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Introd uction1Abstract

It can be shown that príoríty líst schedulíng consíd-

eríng límíted preemptíon ís stíll subject to schedulíng

ínstabílítíes, where deadlínes may be míssed as the

result of shorteníng run-tíme duratíons of one or more

tasks. We present task startíng condítíons that avoíd

these ínstabílítíes at run-tíme. Together wíth exístíng
methods addressíng dynamíc task ínclusíon, thís model

presents a low-overhead schedulíng solutíon to hard

real-tíme applícatíons sensítít!e to task response tímes.

Keywords: Multi-processor scheduling, real-time dis-
patching, list scheduling, scheduling instabilities, lim-

ited preemption.

The use of multiprocessor systems in real-time applica-
tions has been motivated by increasing computational
complexity or the need for functional fault-tolerance
through hardware redundancy. Many of these systems
operate in hard real-time, where deadlines are associated
with each task. Failure to meet the deadlines may ren-
der the application useless. Some of these systems are
operating in safety critical applications where missinga
deadline may result in catastrophe, e.g. unacceptable
cost in terms of live, environm~nt, or finance.

Two basic scheduling disciplines exist, preemptive
and non-preemptive. Preemptive scheduling generally
offers a greater degree of flexibility and has potential
for higher resource utilization. However, it proves to
be hard, if not impossible, to fully predict the non-
deterministic effects and overhead of context switch-
ing (Butler, 1992; Hwu, 1994; Jeffay, 1991). Non-
preemptive scheduling on the other hand is more pre-
dictable. However, its main shortcoming is the lack
of flexibility, inherently due to the inability to inter-
rupt tasks once they start execution. Static priority
list scheduling is a simple approach in non-preemptive
scheduling in which tasks are ordered according to their
priorities in a list. At run-time, this list is scanned and
the first task that is ready is selected for execution.

The advantage of list scheduling is its simplicity and
the low run-time overhead. Therefore, it is especially
suitable for real-time applications. As such, list schedul-
ing has been implemented in projects like the Reliable
Computing Platform (RCP) (Butler, 1992) the Mul-
ticomputer Architecture for Fault Tolerance (MAFT)
(Kieckhafer, 1988), the Spring Kernel (Stankovic, 1987),
or specific applications like turbojet engine control

(Shaffer, 1990).

11~



A. w. Krinqs M. H. Azadmanesh : Limited Preemption in Real- Time Schedulinq

limited preemption. In Section 3 the effect of limited
preemption on dispatching is formalized and safe task
starting conditions are derived. These conditions are
proven sufficient for safe task dispatching in Section 4.
Finally Section 5 will conclude the paper with a sum-

mary.

2 Scheduling Environment

Tasks are the units of computations and they consist
of sequentially executing code. The tasks may be run
on any of M homogeneous processors. Each task T;
has an associated minimum and maximum computation
time C¡nin and c¡nax, release time ri at which the task
becomes ready for execution, starting time Si, finishing
time fi, and hard deadline di. Task dependencies are
defined by a partial order, represented by a directed

acyclic precedence graph.
Tasks are assumed to execute non-preemptively dur-

ing their corresponding non-preemption intervals. How-
ever, tasks may be preempted after each non-preemption
interval. Therefore, associated with each task Ti is a
non-preemption interval ~ti. A task can only be pre-
empted at integral multiples of ~ti, i.e. during ~ti task
Ti is essentially non-preemptive. If ~ti = C¡nax the task
is non-preemptive, whereas if ~t; = O there are no re-
strictions on the preemption of Ti (Bruno, 1997). For
the special case where all ~t; = O no instabilities can
anse.

In the presence of limited preemption it is necessary
to consider the overhead resulting from context switch-
ing. A context switch cannot only be seen as storing
and setting up register contents and data structures,
but must also include cost induced by memory man-
agement, e.g. a task may lose its cache image. We
restrict our considerations to the impact of cache line
misses and assume that main memory is large enough
to not cause page faults. This practical consideration
is to avoid large overhead since access outside of main
memory, e.g. disk, may be orders of magnitude slower.
A typical application meeting this assumption is a disk-
less embedded system. For each T; we define C(T; ) as
a function describing an upper bound on the cost as-
sociated with preempting Ti. It is clear that C(Ti) is a
function of the size of the data set of T; .

Defining non-preemption intervals foí each individual
T; provides a very powerful feature for tuning the run-
time behavior of the task system. Under consideration
of the cost, the response time to critical tasks can be
improved by decreasing the non-preemption intervals of
less critical tasks. This increases the probability that
non-critical tasks are preempted in favor of executing a
critical task. This will be shown in Section 3 where task
preemptions can be the key for safe dispatching of high
priority tasks.

