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Abstract.  This study examines the convergence of 

Generative Artificial Intelligence (AI) and the Internet of 
Things (IoT) as key drivers of innovation in Precision 
Agriculture. It posits that these technologies enable real-
time monitoring of critical variables such as soil moisture, 
temperature, and crop health, as well as early detection 
of pests and diseases. The main objective, through a 
systematic review of 74 papers, is to identify the 
applications, benefits, and challenges of Generative AI 
and IoT. The Kitchenham (2004) methodology was 
applied along with the PRISMA flow, ensuring 
transparency and replicability. Five research questions 
were formulated focusing on crop types, IoT devices, 
thematic topics, conceptual evolution, keywords, and 
international collaboration. Searches were conducted 
across five databases. From an initial pool of 39,223 
references and after applying exclusion criteria, 74 
papers were selected for analysis. The findings confirm 
that Generative AI and IoT have reached a level of 
maturity in intensive crops and high-value sectors, 
supported by low-cost architectures and advanced data 
analytics. However, gaps remain, such as the lack of 
economic assessments of hybrid platforms and the 
scarcity of public datasets that hinder the replication of 
certain studies. This study offers practical and strategic 
guidance to support the implementation of Generative AI 
and IoT in precision agriculture. 

Keywords. Generative artificial intelligence, precision 

agriculture, systematic literature review, internet of 
things, smart agriculture, generative 
adversarial networks. 

1 Introduction 

The integration of advanced technologies such as 
Generative Artificial Intelligence (AI) and the 

Internet of Things (IoT) represents a key factor in 
significantly transforming precision agriculture, 
especially in the face of global challenges related 
to production efficiency and agricultural 
sustainability. This technological transformation is 
manifested in various practical applications, 
ranging from real-time monitoring of environmental 
conditions and early detection of crop diseases to 
resource optimization through hybrid systems that 
integrate both ground and aerial sensors. The 
implications of adopting these technologies are 
profound, as they not only increase agricultural 
productivity and reduce operational costs but also 
ensure more efficient and sustainable 
management of natural resources, directly 
benefiting both producers and rural communities. 

Smart and precision agriculture has undergone 
a significant transformation through the integration 
of technologies such as IoT and artificial 
intelligence. Several studies have addressed the 
efficient use of these technologies to optimize 
agricultural resources, improve productivity, and 
promote sustainability across diverse agricultural 
contexts [1, 5, 20]. 

The implementation of IoT in agriculture has 
enabled real-time monitoring of critical variables 
such as environmental conditions, crop health, and 
soil quality, facilitating more accurate and timely 
decision-making [7, 11, 19]. To further enhance the 
precision of these measurements, various 
researchers have proposed hybrid platforms that 
integrate ground and aerial sensors using 
unmanned aerial vehicles (UAVs), which have 
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been shown to significantly improve operational 
efficiency and reduce costs [5, 9, 12]. 

A key factor identified in multiple studies is the 
use of wireless sensor networks (WSNs), where 
communication protocols such as LoRaWAN and 
ZigBee offer specific advantages depending on 
agricultural needs and operating environments [14, 
19, 24]. Additionally, some authors have 
emphasized the optimization of these networks 
through advanced algorithms such as RPL and 
hexagonal deployment models, which significantly 
enhance energy efficiency and network coverage 
[10, 22, 72]. 

The potential of artificial intelligence—
particularly machine learning (ML) and deep 
learning (DL)—has been highlighted in numerous 
investigations. These techniques allow the 
prediction of diseases and anomalies in crops 
through advanced analysis of data collected by IoT 
systems, achieving high levels of accuracy under 
various agricultural conditions [2, 11, 15]. Similarly, 
semantic segmentation of aerial images using 
models such as AgriSegNet greatly improves the 
visual detection of issues across large cultivation 
areas [9]. 

Data generation and augmentation through 
generative adversarial networks (GANs) have 
been another innovative strategy explored in 
various studies, particularly to overcome data 
collection limitations and improve the 
segmentation of weeds and crops [18,23]. 
Moreover, crop growth simulations using images 
generated by GANs enable more realistic and 
precise visualization of the spatial and temporal 
development of crops, facilitating agricultural 
management [18]. 

Finally, interoperability, scalability, and security 
in smart platforms are essential aspects for 
overcoming challenges related to agricultural data 
heterogeneity and standardization, ensuring 
efficient management and greater profitability in 
precision agriculture [8, 14]. 

Despite the extensive evidence on the benefits 
of using Artificial Intelligence and the Internet of 
Things in precision agriculture, significant gaps 
remain that require further investigation. For 
instance, although hybrid platforms that combine 
ground and aerial sensors have been developed, 
there is a lack of systematic studies evaluating 
their actual effectiveness and economic feasibility 

in different agricultural contexts and climate 
regions. Additionally, a deeper understanding of 
the effective integration of generative adversarial 
models (GANs) into practical agricultural 
production scenarios is needed. Another 
underexplored aspect is the social and economic 
impact these technologies may have on small 
farming communities, particularly in terms of 
technological accessibility, digital literacy, and 
cultural adaptation to new 
production methodologies. 

This paper aims to analyze how Generative AI 
and IoT function as key technologies in precision 
agriculture. Through a systematic review of recent 
studies in various agricultural contexts, it seeks to 
identify the main applications, benefits, and 
challenges of these technologies. 

The structure of the paper is as follows: Section 
2 presents the theoretical background. Section 3 
details the methodology employed in the 
systematic review of the selected studies. Section 
4 presents and discusses the results. Finally, 
Section 5 concludes with the main contributions of 
the study and suggests specific areas for 
future  research. 

2 Theoretical Background 

This section presents the theoretical framework 
necessary to understand the key role played by 
Generative AI and the Internet of Things (IoT) in 
Precision Agriculture. 

2.1 Generative Artificial Intelligence 
(Generative AI) 

Generative Artificial Intelligence is based on neural 
network models capable of learning the distribution 
of agricultural data and subsequently synthesizing 
new, realistic examples. In particular, Generative 

Adversarial Networks (GANs) have 
demonstrated their effectiveness in visually 
simulating crop growth. For instance, Drees et al. 
[18] introduce a multi-conditional CWGAN-GP 
model that, based on early-stage images, growth 
periods, and cultivation conditions, generates 
detailed temporal frames of plant phenotypes, 
improving data accuracy and diversity compared to 
conventional biophysical models. Beyond GANs, 
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recent reviews point to a transition toward diffusion 
architectures and transformers, which promise to 
generate super-resolution maps of vegetative or 
agro-climatic indices in the absence of satellite or 
UAV measurements, as well as virtual scenarios to 
anticipate water or nutrient stress in real time [83]. 

These advances, when integrated into smart 
farming platforms, not only facilitate data 
acquisition for training phenotyping networks but 
also offer a visual and explainable interface 
between process models and agronomic decision-
making [81]. 

2.2 Internet of Things (IoT) 

The Internet of Things (IoT) in agriculture involves 
the use of connected devices with wireless sensors 
that collect critical agricultural data, such as 
temperature, soil moisture, water levels from 
various storage sources, phytosanitary status, and 
general environmental conditions. 

These devices transmit information in real time 
to central or management systems, enabling 

efficient and precise decision-making to optimize 
resources and ensure crop health and productivity. 
The efficient integration of IoT technologies 
significantly improves agricultural management 
and provides robust, accurate, and efficient 
communication within smart agricultural 
ecosystems [7, 11, 34]. 

2.3 Precision Agriculture 

Precision Agriculture (PA) encompasses 
advanced agricultural management techniques 
that employ digital technologies such as IoT, 
drones, advanced image processing, and artificial 
intelligence platforms to collect, process, and 
analyze field-specific data in real time. These 
techniques allow for the precise and efficient 
management of agricultural resources such as 
water, fertilizers, and pesticides, along with 
continuous monitoring of crop growth and early 
detection of diseases or anomalies. Thus, PA 
optimizes agricultural decision-making, enhances 
environmental sustainability, and improves 
operational profitability in various agricultural 
contexts through the strategic implementation of 
intelligent and adaptive technologies [7, 11, 
34,  72]. 

3 Review Method 

This study is grounded in a Systematic Literature 
Review (SLR) following the methodology proposed 
by Kitchenham [75], which ensures a transparent 
and replicable process for investigating the 
integration of Generative AI and IoT in Precision 
Agriculture. The full sequence of activities, from 
planning to synthesis of findings, is illustrated in 
Figure 1. 

3.1 Research Questions and Objectives 

This study is guided by a series of research 
questions aimed at understanding the various 
dimensions of Generative AI and IoT as Key 
Technologies for Precision Agriculture: 

RQ1: In which crops are Generative AI and IoT 
applied? 

