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Introduction1Abstract

An n-dimensional Móbius cube, MQn, is created by

rearranging some of the connectioñs of the hypercube,
Q~ ¡Cull95J{Fan98J. In this paper, we demonstrate that

MQn is (n -3)-hamiltonian connected and (n -2)-

hamiltonian. In other words, we prove that there exists a

hamiltonian path between any pair of vertices in a faulty

MQn with n -3 faults. We also show that a ring of

length 2n -fv can be embeddedin a faulty MQn with fv
faulty nodes and fe faulty edges, where fv + fe ~ n- 2

and n ?: 3. That is, the faulty MQn remains hamilto-

nian with n --2 faults. A recent result has shown that a

ring of length 2n -2f v can be embedded in a faulty hyper-

cube, if f v + f e ~ n -1 and n ?: 4, with a few additional
constraints {Sengupta98J. Our results, in comparison to

the hypercube, show that longer rings can be embedded in

MQn without additional constraints.

The hypercube is a popular network because of its at-
tractive properties, including regularity, symmetry, pow-
erful computability, strong connectivity, recursive con-
struction, partitionability, and relatively low link com-
plexity [Bhuyan84][Leu99][Sengupta98][Tseng96]. The
Móbius cube MQn is created by rearranging some ofthe
connections of the hypercube Qn, and the total num-
ber of vertices and edges in a M6bius cube is the same
as those of a hypercube. The M6bius cubes have been
studied recently because they have several properties
that are superior to hypercubes. For example, the di-
ameter of MQn is about one half that of Qn, the aver-
age number of communication steps between nodes for
MQn is about two-thirds of the average for Qn, and 1-
MQn has dynamic performance superior to that of Qn
[Cul195] [Fan98] .

Keywords: Mobius cube, fault tolerant, hamilto-
nian, hamiltonian connected. The architecture of an interconnection network is usu-

ally represented as a graph. A ring structure (hamilto-
nian cycle) is widely used in interconnection networks,
for its good properties such as low connectivity, sim-
plicity, extensibility, and its feasiable implementation.
The embedding problem, which maps a source graph
into a host graph, is an important and interesting topic
of recent studies. Embedding rings into various net-
works has been discussed. For example, a ring (fault-
tolerant ring) can be embedded in faulty Stars [Tseng97] ,
faulty arrangement graphs [Hsieh99] , double loop net-
works [Sung98], de Bruijn networks [Rowley93], faulty
twisted cubes [Huang99].faulty crossed cubes [Huang99-
2], and faulty hypercubes [Leu99][Sengupta98][Tseng96].

A ring of length 2n -2fv can be embedded in a faulty
hypercube with f v faulty nodes and f e faulty edges, if
fv + fe::; n- 1 and n:;::: 4, with a few additional con-
straints shown in [Sengupta98]. In this paper, we will
prove that there exists a hamiltonian path between any
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Definition 1 The Móbius cube, MQn = (V, E), ¿f di-

mension n has 2n nodes. Each node is labeled by a

unique n-bit binary string as its address and has con-

nections to n other distinct nodes. The node with ad-
dress X = Xn-1Xn-2 ...Xo connects to n other nodes ~,

O ~ i ~ n- 1, where the address of ~ satisfies one of

the following conditions:

(1) ~=(Xn-l...Xi+1Xi...xo) ifxi+l =O, or
(2) ~=(Xn-l ...Xi+1Xi ...XO) if Xi+l = 1

pair of vertices in a faulty MQn with up to n -3 faults.
This result is optimal in the following sense. Assume
that there are n- 2 faults in a M6bius cube MQn. It is
possible that there exists a vertex v with degree 2 in this
faulty MQn. Let x and y be the two vertices adjacent
to v. Then, x and y can not be the end points of any
hamiltonian path since such a path must traverse both v
and other vertices. We will also demonstrate that a ring
of length 2n -f1l can be embedded in a faulty MQn with
f 11 faulty nodes and f e faulty edges, where f 11 + f e ~ n- 2
and n ~ 3. All of the fault-free vertices can be included
in the ring in the faulty MQn. In other words, we willg
show that the faulty MQn remains hamiltonian with up
to n- 2 faults. This result is also optimal, for no regular
graphs of degree n can hold over n -2 faults and still
guarantee the existence of a fault-free hamiltonian cycle.