Some hard real-time systems are sensitive to response
time with respect to QoS (quality of service). Pre-
emption offers potential for faster response to critical
tasks of higher priority, by not allowing a lower priority
task block the early execution of a higher priority task.
Note that preemption is not necessary to achieve the
design spec~fications with respect to QoS. The system
is designed to meat the real-time requirements strictly

non-preemptively. However, preemption can drastically
improve response time of high priority tasks. In order
to inherent the advantages of both non-preemptive and
preemptive approaches, a hybrid scheduling approach is
introduced that allows limited preemption. Limiting the
ability to preempt tasks is not a new concept and has
been discussed in the context of QoS in Bruno (1997),
where Move- To-Rear List Scheduling was introduced to

provide QoS guarantees.
A potential problem for hard real-time system us-

ing non-preemptive list scheduling ig its vulnerability
to tasll:ing anomalies (Graham, 1969; Manacher, 1967).
One anomaly is called timing anomaly. It implies that
the reduction in task execution times of one or more
tasks can cause deadlines to be missed. In general, task
durations .may not be assumed constant, because they
are directly affected by, for example, memory manage-
ment, communication overhead, .channel contention., as
well as asynchronousy of autonomous input or sensor
units (Lim, 1994). It will be shown that list schedul-
ing is susceptible to timing anomalies even if one allows
limited preemption.

Several stabilization methods exist that avoid tim-
ing anomali~. A-priori stabilization was introduced by
Manacher (1967). Less restrictive run-time stabilization
algorithms have been introduced in Krings (1994). The
actual durations of tasks are often much smaller than the
maximal durations, up to one order of magnitude (Car-
penter, 1994). As a result, the available slack-time in-
creases as more and more tasks finish early. A recent ap-
proach addressed higher flexibility of list scheduling by
considering the inclusion of dynamically arriving tasks
in addition to a static workload based on slack-time re-
claiming (Krings, 1997) .A more flexible approach of in-
cluding dynamically arriving tasks or subgraphs of tasks
at run-time has been addressed in Krings (1998). Thus
solutions to stable scheduling and dispatching of work-
loads consisting ofhard real-time workloads and dynam-
ically arriving tasks are available for non-preemptive

systems.
This paper focuses on list scheduling with limited pre-

emption in order to improve task response time. We
show that, like in non-preemptive systems, applications
implementing limited preemption are also subject to
timing anomalies and therefore need to address the is-
sue of stabilization if applied to hard real-time systems.
Section 2 will supply background information, defini-
tions and an example of instabilit.y in the presence of
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The task system described above is subjected to the
list scheduling paradigm. Even though list scheduling
has been traditionally used for non-preemptive schedul-
ing, it has been adapted to consider limited preemp-
tion (Bruno, 1997). In priority list scheduling, whenever
a processor becomes available, the run-time dispatcher
scans the task list from left to right. The first unex-
ecuted ready task encountered in the scan is assigned
to the processor. We adopt the dispatching model pre-
sented in Deogun (1998), in which dispatching of a task
is seen as an atomic operation that first updates the
priority list, then selects a new task for execution, and
finally exits the dispatcher. The dispatching model im-
poses a complete ordering on events which appear to be
simultaneous on the Gantt chart by prioritizing requests
according to processor indices. It should be pointed
out that in our scheduling environment the traditionalmeaning of the terms "dispatching" and / "scheduling"

somewhat overlap, as will be elaborated on in Section 3.

Stable Schedule: a schedule in which no scenario exists
where the finishing time of any Ti in the NGC exceeds its
completion time on the SGC. With non-standard com-
putation times not known apriori, i.e. ciin ~ Ci ~ ciax ,
given any task T;, the "deadline" for Si is sitd, the start-
ing time on the SGC, or the adjusted sitd resulting from
a preemption. Thus, only if Si ~ sitd can fi ~ fttd be

guaranteed.
Let T <i denote the set of all tasks which started be-

fore T; on the SGC, i.e. T <i is the set of tasks with in-
dices less than i. Task set T~i is defined as T<i U {Ti}.
In a given scenario, a task Tv is unstable if and only
if it is the lowest numbered task to start late, i.e. if
(1) Sv > s~td, and (2) Si ~ sitd 'v' Ti E T<v. The
second condition is called the On- Time Hypothesis (De-
ogun, 1998). Task Tv is vulnerable to instability ifthere
exists any scenario in which Tv is unstable.

Instability and Limited Preemption2.2

Definitions2.1

The following terms and definitions will be used
throughout this paper and are partially restated from

Krings (~998):-
Scenario: the schedule obtained by using a ~icular

set of task durations.
Standard Scenario: a scenario in which each task ~

uses the maximum computation time crax (Manacher,

1967).
Non-Standard Scenario: a scenario in which each task

Ti executes with crin ~ Ci ~ crax. However, at least
one task Tj has duration Cj less than its maximum com-
putation time c'J'ax, i.e. Cj < c'J'ax .