 

Fig. 1. SLR process 
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RQ2: What IoT devices have been most frequently 
used in scientific studies on 
Precision  Agriculture? 

RQ3: What are the most commonly used concepts 
(topics) in the abstracts of studies on 
Generative AI and IoT in Precision 
Agriculture? 

RQ4: What conceptual clusters can be identified 
from the analysis of the most frequent 
keywords in studies on Generative AI and 
IoT applied to Precision Agriculture? 

RQ5: Which countries most frequently show co-
occurrence in research on Generative AI 
and IoT in Precision Agriculture? 

3.2 Information Sources and Search Equations  

For this systematic review, various search sources 
were selected to encompass a broad range of 
relevant studies on Generative AI and IoT as key 
technologies for Precision Agriculture. The 
following databases were used: Web of Science, 
Scopus, Google Scholar, ProQuest, and Wiley 
Online Library. 

The general search equation employed for the 
literature retrieval was: 

("generative ai" OR "generative artificial 
intelligence" OR "gan" OR "diffusion models") AND 
("iot" OR "internet of things" OR "smart sensors" 
OR "wireless sensor networks") AND ("precision 

agriculture" OR "smart farming" OR 
"digital  agriculture"). 

3.3 Identified Studies 

Figure 2 presents the 39 223 studies retrieved from 
the five selected databases. 

This ensures a comprehensive foundation from 
which only the most relevant and rigorous studies 
can be screened, filtered, and analyzed for the 
systematic review. 

3.4 Exclusion Criteria 

To ensure the quality and relevance of the studies 
selected for this review, a set of exclusion criteria 
was defined to filter out studies that were not 
pertinent or did not meet the required  standards. 

EC1: Papers are older than 5 years, 

EC2: Papers are not written in English, 

EC3: Documents are Systematic Review Papers 
or Bibliometric Reviews, 

EC4: Full text of the paper is not available, 

EC5: Conferences or journals are not indexed in 
Scopus or Web of Science, 

EC6: Paper titles and keywords are not relevant, 

EC7: Paper abstracts are not highly relevant, 

EC8: Papers are duplicates. 

3.5 Study Selection 

Figure 3 presents the PRISMA flow diagram used 
to describe the study selection process for this 
review. This diagram outlines the key stages in the 
identification, screening, eligibility, and inclusion of 
papers according to the established criteria. 

3.6 Quality Assessment 

To ensure the methodological rigor of the included 
studies, a set of quality assessment questions was 
employed to evaluate the methodological 
robustness and clarity of the information presented 
in each paper: 

QA1: Is the purpose of the research clearly stated? 

 

Fig. 2. Number of studies by source 
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QA2: Is the methodology used in the study clearly 
described and appropriate for the 
stated  objectives? 

QA3: Are the study findings clearly presented and 
supported by the data? 

 

Fig. 3. PRISMA flow diagramThe PRISMA diagram clearly illustrates how papers were filtered at each stage 
of the process. From the initial 39 223 papers identified, the application of exclusion criteria narrowed the 
selection to a set of studies that met the requirements for subsequent quality assessment 
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QA4: Does the paper specifically address the 
impact of Generative AI or IoT on Precision 
Agriculture, considering each approach 
independently? 

QA5: Is the dataset used clearly identified and 
relevant to the topic? 

QA6: Does the paper provide sufficient 
background and contextual information? 

QA7: Are the study results and conclusions well 
supported and aligned with the 
research  objectives? 

QA8: Does the paper include updated and relevant 
references related to the topic? 

These quality assessment criteria ensure that the 
selected studies not only meet high methodological 
standards but also provide clear and 
contextualized data useful for understanding the 
relationship between Generative AI, IoT, and 
Precision Agriculture.  

4 Results and Discussion 

4.1 Overview of the Studies 

Figure 4 illustrates the annual evolution in the 
number of papers published on Generative AI and 
IoT in Precision Agriculture between 2019 and 
2024, categorized by academic database. 

A steady increase in academic publications on 
Generative AI and IoT in Precision Agriculture is 
observed, with 2024 standing out as a particularly 

notable year with 28 papers, reflecting growing 
interest in these technologies. Scopus emerges as 
the leading source in 2024, with 16 publications, 
consolidating its position as the primary database 
used in this field. Until 2022, Web of Science 
played a significant role, but from that point 
onward, there is a clear shift in researchers’ 
preference toward Scopus. Sources such as 
ProQuest and Google Scholar maintain a constant, 
though smaller, presence, indicating a more limited 
impact in this specific area. The year 2024 appears 
to be a turning point in scientific output, likely 
associated with the consolidation and maturity of 
these technologies within the academic sphere. 

When superimposing our annual trend with 
those of Abdelmoneim et al. [79], Avila and 
Barbosa [77], Mohammed et al. [82], and Alaoui et 
al. [83], we observe notable similarities despite 
scale variations. We moved from 4 papers in 2019 
to 28 in 2024, reflecting the increase documented 
by [82], which reports fewer than 10 annual 
publications until 2020 and a jump above 30 in 
2023. Study [79] describes a growth from 5 to 15 
papers between 2019 and 2023, while [77] reports 
an increase from 8 to 18 in the same period} The 
analysis by [83] shows a similar curve: 3 in 2019, 
13 in 2020, 11 in 2021, 24 in 2022, and 29 in 2023, 
with a slight slowdown in 2024. All sources show a 
small dip around 2021-2022 before resuming 
growth in 2023. Furthermore, they consistently 
highlight Scopus as the dominant source after 
2020-2021,  both our review and Mohammed et al. 
recorded 16 publications in 2024, while Web of 
Science decreased from 5 papers in 2021 to 3 in 
2024, a pattern also reflected by Abdelmoneim et 
al. and Avila and Barbosa. The continued yet 
modest presence of Google Scholar and ProQuest 
reinforces the breadth of coverage. This 
convergence of trends confirms the reliability of our 
findings and the maturity of academic interest in 
the convergence of Generative AI and IoT in 
Precision Agriculture. 

The sustained growth in publications on 
Generative AI and IoT in Precision Agriculture from 
2019 to 2024 suggests that these technologies 
have reached a level of maturity that can be 
replicated in sectors such as public health, 
manufacturing, or environmental management. 
The consolidation of Scopus as the primary source 
reflects increased scientific rigor and 

 

Fig. 4. Distribution of papers published between 2019 
and 2024 
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standardization, which facilitates adoption by 
companies and governments in technologically 
underserved regions.  

This trend may also guide strategic decision-
making in rural areas of developing countries by 
adapting these solutions to local contexts. 
Additionally, the evolution curve may serve as a 

reference model to anticipate the adoption of future 
emerging technologies in other domains. 

Table 1 presents the methods, platforms, 
datasets, performance metrics, and key 
contributions of recent studies on the integration of 
Generative AI and IoT in Precision Agriculture, 
providing a clear comparative overview of the 
analyzed works. 

Table 1. Summary of the reviewed papers 

Reference Methods used 
Platforms 

used 
Datasets Performance Key Contributions 

[1] 

IoT-based smart irrigation 
system design and 
implementation using 
sensors for soil moisture, 
temperature, and humidity 
monitoring; cloud-based 
data processing and mobile 
app for user control 

Microsoft 
Azure, 

Raspberry Pi, 
Android 

Not specified 

Latency: low; Scalability: 
high (evaluated through 
system performance 
metrics) 

Developed a distributed smart 
irrigation system integrating 
IoT devices, cloud services, 
and user interfaces for efficient 
agricultural water 
management. 

[2] 
IoT, Machine Learning, Data 
Analytics 

Windows, 
Cloud 

Apple orchards 
data, 

Environmental 
parameters 

Accuracy: 99.4% (disease 
classification) 

Proposed a prediction model 
for apple disease using IoT and 
data analytics; highlighted 
challenges in adopting smart 
technologies in traditional 
farming. 

[3] 

Intelligent energy-efficient 
data routing scheme with 
clustering and genetic 
algorithm 

Not specified Not specified 

Stability period: improved; 
Network lifetime: extended; 
Average energy 
consumption: reduced; Data 
transmission latency: 
minimized; Throughput: 
enhanced (extensive 
simulations) 

Proposed a novel clustering 
mechanism and prescheduling 
CH selection to optimize 
energy use in WSNs, 
demonstrating significant 
performance improvements 
over state-of-the-art methods. 

[4] 
Review of ICT, IoT, AI, and 
big data applications in 
precision agriculture 

Windows, 
Cloud 

Computing 

Various 
agricultural 

datasets 
including soil, 

crop, and 
atmospheric 

data 

Accuracy: 91.3% (SKN 
model for wheat yield 
classification) 

Integration of IoT and AI for 
enhanced decision-making in 
agriculture; emphasis on 
wireless sensor networks and 
big data for sustainable crop 
production. 