From the above definition, X connects to ~ by com-
plementing the bit Xi if Xi+l = O, or by complementing
all bits of Xi ...Xo if Xi+l = 1. For the connection be-
tween X and Yn-l, we can assume the unspecified Xn
is either equal to 0 or equal to 1, which gives slightly
different topologies. If we assume Xn tó be 0, we call the
network generated the "0-M6bius cube" , denoted as 0-
MQn, and if we assume Xn to be 1, we call the network
generated the "1-M6bius cube" , denoted as 1-MQn. The
examples of 0-MQ4 and 1-MQ4 are shown in Figure
1. This Figure also illustrates the expansibility of the
M6bius cube networks, by showing a 0-MQ3 connects
to a 1-MQ3 to create a 0-MQ4 and a 1-MQ4 (the new
connections are shown in dashed lines) .

The rest of this paper is organized as follows. Sec-
tion 2 explains the notations and the basic properties of
M6bius cube. The main theorem is proved in section 3.
The conclusion is given in section 4.

N otations and basic properties2

According to the above definition, O-MQn+l and 1-
MQn+l can be recursively constructed from a O-MQn
and a 1-MQn by adding 2n edges. O-MQn+l is con-
structed by connecting all pairs of nodes that differ only
in the n-th bit, and 1-MQn+l is constructed by connect-
ing all pairs of nodes that differ in the n-th through the
O-th bits.

Our fundamental graph terminologies refer to
[Haray72] when using undirected graph to model inter-
connection networks. Given a graph. the vertex set and
the edge set of G are denoted by V(G) = V and E(G) =
E. respectively. A path. P(vo. Vt) = (vo. Vl Vt). is
a sequence of nodes such that two consecutive nodes
are adjacent. A path (vo. Vl. Vt) may contain other
subpath. denoted as (VO.Vl. Vi. P(Vi.Vj). Vj.Vj+l.

Vt). where P(Vi.Vj) = (Vi.Vi+l. Vj-l.Vj). A path
that contains every vertex of G exactly once is called a
hamiltonian path of G. A graph G is called hamiltonian
connected if there exists a hamiltonian path between any
two vertices of G. A path (vo. Vl Vt) is called a cycle
if Vo = Vt and t ?: 3. A cycle which visits each vertex
in G exactly once is called a hamiltonian cycle. A graph
that contains a hamiltonian cycle is called a hamiltonian
graph (or simply hamiltonian).

For convenience, we denote MQ~-l and MQ~-l
ag the two subMobius cubes of MQn' where MQ~-l
(MQ~-l respectively) is an (n-l)-dimensional O-Mobius
cube (l-Mobius cube respectively ) which includes all
the vertices with address OUn-2 ...Uo (lun-2 ...Uo re-
spectively). In addition, we define the edge set Ec =

{(UO,Ul) I (UO,Ul) E E,uo E MQ~-l and Ul E MQ~-l}
of MQn ag the Aet of crossing edges of MQn. For any
edge e = (UO,Ul) E Ec, the vertices Uo and Ul are called
crossing nodes of each other. Indeed, there are 2n-l
crossing edges and 2n-l pairs of crossing nodes in MQn.The graph G- F denotes the subgraph of G with node

faults and/or edge faults; i.e., a faulty network, where
F C V(G) U E(G). Let k be a positive integer. A graph
G is k-hamiltonian connected if G -F is hamiltonian
connected for any F with IFI ~ k. That is, there exists a
hamiltonian path between any pair of vertices in a faulty
network G -F. Similarly, a graph G is k-hamiltonian if
G -F is hamiltonian for any F with IFI ~ k.

