoiding falling into local optima. 
From the results presented in this work, it is evident 
that using fuzzy parameter adaptation can be 
highly beneficial in addressing this issue, 
especially in high dimensional spaces.  

Table 15. Statistic test for different mathematical functions at 50 dimensions for MUFMA 

   Function FMA(two inputs and two outputs) Mayfly  

F1 
 8.211x10-18 1.177x10-7 

-1.832 
S 5.975x10-17 3.520x10-7 

F2 
 1.086x101 1.190x101 

-0.449 
S 1.197x101 3.820x100 

F3 
 3.026x100 2.987x100 

2.414 
S 8.610x10-2 2.030x10-2 

F4 
 1.316x10-4 4.140x10-3 

-1.655 
S 3.474x10-3 1.280x10-2 

F5 
 2.075x100 3.880x100 

-1.822 
S 5.350x100 8.830x10-1 

F6 
 9.025x10-140 5.280x10-49 

-1.752 
S 4.943x10-139 1.650x10-48 

F7 
 5.172x101 6.770x101 

-1.688 
S 3.312x101 3.987x101 

F8 
 1.876 x10-4 3.346x10-8 

1.855 
S 5.536 x10-4 1.624x10-7 

F9 
 3.384x101 1.713x10-1 

2.015 
S 9.149x101 8.373x10-2 

F10 
 3.542x10-15 7.392x10-6 

-1.663 
S 2.515x10-15 2.429x10-5 

F11 
 -1.476x101 1.713x103 

-2.370 
S 4.113x101 3.992x103 

F12 
 2.000x10-4 9.800x10-1 

-2.546 
S 2.102x100 1.414x10-1 

F13 
 1.256x10-1 5.585x102 

-2.173 
 3.650x10-1 1.407x103 

F14 
S 1.093x10-1 3.314x10-15 

0.473 
 1.266x100 2.321x10-15 

F15 
S 2.146x10-100 1.639x10-31 

-1.793 
 4.267x10-112 5.007x10-31 
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In the case of low dimensions, specifically less 
than 20, the fuzzy adaptation does not fully 
leverage its potential due to the low presence of 
uncertainly and complexity. However, the Mayfly 
algorithm with fuzzy adaptation proves to be 
valuable for applications such as optimizing fuzzy 
controllers or solving high complexity problems, 
like flight path optimization, drone control, and 
similar challenges. 

The results obtained with fuzzy parameter 
adaptation outperform those achieved with the 
original Mayfly algorithm. However, in low 
dimensional spaces, specifically with dimensions 
of 20 or fewer, the use of a fuzzy adapter is not 
advisable, as the improvement is not significant 
enough to justify its application.  

Furthermore, it was determined that the 
parameter a2 has the highest repercussion on the 
algorithm, and maintaining its values close to one 
significantly enhances the overall performance of 
the Mayfly algorithm.  

As future work, it is recommended to optimize 
the MFs using the Mayfly algorithm and create a 
fuzzy adapter with these membership values, 
which will later be used as a basis for developing a 
fuzzy adapter with type-2 fuzzy logic [42]. In 
addition, we could try the same approach for other 
algorithms [43-44]. 
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