[5] 

IoT integration with UAVs for 
environmental monitoring; 
automated data collection 
and analysis 

Windows, 
Linux, Drone 

(DJI 
Quadcopter), 

Cloud 

Real-time 
environmental 

data from a farm 
in Medenine, 

Tunisia (March 
2020 - March 

2021) 

RMSE: 61.117; Accuracy: 

98.85%; mAP: 98.04% 
(cross-dataset validation) 

Developed a low-cost IoT 
platform for precision 
agriculture, enhancing crop 
productivity and resource 
management through 
automated monitoring and 
smart actions. 

[6] 
ECC asymmetric key 
exchange, SHA-256 
hashing, smart contracts 

Ethereum, 
Hyperledger 
Besu, IPFS 

Not specified 

Write Throughput: 19.37 
TPS; Read Throughput: 
32.54 TPS; Write Latency: 
2253 ms; Read Latency: 
1166 ms (performance 
evaluation on permissioned 
blockchain) 

Proposed a blockchain-based 
framework for smart farming 
that enhances data integrity 
and automates farming 
operations using secure 
communication protocols. 

[7] 
Lagrange Optimization, 
Deep Convolutional Neural 
Network (DCNN) 

Not specified Not specified 

Energy Efficiency: 
Maximized; Data 
Throughput: Optimized 
(smart agriculture context) 

Proposed a model to enhance 
IoT communication in 
agriculture by optimizing 
sensor-to-gateway distances, 
integrating mathematical 
optimization with deep learning 
for improved data transmission 
efficiency. 
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The review reveals that most of the papers 
combine the use of IoT with advanced techniques 
such as Machine Learning and image processing, 
highlighting the focus on improving the accuracy 
and efficiency of agricultural systems.  

There is a frequent use of accessible platforms 
such as Raspberry Pi, Arduino, and cloud services 
like Azure and ThingSpeak, which enable the 
development of low-cost, highly 
available  solutions.  

Table 1. (Continuation) 

Reference Methods used 
Platforms 

used 
Datasets Performance Key Contributions 

[8] 

Proposed a platform 
approach for smart farming 
focusing on interoperability, 
reliability, scalability, real-
time processing, security, 
and compliance. 

IoT, AI, 
Cloud 

Computing 

Various agricultural 
datasets including 

Star Schema 
Benchmark 

Real-time processing 
capabilities demonstrated; 
scalability confirmed with 
minimal impact from 
additional sensors 

Introduced a unified solution 
for data integration and 
processing in smart farming, 
addressing challenges of data 
diversity and system 
interoperability. 

[9] 

Deep learning framework 
AgriSegNet for semantic 
segmentation using multi-
scale attention 

PyTorch, 
Nvidia Titan 

XP GPU 

Agriculture-Vision 
challenge dataset 
(21,061 images) 

mIoU: 51.7% (validation set 
for weed cluster); mIoU: 
50.20% (test set) 

Introduced a hierarchical 
model for attention learning 
across multiple image scales, 
improving anomaly detection 
in UAV-acquired agricultural 
images. 

[10] 

Simulation of WSNs using 
COOJA; performance 
assessment of RPL in 
6LowPAN networks for fixed 
and mobile nodes 

COOJA, 
Contiki OS 

Simulated data for 
olive tree farms and 

horse stables 

Packet Delivery Ratio: 95%; 
Power Consumption: 0.5 mW 
(test set: 36 nodes) 

Proposed a new classification 
approach for IoT in agriculture; 
introduced performance 
metrics for stationary and 
mobile scenarios; validated 
framework for precision 
agriculture applications. 

[11] 

Hybrid ML algorithm with IoT 
integration; Kendall’s 
correlation; Bayesian 
optimization with KNN 

Arduino, 
Cloud-
based 

platforms 

Soil parameters (N, 
P, K, humidity, 

temperature, pH) 
from Anakapalle, 

India 

Accuracy: 95%; Precision: 
95%; Recall: 95%; F1 Score: 
94% (test set: 5 days of data) 

Developed a novel hybrid 
algorithm for soil monitoring 
and disease prediction in 
tomato crops, demonstrating 
significant improvements over 
traditional ML methods. 

[12] 

Statistical models; 
Supervised machine learning 
for data validation and 
calibration 

ThingSpeak 
IoT 

platform, 
Raspberry 
Pi, Arduino 

Mega 

Aerial and ground-
based sensor data 
from a lemongrass 

farm 

Correlation Coefficient 
(Temperature): 0.97; R² 
(Temperature): 0.93; 
Correlation Coefficient 
(Humidity): 0.98; R² 
(Humidity): 0.95 (Field 
experiments over 4 days) 

Proposed a Hybrid Sensing 
Platform (HSP) combining 
aerial and ground-based 
sensors to enhance data 
accuracy and reduce costs in 
precision agriculture. 

[13] 
Fog Computing, WiLD 
network, iFogSim, 
6LoWPAN, Cooja, Contiki 

Windows, 
Linux 

Not specified 
Latency improvement and 
throughput enhancement 
through fog computing 

Introduced fog computing for 
long-range smart farming 
solutions. 

[14] 
IoT platform deployment, 
TinyML model training, 
LoRaWAN communication 

Arduino 
Portenta, 
ESP32, 
STM32 

Custom datasets 
from embedded 

devices, Kaggle fruit 
dataset 

Accuracy: 90.2% (Arduino); 
92.3% (ESP32); Energy 
efficiency: 3x better than 
cloud-based alternatives 

Developed an energy-efficient 
IoT platform for smart 
agriculture, integrated 
embedded AI and knowledge-
based systems, proposed a 
FUOTA protocol for model 
updates. 

[15] 
LightGBM, Decision Tree, 
Random Forest, Logistic 
Regression 

Arduino, 
Firebase, 
Android 

IoT dataset with >1 
million data points 

(temperature, 
humidity, soil 

nutrients) 

Accuracy: 99.31%; Precision: 
99%; Recall: 99% (cross-
validation) 

Integrated IoT and ML for crop 
yield prediction and 
recommendations, 
demonstrating high accuracy 
and potential for optimizing 
resource use in agriculture. 

[16] 

RSSI measurement system 
using Zolertia Re-Mote nodes 
and Raspberry Pi for data 

logging 

Contiki OS, 
Raspberry 

Pi 

Dataset of RSSI 
measurements in a 
tomato greenhouse 

RSSI: -24 dBm (reference); 
Max distance: 2420 cm at 50 
cm height 

Developed a portable system 
for measuring radio wave 
attenuation in greenhouses, 
contributing to precision 

agriculture by optimizing WSN 
deployment. 
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Among the most commonly employed 
performance metrics are accuracy, latency, and 
energy efficiency, reflecting a constant concern for 
technical effectiveness and resource consumption. 
However, several studies lack specific datasets, 
which hinders the replicability and validation of 
results, underscoring the need for greater 

transparency in data usage. The main 
contributions of these works are oriented toward 
resource optimization, automation of crop 
monitoring, and early detection of 
agricultural anomalies.  

Both our table and the review by Mohammed et 
al. [82] align with the findings of Lee and 

Table 1. (Continuation) 

Reference Methods used 
Platforms 

used 
Datasets Performance Key Contributions 

[17] 
AI techniques (LSTM, GRU), 
data collection, cleaning, 
predictive processing 

Arduino, 
Google 
Colab, 

MySQL, 
NodeJS 

Historical weather 
data (2012-2017), 

hydro meteorological 
data 

RMSE Soil-Moisture: 0.0268; 
RMSE Air-Humidity: 11.755; 
RMSE Air-Temperature: 
1.409 (validation sets) 

Developed an EDGE-Fog-IoT-
Cloud architecture for smart 
farming, optimizing water 
resources using AI for 
predictive analytics. 

[18] 
Systematic review; 
Bibliometric analysis 

Windows, R 
Educational 
technology 
publications 

Citation count: 1500; h-index: 
25 (analysis of top journals) 

Identified key themes in 
educational technology; 
proposed future research 
directions. 

[19] 
Isolation Forest, Linear 
Regression, Random Forest 

Python, 
GPU 

environment 

Environmental 
Sensor Telemetry 

Data (Kaggle) 

MSE Linear Regression: 
1.449; MSE Random Forest: 
0.162; R² Linear Regression: 
0.799; R² Random Forest: 
0.978 (cross-validation) 

Developed an intelligent 
LoRaWAN-based IoT device 
for monitoring and control in 
smart farming, enhancing 
anomaly detection and 
predictive modeling for 
improved agricultural 
efficiency. 