Hamiltonian

cubes

cycle
.

m3 Mobius

We will demonstrate that MQn is (n -3)-
hamiltonian connected, for n ?: 3. Moreover, we will
prove that a ring of length 2n -f tI can be embedded in
MQn with ftl faulty nodes and fe faulty edges, where
ftl + fe :s: n -2. That is, we will prove that MQn

We now introduce the definition oí the Mobius cube

[Cul191][Cul195].
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port.

In the following four lemmas, we show that both
O-MQ3 and 1-MQ3 are hamiltonian connected and
1-hamiltonian, and both O-MQ4 and 1-MQ4 are 1-
hamiltonian connected and 2-hamiltonian.

Lemma 1 O-MQ3 is hamiltonian connected and 1-

hamiltonian.

Proof: There are 8 nades and 12 edges in O-MQ3°
We prave this lemma by the fallawing twa steps in aur
camputer simulatian.

(1). O-MQ3 is hamiltonian connected: There are
C~ = 28 possible pairs of nodes. For each choice, we

use exhaustive search to find a hamiltonian path between
them. The results are shown in [Huang]-(a). Therefore,
O-Mq3 is hamiltonian connected.

(2). O-MQ3 is 1-hamiltonian: There are two subcases
in this case. (i) One node is fault: There are Cr = 8
possible choices of faulty node. In each choice, we find a
fault-free hamiltonian cycle for any node fault shown in
[Huang]-(b). (ii) One edge is fault: There are ct2 = 12
possible choices of faulty edge. For each choice, we find
a fault-free hamiltonian cycle for any edge fault shown
in [Huang]-(c). Hence, O-MQ3 is 1-hamiltonian. D

Figure 1: Examples oí O-MQ4 and l-MQ4

is (n -2)-hamiltonian, for n ~ 3. We use the no-
tation IFI = fe + f1l. Our proof is by induction on
n, and the outline of our proof is as follows: First,
for the induction base, we prove that both O-MQ3 and
l-MQ3 are hamiltonian connected and l-hamiltonian,
and both O-MQ4 and l-MQ4 are l-hamiltonian con-
nected and 2-hamiltonian. Next, assuming MQk-l is
(k -4)-hamiltonian connected and (k -3)-hamiltonian,
and MQk is (k -3)-hamiltonian connected and (k -2)-
hamiltonian, for 4:$ k :$ n, we will show that MQn+l is
(n- 2)-hamiltonian connected and (n- l)-hamiltonian.

The definition oí l-MQ3 is similar to that oí O-MQ3.
The íollowing lemma explains that l-MQ3 is hamilto-
nian connected and l-hamiltonian by computer simula-
tion.

Lemma 2 1-MQ3 is hamiltonian connected and 1-

hamiltonian.

Proof: Although the connections of l-MQ3 is a little
differ6nt from O-MQ3, they have the same number of
nodes and edges. Therefore, the method of showing that
l-MQ3 is hamiltonian connected and l-hamiltonian is
similar to that of O-MQ3 by computer simulation. The
results are shown in [Huang]-(d), (e), (f), respectively. O

Itis known that the Mobius cubes are vertex symmet-
ric for n ~ 3 and edge symmetric for n ~ 2. However, in
general, the Mobius cube are neither vertex symmetric
nor edge symmetric [Akeers][Cul195][Fan98]. Due to the
lack of symmetric property, we use computer programs
to verify our induction bases: Both O-MQ3 and l-MQ3
are hamiltonian connected and l-hamiltonian, and both
O-MQ4 and l-MQ4 are l-hamiltonian connected and 2-
hamiltonian. Our computer programs simply simulate
various faults in all of O-MQ3, l-MQ3, O-MQ4 and 1-
MQ4. There. are four individual group datum in our
computer simulation. Since the amount of simulation
datum are too large to be included in our text, we put
these four groups of results and the source programs in
[Huang], where readers can find datum and detailed re-

We also need the following two lemmas to support our
induction steps.