[20] 

Agile AI-Powered IoT 
platform; Multi-Agent 
System; Containerization; 
LSTM for forecasting 

Raspberry 
Pi, Docker, 

MQTT, 
Apache, 
InfluxDB, 
Google 
Colab 

Environmental 
parameters 

(temperature, 
humidity, etc.) 

RMSE: <value>; Accuracy: 
98.85%; mAP: 98.04% 
(cross-dataset validation) 

Developed a low-cost, robust 
agro-weather station for smart 
farming, enhancing data 
accessibility and real-time 
monitoring for farmers. 

[21] 
Internet of Things 
technology, wireless sensor 
networks, RFID integration 

Windows, 
Linux 

Agricultural product 
data 

Accuracy: Improved 
positioning error; Efficiency: 
Enhanced information 
sharing (experimental 
validation) 

Proposed a rural economic 
supply chain system that 
optimizes agricultural logistics, 
enhances product quality, and 
reduces costs through IoT 
technology. 

[22] 

Proposed Partition Aware-
RPL (PA-RPL) algorithm for 
efficient routing in WSNs for 
precision agriculture 

Cooja 
Simulated farmland 

with 150 nodes 

Energy saving: 40% 
compared to standard RPL 
(potato pest prevention case 
study) 

Improved routing topology for 
in-network data aggregation, 
considering physical 
partitioning of farmland. 

[23] 
Data augmentation using 
DCGAN and cGAN for crop 
shape and style generation 

Windows, 
Linux 

Bonn sugar beet 
dataset (Chebrolu et 

al., 2017) 

mIoU improved to 0.99 from 
0.94 for background class 
and to 0.93 from 0.76 for 
vegetation 

Proposed a novel 
augmentation strategy that 
synthesizes crop shapes and 
styles to enhance 
segmentation performance in 
precision agriculture. 

[24] 
Systematic review, 
bibliometric analysis 

Windows, 
Python 

Various educational 
datasets 

N/A 

Identified key themes in 
educational technology 
adoption and their relevance in 
current research. 

[25] 
Systematic literature review, 
IoT integration, AI analytics, 
remote sensing 

Windows, 
Linux, UAVs 

Various agricultural 
datasets 

Accuracy: 95.8%; Precision: 
92.4%; Recall: 89.1% (cross-
validation across multiple 
studies) 

Highlights the integration of 
IoT, AI, and remote sensing in 
smart crop management, 
addressing challenges and 
promoting sustainable 
practices. 
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Purushothaman [76], indicating that smart farming 
solutions rely on low-cost platforms (Raspberry Pi, 

Arduino) and LoRaWAN networks for long-range 
and low-power communication.  

Table 1. (Continuation) 

Reference Methods used 
Platforms 

used 
Datasets Performance Key Contributions 

[26] Machine Learning, IoT 

NodeMCU, 
DHT11, 

GSM 
Module 

Custom dataset 
(10,000 records) 

Accuracy: 98.25%; Recall: 
98.3%; Precision: 98.3% 
(Powdery Mildew); Accuracy: 
98.85%; Recall: 98.9%; 
Precision: 97.7% (Downy 
Mildew); Accuracy: 93.95%; 
Recall: 94.0%; Precision: 
94.4% (Bacterial Leaf Spot) 

Developed an IoT-based 
system for early detection of 
grape diseases using 
environmental parameters, 
achieving high accuracy in 
disease prediction. 

[27] 

Parametric Complex Event 
Processing (CEP) for IoT 
data transformation 

Windows, 
Linux, 

Raspberry 
Pi, Apache 

Kafka 

Smart farming IoT 
data 

RMSE: 0.5; Accuracy: 
98.85% (test set: 10k 
samples) 

Proposed a symmetrical IoT 
architecture enabling 
bidirectional communication 
and event transformation for 
user-centric IoT services. 

[28] 

Deep learning model with 
RPN and Chan–Vese 
algorithm for plant disease 
detection 

Windows 
Dataset of diseased 

leaves 

Accuracy: 83.75%; Loss: 
lower than traditional model 
(ResNet-101) 

Proposed a model that 
improves accuracy and 
efficiency in plant disease 
identification in complex 
environments, aiding 
sustainable agriculture. 

[29] 

Variable Sampling Interval 
Precision Agriculture (VSI-
PA) system; Sensor node 
selection algorithm; Energy 
consumption model 

C++ 
simulation 
on core i5 
processor 

Simulated 
agricultural farm 

data 

Energy Consumption: 
Reduced significantly; Soil 
Moisture Variation: 
Maintained within acceptable 
limits (compared to fixed 
sampling intervals) 

Proposed VSI-PA system 
improves energy efficiency 
and crop yields by adaptively 
calculating sampling intervals 
based on soil temperature. 

[30] 
Quantitative analysis, 
ANOVA, RMSE calculation 

Windows, 
IoT devices 

Soil samples from 
Wonogiri, Indonesia 

RMSE: Varies; F-statistic for 
P: 7.42, p-value: 0.009; F-
statistic for K: 25.70, p-value: 
0.000007 (comparison with 
JXBS-3001-SCPT-SC) 

Development of a portable 
IoT-based soil nutrient 
monitoring system for smart 
farming, enabling real-time 
data access and improved 
fertilization decisions. 

[31] 
IoT-based pest management 
using CNN models for image 
classification 

Raspberry 
Pi, Arduino, 

Google 
CoLab 

1370 images (458 
pests, 912 leaves) 

Accuracy: 100% (leaf 
classification); 94% (pest 
classification with 
DenseNet201) 

Developed a real-time IoT 
system for tomato cultivation 
and pest management using 
deep learning models. 

[32] 
Identity-based authentication 
scheme using hyperelliptic 
curve cryptography (HECC) 

Windows Not specified 

Computational Cost: 2.4 ms; 
Communication Overhead: 
240 bits (performance 
comparison with existing 
schemes) 

Proposed a cost-effective 
authentication scheme for IoT-
enabled agriculture, ensuring 
security properties like mutual 
authentication, forward 
secrecy, and resistance to 
various attacks. 

[33] 
Systematic review, 
bibliometric analysis 

Windows, 
Python 

Various educational 
datasets 

N/A 

Identified key themes in 
educational technology 
adoption and their relevance in 
current research. 

[34] 

Proposed Photovoltaic 
Agricultural Internet of Things 
(PAIoT) for smart farming; 
discussed applications and 
feasibility issues 

IoT 
platforms, 

PV modules 
Not specified 

Efficiency improvements in 
agricultural production and 
energy generation 

Introduced PAIoT, addressing 
energy supply, sensor 
deployment, and optimization 
of agricultural practices 
through IoT integration 

[35] 

Review of precision 
agriculture technologies, 
including IoT, machine 
learning, and automated 
harvesting systems 

Windows, 
Linux, 
Cloud 

Various agricultural 
datasets 

Accuracy: 97.19%; Precision: 
92.23%; Recall: 90.36% 
(flood detection system) 

Overview of innovations in 
precision agriculture, 
challenges in technology 
adoption, and the role of AI 
and IoT in enhancing 
productivity and sustainability. 
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Table 1. (Continuation) 

Reference Methods used 
Platforms 

used 
Datasets Performance Key Contributions 

[36] 

IoT-based smart farming 
monitoring system (SFMS) 
for bolting reduction in onion 
crops 

Arduino 
Nano, 

DHT11, 
BMP180, 
ESP8266, 

ThingSpeak 

Onion crop data 
from greenhouse 

and open 
environments 

Bolting reduced from 16.7% 
(open) to 3% (closed) 

Developed a low-cost, easy-
to-install SFMS prototype to 
monitor environmental factors 
affecting onion bolting. 

[37] Methods Platforms Datasets Performance Key Contributions 

[38] 
Energy consumption 
modeling, field 
measurements, simulations 

LoRa, 
various 

sensor 
platforms 

Real field 
measurements, 
simulation data 

Energy efficiency 
optimization: E_Total = 
E_Active + E_Sleep; 

E_Sleep = P_Sleep · 
T_Sleep (sensor node 
energy model) 

Proposed optimal packet size 
for energy-efficient data 
collection in precision 
agriculture; demonstrated 
importance of adjusting 
transmission speed to packet 
size for energy savings. 

[39] 
GAN-based augmentation, 
DETR for detection 

Google 
Cloud, 
Python 

Drone images from 
8 estates, synthetic 

images 

Precision: 98.7%; Recall: 
95.3% (challenge dataset 2) 

Enhanced oil palm detection 
accuracy using GAN-
generated images, 
demonstrating improved 
robustness across diverse 
environmental conditions. 

[40] 
Bottom-up modeling, 
parametric inventory 

Windows, 
Linux 

French dairy cattle 
and cereal crop farm 

distributions 

GHG emissions: variable 
based on device complexity 
and farm size (1 year 
analysis) 

Proposed a method to 
estimate carbon footprint of 
digital agriculture, highlighting 
the need for considering 
device diversity and farm size 
distribution in sustainability 
assessments. 

[41] 

Deep Residual Learning 
(WO-DRL) with Whale 
Optimization Algorithm for 
hyper-parameter tuning 

TensorFlow 
2.4.1, Keras 

2.4.3 

2370 rice leaf 
samples (healthy, 
brown spot, rice 

hispa damage, leaf 
blast) 

Accuracy: 95.62%; Precision: 
98.32%; Recall: 94.62%; F1-
score: 94.53 (cross-
validation) 

Introduced WO-DRL for rice 
disease detection, achieving 
high accuracy and efficiency in 
precision agriculture using IoT. 

[42] 

Distributed ledger technology 
for IoT data integrity; modular 
architecture; data 
aggregation and processing 

AWS, 
MongoDB, 

IOTA 

Sensor data from 
vineyards 

TPS: 4-5; Avg. confirmation 
time: 10 min (IOTA network) 

Introduced a node-centric IoT 
system using IOTA's Tangle 
for secure data integrity and 
modular implementation for 
precision agriculture. 

[43] 
Quantitative surveys, SEM-
PLS 

Windows, 
SmartPLS 3 

40 farmers in West 
Java 

CA: 0.823; CR: 0.894; AVE: 
0.739 (reliability test) 

Pioneers the application of 
UTAUT to evaluate farmers' 
readiness for precision 
agriculture using IoT 
monitoring apps in West Java, 
integrating technology 
adoption theories with regional 
practices. 

[44] 

D3-YOLOv10 framework with 
DyFasterNet, D-LKA, 
dynamic FM-WIoU loss, 
knowledge distillation 

Windows, 
Linux 

Self-made tomato 
dataset (878 

images) 

mAP@0.5: 91.8%; 
Parameters: 3.72M; FLOPs: 
8.6G (compared to 
benchmark model) 

Lightweight tomato detection 
model improving accuracy and 
efficiency in precision 
agriculture. 

[45] 

Proposed a framework 
merging WSN and edge 
computing for data collection 
in smart agriculture; 
developed a double selecting 
strategy for optimal node and 
sensor selection 

MATLAB 
Simulated WSN with 

1000 nodes and 
various tasks 

Latency: reduced by 10% vs 
ESN; QoD: 100% for 
ECDSC; Energy 
Consumption: lowest among 
methods 

Introduced an edge 
computing-driven strategy to 
enhance data quality and 
reduce collection time in 
agricultural WSNs. 

[46] 

IoT and WSN framework, 
adaptive clustering, machine 
learning for predictive 
analysis 

Zigbee, 
LoRa 

Simulated data from 
100 sensor nodes 

Energy Consumption: 30% 
reduction; Network Lifetime: 
40% increase (compared to 
conventional WSN) 

Proposed a scalable, energy-
efficient framework for 
precision agriculture with real-
time monitoring and 
automated decision-making 
capabilities. 

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 857–882
doi: 10.13053/CyS-29-2-5738

Systematic Literature Review of Generative AI and IoT as Key Technologies for Precision Agriculture 867

ISSN 2007-9737



For instance, in the “Crop Monitoring” category, 
our table includes a DCNN–LSTM hybrid with R² = 
0.904 for nitrogen prediction in melons [26], while 
Mohammed et al. [82] document the use of UAVs 

and computer vision to estimate biomass and crop 
height, aiding agronomic decision-making. In the 
“Irrigation” category, our review reports water 
savings of 2.9-19.3% using IoT and LSTM [8].  

Table 1. (Continuation) 

Reference Methods used 
Platforms 

used 
Datasets Performance Key Contributions 

[47] 
Systematic review, 
bibliometric analysis 

Windows, 
Linux 

Various educational 
datasets 

N/A 

Identified key themes in 
educational technology 
adoption and their relevance in 
current research. 

[48] 
Multimethod approach: 
expert interviews, case 
studies, simulation modeling 

Windows, 
IoT 

platforms 

Data from 
MATOPIBA pilot 

(132 days of 
soybean growth) 

Water use efficiency: 
optimized irrigation; Energy 
cost reduction: significant 
savings (pilot evaluations) 

Proposed factors for PA 
adoption in Agriculture 4.0; 
Developed a model for 
irrigation operations 
management; Highlighted 
IoT's role in precision 
agriculture. 

[49] 

Lightweight communication 
protocol with public-key 
encryption; energy-efficient 
data aggregation algorithm 

MATLAB 
1000 on-field 
sensors in a 

1100x1200 m² area 

Energy Consumption: 
Improved node longevity; 
Execution Time: 52% faster 
than existing methods 
(simulation study) 

Introduced a novel framework 

for balancing energy efficiency 
and security in precision 
agriculture, utilizing a unique 
public-key encryption 
approach and a non-iterative 
secure data aggregation 
mechanism. 

[50] 

Decentralized access control 
framework using blockchain 
technology; ABAC and RBAC 
models for access 
management; simulation for 
gas consumption evaluation 

Ethereum, 
Windows 10 

Not specified 

Gas used: IoT_ACC: 
1,487,367; IoT_ORMC: 
2,196,564; IoT_SRMC: 
1,677,746 (simulation on 
Ethereum network) 

Proposed a novel 
decentralized access control 
framework to enhance IoT 
security in smart farming, 
reducing redundancy in 
permissions and improving 
scalability through smart 
contracts. 

[51] Methods Platforms Datasets Performance Key Contributions 

[52] 

Smart crop tracking and 
monitoring using SVM, 
logistic regression, and 
random forest 

Arduino 
Uno, IoT 
devices, 

cloud 
storage 

500 images of 
mango leaves (135 

diseased, 365 
normal) 

SVM Accuracy: 95%; 
Random Forest Accuracy: 
78%; Logistic Regression 
Accuracy: 73% (experimental 
study) 

Proposed a framework for 
disease detection in crops and 
pesticide suggestion based on 
soil data using IoT and 
machine learning. 

[53] 
Systematic Review, 
Bibliometric Analysis 

Windows, 
Linux 

Educational 
Technology, Cloud 

Computing 

Density: 0.6; Relevance: 0.4 
(thematic analysis) 

Identification of key themes in 
educational technology 
adoption and cloud computing 
integration. 

[54] 

Systematic review of smart 
farming practices, GHG 
mitigation strategies, and 6G-
IoT integration 

Windows, 
Linux, IoT 
platforms 

Various agricultural 
datasets 

GHG reduction potential 
enhanced by 6G-IoT 
technologies 

Identifies limitations of current 
practices, proposes innovative 
strategies for GHG mitigation, 
and emphasizes the role of 
6G-IoT in sustainable 
agriculture. 

[55] 

Image processing, 
segmentation, and feature 
extraction using computer 
vision; wireless 
communication via 
LoRaWAN and MQTT 

Raspberry 
Pi, LoPy, 

TTN cloud 

Images of 
Planococcus citri 

(Cotonet) 

Accuracy: >50% pest index 
detection; Processing time: 
28.415 ms (high-resolution 
images) 

Developed a prototype for pest 
detection in precision 
agriculture integrating IoT 
technologies and image 
processing. 

[56] 

Proposed Gateway 

Clustering Energy-Efficient 
Centroid (GCEEC) routing 
protocol for WSNs in 
agriculture 

NS2 
100 sensor nodes in 
a 100m x 100m area 

Network Lifetime: 700-800 

rounds; Energy 
Consumption: Reduced 
compared to EECRP, CAMP, 
MEACBM (simulation results) 

Improved load balancing and 
energy efficiency in WSNs for 
agricultural monitoring by 
using multihop communication 
and centroid-based cluster 
head selection. 
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Similarly, Mohammed et al. [82] describe LSTM 
models using Aquacrop data achieving R² = 0.97 

for evapotranspiration estimation. All studies refer 
to key performance metrics: accuracy, latency, and 

Table 1. (Continuation) 

Reference Methods used 
Platforms 

used 
Datasets Performance Key Contributions 

[57] 
SVM, Logistic Regression, 
Random Forest 

Windows, 
IoT 

NSL-KDD 
Accuracy: 98%; Precision: 
>98%; Recall: >98% (test set: 
100781 samples) 

Proposed a framework for 
intrusion detection in IoT 
networks for agriculture, 
highlighting the effectiveness 
of machine learning algorithms 
in enhancing security and 
efficiency in smart irrigation 
systems. 

[58] Methods Platforms Datasets Performance Key Contributions 

[59] 

Integration of RERs, IoT-

based monitoring, robotic 
applications 

Blynk IoT, 
Android 

Case study in 
Sharjah, UAE 

RMSE: 61.117; Precision: 

95.8%; Recall: 83.6% (test 
set: 10k samples) 

Proposed a comprehensive 
smart farming framework 
enhancing sustainability and 
efficiency in agriculture 
through technology 
integration. 