Lemma 3 O-MQ4 is l-hamiltonian connected and 2-

hamiltonian.

Proof: There are 16 nades and 32 edges in O-MQ4.
We prave the lemma by the fallawing twa steps in aur

camputer simulatian.

(I). O-MQ4 is l-hamiltonian connected: There are
two sub cases in this case. (i) One nodes is faulty: Since
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there is one t:1ode fault in 0-MQ4, there are ct6 * C~5 =
1680 possible pairs of nodes. For each choice, we find
a hamiltonian path between any two nodes shown in
[Huang]-(g). (ii) One edge is faulty: Since there is one
edge fault in O-MQ4, which has 16 nodes and 32 edges,
there are C~6 * C:2 = 3840 possible choices. For each
choice, we find a hamiltonian path between any two
nodes shown in (Huang]-(h). Hence, O-MQ4 is hamil-
tonian connected. Hence, 0- M Q 4 is hamiltonian con-
nected.

then there exists a spanning subgraph consisting of two
vertex disjoint paths whose endvertices are w, x and u,
y (or w, y and u, x), respectively. That is, these two
disjoint paths traverse all vertices of MQn.

Proof: We demonstrate this lemma by the following
two cases.

Case (a): x and y are in the same subM6bius cube
MQn-l of MQn shown in Fig. (2-a): Without loss of
generality, we assume that both x and y are in MQ~-l.
Since MQ~-l is hamiltonian connected, there exists a
hamiltonian path HP(x,y) between x and y. Let a
and z be the two neighboring nodes of w on HP(x,y).
Then, HP(x,y) = (x,P(x,a),a,w,z,P(z,y),y). And
let b be the crossing node of a. -Assume b =t u.
Then, there exists a hamiltonian path between b and
u because MQn-l is hamiltonian connected. Hence,
(x,P(x,a),a,b,HP(b,u),u) and (w,z,P(z,y),y) arethe
two disjoint paths. In the case that b = u, we can simply
replace a with z, similar argument as above still holds.

(2). 0-MQ4 is 2-hamiltonian: There are three sub-
cases. (i) Two nodes are faulty: There are C~6 = 120
possible choices. In each choice, we find a fault-free
hamiltonian cycle for two node faults shown in [Huang]-
(i). (ii) Two edges are faulty: There are C~2 = 496 pOS-
sible choices. In each choice, we find a fault-free hamil-
tonian cycle for any two edge faults shown in [Huang]-
(j). (iii) One node and one edge are faulty: There are
16 * 32 = 512 possible choices. In each choice, we find
a fault-free hamiltonian cycle for one node and one edge
fault shown in [Huang]-(k). So, 0-MQ4 is 2-hamiltonian.
D

There are two different connections in M Q 4. The fol-
lowing lemma explains that l-MQ4 is l-hamiltonian con-
nected and 2-hamiltonian.

M~M~

o
MQ.;-I

MQ.?-1Lemma 4 l-MQ4 is l-hamiltonian connected and 2-

hamiltonian.

Proof: AlthoUgh the connectionS of l-MQ4 is a lit-
tle different from O-MQ4, they have the same number
of nodes and edges. So, the proving method of l-MQ4
being l-hamiltonian connected and 2-hamiltonian is sim-
ilar to that ofO-MQ4 ShoWn in [Huang]-(l), (m), (n), (o),
(p), respectively. O

M~~1

MQ.;-1

(a) case 1 (b) case 2

Figure 2: Illustration for Lemma 5.Tocontinue our induction proof, for simplicity, we are
not to distinguish o-M6bius from 1-M6bius for n ~ 5.
From now on, we use MQn instead of O-MQn and 1-
MQn. After proving our base cases in the previous four
lemmas, we now enter the induction steps of our main
results. Assuming MQn-l is (n -4)-hamiltonian con-
nected and (n -3)-hamiltonian, and MQn is (n -3)-
hamiltonian connected and (n-2)-hamiltonian, for some
n, Lemma 6 and Lemma 7 below demonstrate that
MQn+l is (n- 2)-hamiltonian connected and (n -1)-
hamiltonian, respectively. We need the following auxil-
iary lemma in Lemma 6. One may skip the proof tem-
porarily, and come back for the proof afterwards.