[60] 

Customized smart farming 
system using IoT and LoRa 
technologies; integration with 
PLCs; web-based monitoring 
application; Telegram bot for 
communication 

Cloud 
server, 
Laravel, 
MySQL, 

Bootstrap, 
Node-RED 

Experimental data 
from wireless sensor 

network tests 

RSSI: -36 dBm to -109 dBm; 
SNR: 2 dB to 9 dB; RPP: 50% 
to 100% (various distances 
up to 795 m) 

Development of a low-cost, 
low-power smart farming 
system; integration of IoT with 
existing farming technologies; 
remote monitoring and control 
capabilities; user-friendly web 
application for data 
management and analysis. 

[61] 

High-throughput 
phenotyping, remote 
sensing, automated 
agricultural robots, AI 
applications, WSNs, GIS 

Windows, 
Linux, IoT 
devices, 

UAVs, cloud 
computing 

Various agricultural 
datasets 

RMSE: 61.117; Accuracy: 
98.85%; mAP: 98.04% (test 
set: 10k samples) 

Integration of AI and IoT in 
precision agriculture, 
enhanced crop monitoring, 
automation of agricultural 
tasks, real-time data analysis, 
and addressing connectivity 
challenges with 5G. 

[62] 
IoT and ML for intelligent 
irrigation system design 

Windows, 
ThingSpeak 

Soil and weather 
parameters 

RMSE: 61.117; Accuracy: 
98.85% (test set: 10k 
samples) 

Developed a cost-effective 
IoT-based weather station for 
precision agriculture in smart 
cities, enhancing irrigation 
efficiency. 

[63] 
Wireless sensor networks, 
neural networks, image 
processing 

MATLAB 

Data from sensors 
monitoring insect 
behavior in crops 

(wheat, rice, maize, 
potato, tomato) 

Accuracy improvement: 3.9% 
(compared to existing 
methods) 

Proposed an intelligent 
monitoring system for pest 
detection and management 
based on insect behavior, 
enhancing pesticide 
application efficiency and 
reducing environmental 
impact. 

[64] 

Comprehensive survey of 
IoT, ML, AI, SDN, fog/edge 
computing, and 
nanotechnology applications 
in Precision Agriculture (PA) 

Windows, 
Linux, 
Cloud 

Not specified Not specified 

Proposed AgriFusion 
architecture for integrating 
multidisciplinary technologies 
in PA; identified future 
research directions and KPIs 
for PA applications. 

[65] 
Systematic review, 
bibliometric analysis 

Windows, 
Linux 

Various educational 
datasets 

N/A 

Identified key themes in 
educational technology 
adoption and their relevance in 
current research. 

[66] 
IoT-enabled soil sensors, 
XGBoost, AdaBoost 

Arduino 
UNO 

300 cardamom, 320 
black pepper, 300 

coffee soil samples 

Accuracy: 91.2%; AUC: 0.93 
(10-fold cross-validation) 

Developed a crop prediction 
system integrating IoT and 
machine learning for precision 
agriculture, enhancing crop 
yield and sustainability. 
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energy efficiency, and acknowledge the lack of 
public datasets as a barrier to replicability. 

Furthermore, both our review and Lee and 
Purushothaman [76] emphasize that automating 
crop monitoring and early anomaly detection are 
decisive factors in accelerating the adoption of 
Generative AI and IoT in Precision Agriculture. The 
use of low-cost platforms and low-power networks 

in Precision Agriculture suggests that similar 
solutions could be scaled to sectors such as rural 
healthcare, environmental monitoring, or light 
manufacturing, where efficiency and energy 
autonomy are critical. 

The scarcity of public datasets limits 
replicability, which also affects other emerging 
disciplines; therefore, promoting open data 

Table 1. (Continuation) 

Reference Methods used 
Platforms 

used 
Datasets Performance Key Contributions 

[67] 

IoT architecture for 
greenhouse management; 
integration of WSNs and 
WAns; real-time data 
acquisition and control 

LoRaWAN, 
Arduino 
MKR, 

Raspberry 
Pi, PHP, 
MySQL 

Data from multiple 
sensor nodes over 

one month 

Power Consumption: 3 mA 
(deep sleep mode); Battery 
Life: >100 days (with solar 
charging) 

Development of a flexible IoT-
based decision support 
system for precision 
agriculture in greenhouses, 
enabling remote monitoring 
and control of environmental 
parameters. 

[68] 

Comprehensive survey and 
analysis of blockchain and 
IoT integration in precision 
agriculture 

Windows, 
Linux 

Not specified N/A 

Proposed novel blockchain 
models for IoT-based 
precision agriculture, 
discussed security and privacy 
challenges, and reviewed 
common blockchain platforms 

for various agricultural sub-
sectors. 

[69] 

Proposed a generic 
reference architecture model 
for IoT-based smart farming 
monitoring systems, focusing 
on energy consumption and 
seven architectural layers 

Windows, 
Linux, 
Cloud 

Computing 

Saffron agriculture in 
Kozani, Greece 

Energy consumption 
controlled; optimized crop 
management (real-world 
application) 

Development of a 
comprehensive architecture 
model for smart farming, 
addressing non-functional 
requirements and enhancing 
decision-making through IoT 
technologies 

[70] 
IoT agnostic architecture, 
microservices, serverless 
computing 

Docker, 
InfluxDB, 
RabbitMQ 

SEnviro nodes in 
smart farming 

0% losses in ingestion; 
throughput: 2400 msg/sec 
(performance evaluation) 

Proposed SEnviro Connect for 
smart farming; validated IoT 
lifecycle management; 
addressed scalability, stability, 
and interoperability 
challenges. 

[71] 

IoT-based smart agriculture 
framework using sensor 
networks for monitoring soil 
moisture, temperature, 
humidity, and wind speed 

Arduino 
Uno, 

ThingSpeak 

Cloud 

Real-time 
agricultural field data 

Response Time: 13.57 ms; 
Standard Deviation: 10.63 
ms (same cloud platform) 

Developed a smart agriculture 
system for automated 
irrigation and environmental 
monitoring, enhancing crop 

yields through real-time data 
analysis and alerts. 

[72] 
Systematic review, 
bibliometric analysis 

Windows, R 
Educational 
technology 
publications 

N/A 

Identified key themes in 
educational technology and 
their relevance in current 
research. 

[73] 
RF energy harvesting, IoT 
integration 

Windows, 
Linux 

Not specified 

Efficiency: 12.93% (rectenna 
design); Voltage output: 
0.374 V (ambient 
measurement) 

Explores RF energy 
harvesting for sustainable 
agriculture, highlighting its 
potential to power IoT devices 
and reduce reliance on 
batteries. 

[74] 

Proposed a model for 
energy-efficient WSN in 
precision agriculture; design 
of moisture monitoring and 
automatic irrigation system; 
pest monitoring and early 
warning system 

ZigBee, 
Lora 

Not specified 

Energy efficiency: lower than 
traditional agriculture; 
Accuracy: improved 
monitoring of physiological 
and ecological parameters 

Comprehensive analysis of 
WSN in agriculture; proposed 
improvements for energy 
efficiency; integration of pest 
monitoring technologies; 
design of a flexible irrigation 
system. 
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standards becomes an urgent need. These 
technologies, when adapted to local conditions, 
can benefit regions with limited technological 
resources. Additionally, the analyzed performance 
metrics may guide future developments toward 
sustainable solutions in changing and climate-
vulnerable contexts. 

4.2 Answers to the Research Questions 

This section presents the findings obtained for 
each of the research questions formulated in 
the study.RQ1: In which crops are Generative AI 
and IoT applied? 

Table 2 and Figure 5 show the distribution of 
papers according to the main crops studied, 
allowing the identification of agricultural sectors 
where the convergence of Generative AI and IoT 
has had the greatest impact. 

Table 2 and Figure 5 show the distribution of 
papers according to the main crops studied, 
allowing the identification of agricultural sectors 
where the convergence of Generative AI and IoT 
has had the greatest impact. 

Greenhouses account for 42.5% of the papers, 
followed by extensive rice crops (18.9%) and grape 
(10.4%), reflecting a clear interest in highly 
controlled environments.  

Tomatoes (8.5%) and potatoes (7.5%) also 
receive significant attention, while oil palm appears 
in only 0.9% of the cases. This suggests that high-
density and high-value systems—where IoT and AI 
generate more evident returns—dominate the 
research landscape. 

When comparing our distribution of agricultural 
sectors with the machine learning advancements 
for crop disease detection and protection 
summarized by Taha et al. [80], a complementary 
yet distinct focus is observed. 

While our table reveals that greenhouse 
environments dominate 42.5% of the papers and 
crops such as rice (18.9%), vineyard (9.4%), 
tomato (8.5%), and potato (7.5%) lead the 
application of Generative AI and IoT, the inventory 
in [80] covers a wider variety of crops (cotton, rice, 
tomato, wheat, corn, eggplant, etc.) and focuses 
on vision models (CNN, SVM, LSTM, ViT), 
reporting over 89% accuracy in disease detection 
tasks. 

While their “Application” category centers on 
specific use cases such as symptom classification 
and segmentation, our perspective highlights 
productive systems (greenhouses and large-scale 
farms) where the convergence of sensors, 
LoRaWAN networks, and predictive algorithms 
creates greater added value. In this sense, the 
results of [80] validate the technical feasibility of AI 
techniques in various crops, while our analysis 
reveals the types of farming systems—particularly 
those with high density and environmental 
control—where these technologies find more 
intense and profitable adoption. 

The high concentration of papers in 
greenhouses and high-value crops suggests that 
the adoption of Generative AI and IoT is more 
feasible in contexts with greater environmental 
control and economic return. This insight could be 
extrapolated to sectors such as logistics, 
pharmaceutical industries, or smart laboratories. 

This trend also presents an opportunity to 
replicate such approaches in emerging agricultural 
regions through technology transfer policies. 
Furthermore, it highlights the need to expand 
research toward less-studied crops and open-field 
environments, promoting technological equity. 

In the future, this distribution can serve as a 
model for prioritizing investments in other data-
intensive and automation-driven industries. 

RQ2: Which IoT devices are most frequently 
used in scientific studies on Precision 
Agriculture? 

Table 3 and Figure 6 present the frequency of 
occurrence for each key platform or sensor in 
Precision Agriculture research, justifying their 
selection due to reliability, versatility, and ease of 
integration in real-world environments. 

Raspberry Pi (~40%) and soil moisture sensors 
(~37%) clearly dominate the IoT landscape in 
Precision Agriculture, reflecting a preference for 
local computing platforms and critical water 
monitoring to optimize irrigation.  

Multispectral drones (~16%) emerge as the 
third most frequent technology, highlighting the 
adoption of aerial captures with advanced spectral 
bands for crop health assessment. WSANs (~7%) 
underscore the need for distributed, resilient, and 
long-range networks. 
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Our distribution of IoT devices in precision 
farming—where Raspberry Pi accounts for 39.5%, 
soil moisture sensors 37.2%, multispectral drones 
16.3%, and WSANs 7.0%—is fully consistent with 
prior studies. Terence and Purushothaman [76] 
had already identified in 2020 that low-cost 
platforms (Raspberry Pi and Arduino-based 

MCUs) were the most widely used in smart 
farming. Similarly, Hoteit et al. [79], in their review 
of smart irrigation, confirmed the widespread 
adoption of microcontrollers such as Arduino UNO, 
ESP8266/32, and Raspberry Pi for data acquisition 
and transmission. Collectively, these device–
sensor pairings emphasize a sustained evolution 

Table 2. Crops identified in the reviewed papers 

Crops Papers Count % 

Oil palm [39] 1 0.9 

Tomato [11] [16] [22] [23] [31] [39] [44] [63] [69] 9 8.5 

Grape [5] [14] [19] [26] [29] [33] [36] [39] [45] [61] [69] 11 10.4 

Rice 
[10] [15] [16] [20] [21] [25] [28] [31] [35] [41] [43] [52] [53] 
[54] [58] [63] [64] [65] [66] [69] 

20 
18.9 

Green-house 
(various vegetab-les) 

[1] [2] [4] [5] [9] [10] [11] [14] [16] [17] [19] [22] [24] [27] 
[29] [31] [33] [34] [35] [36] [38] [39] [40] [41] [47] [48] [50] 
[52] [53] [54] [55] [58] [59] [61] [62] [63] [64] [67] [68] [69] 
[71] [73] 

45 

42.5 

Vineyard [2] [11] [19] [25] [26] [36] [38] [48] [61] [70] 10 9.4 

Potato [2] [4] [5] [22] [29] [58] [63] [69] 8 7.5 

Onion [36] [63] 2 1.9 

 

Fig. 5. Number of papers by crop 

Table 3. IoT devices identified in the reviewed papers 

IoT Devices Papers Count % 

Raspberry Pi 
[1] [5] [14] [16] [19] [20] [26] [27] [31] [41] 
[42] [49] [53] [55] [67] [69] [71] 

17 39.5 

Multispectral drones (RGB + 
Red-Edge) 

[23] [25] [35] [39] [61] [64] [69] 7 16.3 

Soil moisture sensor 
[1] [2] [4] [5] [11] [12] [13] [19] [24] [25] [32] 
[33] [35] [37] [52] [71] [73] 

16 37.2 

WSANs (Wireless Sensor & 
Actuator Nodes) 

[1] [63] [67] 3 7.0 
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toward open, low-cost, low-power MCU-based 
architectures that facilitate the integration of 
Generative AI and IoT in Precision Agriculture. 

The prevalence of open and low-cost platforms 
such as Raspberry Pi and soil moisture sensors 
highlights an accessible technological ecosystem 
that can be adapted to sectors like environmental 
monitoring, smart cities, or community health in 
rural areas. Their low cost and ease of deployment 
allow technological solutions to be scaled in 
regions with limited resources. Furthermore, the 
adoption of multispectral drones and WSANs 
anticipates their potential application in industries 
such as mining, water management, and 
environmental conservation. This trend reinforces 
the feasibility of modular and sustainable systems 
to address emerging challenges across various 
geographic and temporal contexts. 

RQ3: What are the most frequently used 
concepts (topics) in abstracts of 
research on Generative AI and IoT in 
Precision Agriculture? 

Table 4 illustrates the main topics identified in 
the abstracts of research related to Generative AI 
and IoT in Precision Agriculture. These topics are 
derived from a clustered keyword analysis, 
reflecting dominant semantic patterns in the most 
representative studies. 

According to the table, the most frequent topics 
revolve around the use of sensors, drones, and 
neural networks to optimize smart agriculture. A 
strong focus on models, data, and performance is 
evident, emphasizing the importance of predictive 
analytics and automation. Terms such as 
monitoring, precision, environment, and 

 

Fig. 6. Pie chart of papers by IoT device 

Table 4. Main topics extracted from the abstracts 

Topic Name for 
Summaries 

Word 
01 

Word 
02 

Word 
03 

Word 
04 

Word 
05 

Word 
06 

Word 
07 

Word 
08 

Word 
09 

Word 
10 

Weight 

1. Smart agriculture 
based on data and 
sensors 

smart datum sensor 
agricultu
re 

use base system paper model 
precisión 
agricultu
re 

0.09 

4. Technology and data 
usage in smart 
agriculture 

datum system 
agricultu
re 

use base 
technolo
gy 

Smart 
farme 

internet 
thing 

applicati
on 

crop 0.09 

3. Image modeling for 
smart agriculture 

image model 
framewo
rk 

condition crop time plant provide 
smart 
farming 

quality 0.08 

5. Precision agriculture 
and technology: use and 
performance 

precisión 
agricultu
re 

use 
technolo
gy 

performa
nce 

model 
agricultu
re 

datum network 
applicati
on 

provide 0.08 

2. Use of network 
models for precision 
agriculture 

use base model network 
precision 
agricultu
re 

system node monitor 
environ
ment 

agricultu
ral 

0.07 
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smart_farming highlight a clear orientation toward 
sustainable and technologically advanced farming 
practices. The use of vision-based technologies 
and networks for environmental monitoring also 
stands out. Collectively, these topics reflect an 
evolution toward more integrated, intelligent, and 
efficient agricultural systems. 

When comparing our five extracted topics with 
the research areas analyzed in the fourteen 
systematic reviews by [84], we find that only our 
work simultaneously delves into image 
classification and its integration into IoT platforms 
for smart agriculture. In contrast, the previous 
reviews tend to focus on one aspect or the other. 

For example, in [84], all studies are marked “✓” for 

either image classification or IoT solutions, but 

none show “✓” in both columns. In contrast, our 

review integrates advanced visual data processing 
(deep learning, segmentation, pest and stress 

detection) with practical deployment on IoT 
platforms (LoRaWAN, MQTT, Raspberry Pi). This 
shows that our contribution bridges a significant 
methodological gap by unifying image 
classification and IoT implementation in 
Precision Agriculture. 