Case (b): x and y are in different subM6bius cubes,
say x E MQ~-l and y E MQ~-l. Since MQ~-l is
hamiltonian connected, there exists a hamiltonian path
HP(x,w) between x and w. Similarly, there exists a
hamiltonian path HP(u,y) between u and y. Hence,
(x,HP(x,w),w} and (u,HP(u,y),y} are the two dis-
joint paths shown in Fig. (2~b). D

Using the result oí Lemma 5, we now demonstrate
that MQn+l is (n- 2)-hamiltonian connected.

Lemma 6 If MQn-l is (n -4)-hamiltonian connected
and (n-3)-hamiltonian and MQn is (n-3)-hamiltonian
connected and (n -2)-hamiltonian, for some n, then
MQn+l is (n- 2)-hamiltonian connected, where n ~ 4.

Lemma 5 Ass'Ume that MQn-l is hamiltonian con-

nected, for some n. In a fa'Ult-free MQn with 4 distinct

vertices W,'U,X, and y, ifw E MQ~-l and 'U E MQ~-l'
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Proof: We will show that there exists a hamiltonian
path between every pair of vertices x and y in MQn+l
with IFI ~ n -2. There are three cases: (1) all of the
faults are located in the same subMobius cube MQn
(either fo > O,h = O,fc = o or fo = O,h > O,fc = O)j
(2) the faults are scattered (at least two of fo, h, and
fc are greater than zero)j and (3) all of the faults are
located in Ec (fo = o, h = 0, and fc > 0).

M~M<t

Case I: All oí the íaults are in the same subMobius
cube MQn. (b) case 1.2(a) case 1

M<t. M<tM<tAssume all oí the íaults are located in M Q~ .There
are three sub cases: (1.1) x E MQ~ and y E MQ;, (1.2)
both x and y are in MQ~, and (1.3) both x and y are in

MQ;.

M<t

y

~
~ ' (X,'X )

U,
I'"UJ

Subcase (1.1). x and y are in different MQ~, for
i = O, 1 shown in Fig. (3-a): Without loss of general-
ity, we assume that i = 0 and fo = n- 2. Since MQ~
is (n -2)-hamiltonian, there exists a hamiltonian cycle
HCo = (x,uo,P(uó,wo),wo,x) with vertices Uo and Wo

adjacent to x. Let Wl be the crossing node of Wo and
Ul be the crossing node of uo. We know that (wo, Wl)
and (uo, Ul) are fault-free because there are no faults in
Ec. Since MQ~ is hamiltonian connected, there eXists a
hamiltonian path H P ( Wl , y) between Wl and y. Hence, if
Wl # y, (x,uo,P(uo,wo),wo,wl,HP(Wl,Y),Y) isafault-
free hamiltonian path between x and Y in MQn+l. Oth-
erwise, (x,wo,P(wo,uo),uo,ul,HP(Ul,Y),Y) is a fault-
free hamiltonian path between x and Y in MQn+l.

',."J

'--'

(c) case 1.3.1

Figure 3: Illustration for Lemma 6

the crossing node of Wo, and Ul be the crossing node
of uo. Since Wo and Uo belong to different subMobius
cube of MQ~, by the definition of the Mobius cube, it
is not difficult to check that Wl and Ul must also be-
long to different subMobius cube of MQ~. In addition,
Xo and Yo are both faulty, therefore Wl ~ {x,Y} and
Ul ~ {x,Y}. Since MQ~ is fault-free, we have four dis-
tinct vertites Ul, Wl , x, Y, and Ul, Wl belong to different
subMobius cubes, MQ~-l and MQ~-l. Therefore, by
Lemma 5, there are two disjoint paths, which traverse
through all vertices of MQ~, say, (x,P(X,Wl),Wl} and
(Ul, P(Ul,Y), Y}. Hence, (x,P(X,Wl), Wl,WO, P(Wo,uo),
UO,Ul,P(Ul,Y),Y} is a fault-free hamiltonian path be-
tween x and Y in MQn+l.

Subcase (1.2). Both x and y are in MQ~ shown
in Fig. (3-b): Let d be a fault of F. Since MQ~
is (n -3)-hamiltonian connected, MQ~ -(F -{d})
contains a hamiltonian path H P ( x, y) between x and
y. Thus, MQ~ -F contains two node-disjoint paths
P(x,wo) and P(uo,Y), where P(x,wo) U P(uo,Y) =

HP(x,y) -{d}. Because MQn is (n -3)-hamiltonian
connected and n -3 ~ O, there exists a hamiltonian path
HP(Wl,Ul) between Wl and Ul. Hence, (x, P(x,wo),
WO,Wl, HP(Wl,Ul), Ul,UO, P(uo,Y),Y} is a hamiltonian
path between x and y in MQn+l.

Subcase (1.3.2). At least one of Xo or Yo is fault-
free shown in Fig. (3-d): Assume Xo is fault-free. Since
MQ~ is (n- 2)-hamiltonian and fo = n -2, there exists
a hamiltonian cycle HCo = (Xo,wo, P(wo,uo), uo,xo)
containing vertex Xo. Let Ul be crossing node of Uo and
Ul # y (if Ul = y, we can simply use Wo to replace
uo). Since MQ~ is (n -3)-hamiltonian connected and
n -3 ~ 1, there exists HP(Ul, y) in MQ~ -{x }. Hence,
(x,Xo,wo, P(wo,uo), UO,Ul, HP(Ul,Y),Y) is a fault-free
hamiltonian path between x and Y in MQn+l.

Sub case (1.3). Both x and y are in MQ;. There
are another two sub cases in this case. Let Xo E MQ~
be the crossing node oí x and Yo E M Q~ be the crossing
node oí y.

Subcase (1.3.1). Both Xo and Yo are faulty shown
in Fig. (3-c): Since MQ~ is (n -2)-hamiltonian and
fo = n -2, there exists a fault-free hamiltonian cy-
cle HCo. Since HCo is a hamiltonian cycle, there are
at least two edges crossing the two subMobius cubes
of MQ~. Let one of the edges be (wo, uo) and Wl be

Case 2: The faults are scattered in MQ~, MQ~, and
Ec. Without loss of generality, we assume that fo ~ h .
Because at least two of fo, h and f c are greater than

110
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zero and h .$: lo .$: n-3, h .$: n-3 and h +fc .$: n-3,
where n ~ 4. . Case 3: A}} oí the íau}ts are in Ec,

There are also three sub cases: (3.1) x E MQ~ and
y E MQ~, (3.2) both x and y are in MQ~, and (3.3)
both x and y are in MQ~.

There are three sub cases: (2.1) x E MQ~ and y E
MQ~, (2.2) both x and y are in MQ~, and (2.3) both x
and y are in MQ~.

Sub case (3.1). x E MQ~ and y E MQ~. The

M<t, Mq,

y.. Subcase (3.2). Both x and y are in MQ~. The
conditions of this case are in fact similar to the case
(2.2). We can find an edge (wo,uo) from MQ~ and fault-
free vertices and edges Wl, Ul , ( Wo , Wl ) , and ( Uo , Ul ) from
MQ~ and Ec with the fact that (2n-2(n-2)) ~ 2, where
n ~ 4. Therefore, a similar hamiltonian path between x
and y as in the case (2.2) can be found.

HP(.."v)

(w"w

(a) case 2: (b) case 2.2

Sub case (3.3). This case can be proved in a similar
way to sub case (3.2).

Figure 4: Illustration for Lemma 6.