The simultaneous integration of computer 
vision and IoT platforms in agriculture 
demonstrates an advanced methodological 
approach that can be replicated in sectors such as 
automated manufacturing, environmental 
management, and public health to improve 
monitoring and decision-making. This unified 
model promotes intelligent systems adaptable to 
diverse geographical contexts, especially in 
regions with critical efficiency needs. The 
orientation toward predictive analysis and 
sustainability reinforces its future applicability in 
scenarios involving climate change and resource 
scarcity. Moreover, the identified methodological 
gap opens opportunities for interdisciplinary 
research in other data-driven industries. 

RQ4: What conceptual clusters can be 
identified from the analysis of the most 
frequent keywords in studies on 
Generative AI and IoT applied to 
Precision Agriculture? 

Figure 7 and Table 5 present a conceptual map 
with clusters formed from keywords in research on 
Generative AI and IoT applied to Precision 
Agriculture, providing a visual understanding of the 
conceptual evolution in this field. 

The grouped concepts reveal a clear thematic 
differentiation, ranging from advanced 
technologies to specific IoT applications in digital 
agriculture. The frequent use of terms such as 
sensor networks and blockchain technology 
reflects an evolution toward increasingly integrated 
and secure intelligent systems. The largest cluster 
corresponds to “Advanced technologies for smart 
agriculture,” underscoring the current emphasis on 
sophisticated technological solutions. Additionally, 
a direct connection between deep learning and the 
precise management of agricultural variables is 
observed, highlighting growing technological 
specialization. Finally, concepts such as remote 
sensing and tracking point to the continued interest 
in remote and precise crop monitoring. 

 

Fig. 7. Conceptual map of keywords 

Table 5. Cluster name extracted from the keywords 

Cluster Name 
Wei
ght 

Avg. 
Dim. 1 

Avg. 
Dim. 2 

1. Smart agriculture and IoT 
monitoring 

55 -0.26 -0.65 

2. Precision agriculture and 
smart sensors 

41 0.17 0.68 

3. Internet of Things and 
artificial intelligence 

43 0.69 0.09 

4. Smart agriculture and 
sensor networks 

21 -0.57 0.26 
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These findings not only corroborate the topics 
identified in [82] but also extend the taxonomy of 
smart environments described by González-
Palmié et al. [78]. Our red cluster, “Advanced 
technologies for smart agriculture” (weight 55), 
matches the Motor Themes in [82] such as “Smart 
Agriculture” and “Artificial Intelligence,” while also 
encompassing the perception and networking 
dimensions from [78] by emphasizing terms like 
IoT, LoRaWAN, and sensor networks. Similarly, 
the green cluster, “Precision agriculture and 
advanced sensors” (weight 41), mirrors the Motor 
Themes “Precision Agriculture” and “Sensor” in 
[82] and represents the transition, noted in [78], 

from isolated nodes to high-performance 
heterogeneous networks. Our third cluster, “IoT 
applications in digital agriculture” (weight 43), 
appears in [82] as an emerging Niche Theme and 
aligns with the intelligent processing dimension in 
[78], where deep learning and blockchain 
technology become increasingly relevant. Lastly, 
the purple cluster, encompassing remote sensing 
and tracking (weight 21), corresponds to the 
Emerging Themes in [82] and the application 
dimension in [78], underscoring the current priority 
on remote monitoring and the generation of value-
added services. Thus, our conceptual evolution not 
only validates both classifications but also reveals 
increasing specialization in Generative AI and IoT 
for Precision Agriculture. 

The conceptual evolution toward advanced 
technologies such as sensor networks, blockchain, 
and deep learning suggests a replicable trajectory 
in sectors like logistics, food traceability, and smart 
healthcare, where security, automation, and 
remote monitoring are priorities. This specialization 
reinforces the ability of these technologies to adapt 
to diverse geographic contexts, including rural or 
hard-to-reach areas. Moreover, the emergence of 
thematic clusters helps anticipate future lines of 
interdisciplinary technological innovation. In the 
long term, this evolution may guide the digital 
transformation of emerging industries through 
more robust and secure intelligent architectures. 

RQ5: Which countries frequently exhibit co-
occurrence in research on Generative AI 
and IoT in Precision Agriculture? 

Figure 8 presents a bibliometric network 
visualizing international collaboration among 
countries, clearly highlighting those with the most 
frequent co-occurrence in research on Generative 
AI and IoT in Precision Agriculture. 

A strong international collaboration is evident, 
led by Saudi Arabia and India, underscoring their 
role as central countries in research on Generative 
AI and IoT in Precision Agriculture. Saudi Arabia’s 
repeated cooperation with Pakistan, the United 
Kingdom, China, India, and Yemen reflects a 
consistent and strategic pattern of scientific and 
technological knowledge exchange within the 
Asian and Middle Eastern regions. Additionally, 
recurrent interactions between Thailand and India, 
Tunisia and Yemen, and India with Ethiopia, as 

 

Fig. 8. Bibliometric collaborations between countries 
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well as Qatar with Morocco, indicate 
emerging  regional networks that foster 
geographic  diversification of knowledge and 
technology  transfer. 

When comparing our country-based distribution 
of papers with that of Restrepo-Arias et al. [84], 
clear parallels emerge: in both studies, India 
stands out with overwhelming leadership (31 
papers in our review versus the highest number 
reported in [84]), confirming its position as the main 
source of scientific output in Generative AI and IoT 
for Precision Agriculture. These co-occurrence 
patterns also closely match the geographic 
affiliations reported by Abdelmoneim et al. [79], 
who identified Pakistan and Saudi Arabia as key 
contributors (9 and 7 authors, respectively), which 
aligns with our weight-3 link between both 
countries. Likewise, Abdelmoneim et al. highlight 
China and India in prominent positions (6 and 5 
authors), consistent with our weight-2 links 
between China–Saudi Arabia and India–Ethiopia 
and Thailand.  

Finally, de Avila and Barbosa [77] show that, 
among 277 authors in 71 studies on smart 
agricultural environments, India accounts for the 
highest proportion of affiliations (107 authors, 
38.6%), while Saudi Arabia is represented by 7 
authors (2.5%), reinforcing our observation that 
both countries act as central nodes in the co-
occurrence network. Overall, the paper and author 
counts by country in [84], [79], and [77], as well as 
the mapped link structure in our co-occurrence 
figure, consistently highlight India and Saudi 
Arabia’s prominence as hubs of international 
collaboration in Generative AI and IoT research 
applied to Precision Agriculture. 

The centrality of India and Saudi Arabia in 
scientific co-occurrence networks reflects their 
ability to lead global technological initiatives, 
serving as a replicable model for sectors such as 
energy, healthcare, and digital education through 
South-South alliances. These collaborations 
strengthen knowledge transfer to developing 
regions, fostering more inclusive innovation 
ecosystems. Furthermore, the observed 
geographic diversification suggests a shift toward 
more distributed science, moving away from 
traditional power concentrations. In the future, 
these international networks may serve as 
foundations for multilateral technological 

innovation programs tailored to both global and 
local challenges. 

5 Conclusions and Future Research 

This paper examined the integration of Generative 
AI and IoT in Precision Agriculture, addressing key 
questions regarding crops, devices, concepts, and 
scientific collaborations. Regarding RQ1, a high 
concentration of studies was found on 
greenhouses, rice fields, vineyards, tomatoes, and 
potatoes, indicating a stronger adoption in high-
value crops and environments with controlled 
conditions. RQ2 revealed that devices such as 
Raspberry Pi and soil moisture sensors dominate 
the technological landscape, alongside 
multispectral drones and wireless networks, 
shaping an efficient and low-cost architecture. In 
RQ4, thematic clusters showed a clear evolution 
toward integrated intelligent systems, emphasizing 
concepts such as sensor networks, deep learning, 
blockchain, and remote monitoring. Finally, RQ5 
evidenced a strong international collaboration 
network, with India and Saudi Arabia as central 
nodes and emerging alliances in Asia and Africa. 
Collectively, the findings confirm that these 
technologies are in a stage of consolidation, with 
high potential for adaptation, replicability, and 
expansion across different global regions. 

The implications of this systematic review open 
several avenues for future research. First, it is 
relevant to explore how Generative AI and IoT-
based solutions can be adapted to low-
commercial-value crops or regions with limited 
resources, assessing their operational 
sustainability. Second, the development of 
integrated platforms that combine computer vision, 
edge computing, and generative models for real-
time decision-making is recommended. Third, the 
evolution of concepts such as blockchain and 
sensor networks should be studied in terms of their 
applicability to agricultural traceability and data 
governance. Fourth, fostering collaborative 
networks in underrepresented regions such as 
Latin America and Africa is advised to reduce 
technological gaps and strengthen research 
equity. Finally, future studies may focus on the 
technological transfer of these architectures to 
sectors such as digital health, advanced 
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manufacturing, or environmental management, 
promoting their adoption beyond the 
agricultural domain. 
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