Subcase (2.1). x and y are in different MQ~, for
i = 0,1 shown in Fig. (4-a): Because there are 2n cross-

ing edges in MQn+l, we have at least (2n- (n -2)) ~ 3
fault-free crossing edges, for n ~ 4. Let (WO,Wl) be
one of the fault-free crossing edges, Wo f x, and Wl f
y. Since MQ~ is (n -3)-hamiltonian connected and
fo :$: n -3, there exist a fault-free hamiltonian path
HP(x,wo) in MQ~. Similarly, since MQ~ is (n -3)-
hamiltonian connected and h :$: n -3, there also ex-
ist a fault-free hamiltonian path HP(Wl,Y) in MQ~.
Hence, (x,HP(x,wo),WO,Wl,HP(Wl,Y),Y) is a fault-
free hamiltonian path between x and Y in MQn+l.

'rhis completes the induction proof of Lemma 6. o

After proving MQn+l is (n -2)-hamiltonian con-
nected, we now demonstrate that MQn+l is (n -1)-
hamiltonian.

Lemma 7 II MQn is (n-3)-hamiltonian connected and
(n-2)-hamiltonian, lor some n, then MQn+l is (n-l)-
hamiltonian, where n ~ 4.

Proof: Let Ec be the 8et of Cro88ing edge8j i.e., Ec =
{(UO,Ul) I (UO,Ul) E E,uo E MQ~ and Ul E MQ;}.
Let F be a faulty set of MQn+l with Fo = F n MQ~,
Fl = F n MQ~, and Fc = F n Ec, and let fo = IFoi,
h = IF1I, and fc = IFcl. We will show that MQn+l is

(n-l)-hamiltonian in the following three cases: (l)all of
the faults are located in the same 8ubMobius cube MQn
(either fo > o,h = O,fc = o or fo = O,h > O,fc = O);
(2) the faults are scattered (at least two of fo, h, and
fc are greater then zero); (3) all ofthe faults are located

inEc (fo=O,h =O,fc>O).

Subcase (2.2). Both x and y are in the same
MQ~, for i = 0,1 shown in Fig. (4-b): Without loss
of generality, we a.ssume that i = 0. Since MQ~ is

(n -3)-hamiltonian connected and fo ~ n -3, there
exists a hamiltonian path HP(x,y) between x and y.
Since IHP(x,y)1 ~ 2n -(n -3), and we have at lea.st
2n -(n -3) choices, where n ~ 4, we can find an edge
(wo,uo) on the path HP(x,y) such that the crossing
node Wl and Ul of Wo and Uo, respectively, are both
fault-free and the crossing edges (wo, Wl ) and ( Uo, Ul ) are
also fault-free. Then, HP(x,y) = (x, P(x,wo), Wo,Uo,

P(uo,Y),Y}. Since MQ~ is (n -3)-hamiltonian con-
nected and h ~ n -3, there exists a hamiltonian path
HP(Wl,Ul) between Wl and Ul. Hence, (HP(x,y) U
{ (wo, Wl), (uo, Ul) } UHP(Wl , Ul)) -{(wo, uo) } ~s a fault-
free hamiltonian path in MQn+l.

Case 1: All ofthe faults are located in the same MQ~,
for i = 0,1 shown in Fig. (5-a): Without loss of general-
ity, we assume that all of the faults are located in MQ~
and fo = n -1. Since MQ~ is (n -2)-hamiltonian, there
exist two vertices Wo and Uo such that there is a hamilto-
nian path H P( Wo, uo) between Wo and uo. Let Wl be the
crossing node of Wo and Ul be the crossing node of uo.
We know that Wl,Ul, (WO,Wl) and (UO,Ul) are all fault-
free because there are no faults in either Ec or MQ~.
Furthermore, since M Q~ is hamiltonian connected, there

Sub case (2.3). Both x and y are in MQ~: This case
can be proved in a similar way to sub case (2.2).

COnmtlOns O! tms case are in fact similar to the case
(2.1). The same arguments used in case (2.1) can also
be applied here to obtain a fault-free hamiltonian path
between x and y.
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exists a hamiltonian path H PC Ul , Wl ) between Ul and

Wl. Hence, (WO,HPCWO,UO),UO,UI,HPCUI,WI),WI,WO)
is a fault-free hamiltonian cycle in MQn+l.

HP(wo,uo) in MQ~ and HP(Ul,Wl) in MQ~. Hence,

(WO,HP(WO,UO),UO,Ul,HP(Ul,Wl),Wl,WO) is a fault-
free hamiltonian cycle in MQn+l.

This completes the induction pro oí oí Lemma 7. D

After proving both the induction bases and the induc-
tion steps, now we are ready to prove our main theorem.MO:M't,M<lo Mq,

Wo w, w,)1 w
(w,.w" Theorem 1 MQn is (n-9)-hamiltonian connected and

(n-2)-hamiltonian, for n ~ 3.(HPf.',.u,J

HP(u"w Proof: By both Lemma 1 and Lemma 2, O-MQ3 and
l-MQ3 are hamiltonian connected and l-hamiltonian,
and both Lemma 3 and Lemma 4, O-MQ4 and l-MQ4
are l-hamiltonian connected and 2-hamiltonian. Then,
by Lemma 6 ~d Lemma 7, and by a simple induc-
tion, MQn is (n~-hamiltonian connected and (n-2)-
hamiltonian, for all n ?; 3. O

(u,.u" '--""

HP(It"wUo u,

(b) case 2(a) case 1

Figure 5: Illustration for Lemma 7.

Conclusions4Case 2: The faults are scattered in MQ~, MQ~, and
Ec shown in Fig. (5-b): Without loss of generality, we
assume that fo ?: h. Because at least two of fo,h
and f c are greater than zero, then h ~ fo ~ n -2.
We want to prove that h ~ n -3. We know that
h is either strictly less than n -2 or equal to n -2.
Suppose h = n -2, then fo = 1. Since fo ?: h ,
then 1 ?: n -2 and 3 ?: n contradicting the fact that
n ?: 4. Thus, h ~ n -3 and h + fc ~ n -2,
where n ?: 4. Since MQ~ is (n -2)-hamiltonian and
fo ~ n -2, there exists a hamiltonian cycle HCo with
at least 2n -(n -2) edges. We now show that there
e:xists an edge (wo,uo) E HCo such that the crossing
nodes Wl and Ul of Wo and Uo, respectively, are both
fault-free and the crossing edges (WO,Wl) and (UO,Ul)
are also fault-free. Since IHCoi ?: 2n -(n -2), we have
at least 2n- (n -2) choices. If none of the edges of HCo
meets the requirements of ( Wo , uo) , then there are at least

r~l fault8 in F1 and Fc because a single fault in
either Flor Fc eliminates at most 2 edges of HCo contra-
dicting the fact that h + f c ~ n- 2, for n ?: 4. Therefore,
we can find such an edge (wo,uo) and then HCo = (wo,

P(wo, uo), Uo, wo}. Because MQ~ is (n -3)-hamiltonian
connected and h ~ n -3, there exists a hamilto-
nian path between Ul and Wl, i.e., HP(Ul,Wl). Hence,
(wo,P(wo,uo), Uo, Ul, HP(Ul,Wl), Wl, WO} is a fault-free
hamiltonian cycle between x and y in MQn+l.

This paper focuses on the study of a faulty M6bius
n-cube, MQn -(fv + fe), with fv faulty nodes and fe
faulty edges. We have proved two optimal results: There
exists a hamiltonian path between any pair of vertices
in a faulty MQn with up to n -3 faults; a ring of
length 2n -fv can be embedded in a faulty MQn with
fv + fe $ n -2. Many other topological properties of
the M6bius cube have been explored as in [Cul191][Fan98]
recently. They demonstrated that some properties and
performance of M6bius cube are better than those of the
hypercubes. Therefore, the M6bius cube can be consid-
ered as an attractive alternative to the hypercube.
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