Standard Gantt Chart (SGC): the Gantt chart de-
picting the standard scenario. Task deadlines are the
respective finishing times in the SGC, i.e. di = fttd.
References with respect to the SGC are denoted by su-
perscript std in the respective variable, e.g. s:td or fttd.

Non-Standard Gantt Chart (NGC): the Gantt chart
resulting from a non-standard scenario.

Projective List: the priority list from which the dis-
patcher selects tasks. This list is in one-to-one corre-
spondence with the SGC, i.e. its tasks are ordered ac-
cording to the time each task is picked up on the SGC
(Manacher, 1967). Furthermore, without loss of gen-
erality, tasks are assumed to be ordered by increasing
indices. Since the dispatcher traverses the projective
list in search for a ready task, the only tasks of inter-
est in this list are the unstarted tasks. In the context of
limited preemption, tasks that have been preempted can
be seen as special "unstarted tasks" with corhputation
times adjusted by the amount that has been executed
before the last preemption, considering the preemption
cost.

We want to demonstrate scheduling instability using two
scenarios based on the precedence graph in Figure la.
The precedence graph contains seven tasks, with maxi-
mum durations ofunity, listed next to each vertex. Task
priorities are defined in order of increasing start times
on the dual-processor SGC in Figure lb. During execu-
tion, the dispatcher scans the projective list and selects
the first ready task for execution.

NGC1 of Figure lb demonstrates scheduling insta-
bility for the non-preemptive case, i.e. ~ti = citd for
1 ~ i ~ n. On NGC1, T3 is shortened by an arbitrar-
ily small value {. The shortened T3 finished before T2.
Task T6 was then able to claim the processor on which
T5 was executed on the SGC. As a result, both T5 and
T7 started later on the NGC than they did on the SGC.

Now assume that each task 7i has a non-preemption
interval equal to half its standard duration, i.e. ~ti = .
citd /2 = 0.5. Again T3 is shortened by a~ arbitrarily
small value { and T6 was then able to claim the processor
as can be seen in NGC2 of Figure lb. When T4 and T5
are released at time h = 2 only T4 can be started. Task
T6 can only be preempted after ~ti = 0.5 time units.
Consequently T5 and T7 start late at time S5 = 2.5 -{
and S7 = 3.5 -{. It should be noted that the second
segment of T6 executing on processor P1 incorporates
the preemption cost C(T6).

In order to avoid instabilities in non-preemptive pri-
ority list schedulirig two basic stabilization methods
have been proposed, i.e. apriori and run.time stabi-
lization. In apriori stabilization methods, stabilization
is achieved by fixing the task starting sequence or task
starting times, or by introducing additional precedence
constraints (Kieckhafer, 1988; Manacher, 1967; McEl-
vaney, 1991; Shen, 1990). Potentially poor utilization
for the first and addition of many edl1;es in the second
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Tp is in such a way that f;td is not changed by pre-
emption. Thus, Tp is right-adjusted in its old SGC slot.
Re-inserting tasks with adjusted execution times in the
SGC can have as a consequence that task indices do not
reflect their original SGC starting order anymore. In
this case tasks need to be renumbered in order to main-
tain a projective list. For ease of discussion we assume
that this adjustment is made upon task re-insertion and
it will not be mentioned explicitly. An approach that
does not require renumbering is to re-insert Tp at time
s;td whenever possible. This way after re-insertion of
T p the standard starting times will remain unchanged.
Both re-insertion approaches are justifiable.

case have motivated the development of less restrictive
stabilization methods. Run-tíme stabílízatíon is a less
restrictive stabilization method, where the dispatcher
limits the depth of its scan into the task list in order
to avoid instabilities. This approach takes advantage of
information available at run-time (Kri1lgs, 1993; Krings,
1994). Limited preemptions to aid task response times
are of course highly run-time dependent. Therefore run-
time stabilization is the logical choice.

3 Stability and Limited Preemp-

tion

3.1 Limited Preemption Dispatching3.2
A task Tp can only be preempted at multiples ofits non-
preemption interval ~tp. The cost for the preemption
is C(Tp). Thus if c~ is the amount of time that Tp has
executed at the time of the preemption, then the re-
maining execution time needs to be adjusted by C(Tp),
.max(new) -max(old) I C(rP ) fl.e. Cp -.Cp -Cp + .Lp .I we assume

that every task that is started or selected for dispatching

is marked (or "shaded") on the SGC, then c,;ax(new) is
the amount of time that needs to be tlnmarked ( or "un-
shaded") on the SGC upon preemption, i.e. its adjusted
remaining execution time needs to be "re-inserted" into
the SGC.

T2

:~~l
T6

SGC

T3 I TS
,

Before describing the function of the run-time dis-
patcher a few definitions are needed. Let U(t) indicate
the number of unmarked (unshaded) tasks in the SGC
at time t. Thus U(t) is the number of unstarted tasks
at t, excluding the task currently considered for starting
by the dispatcher. Furthermore, let &(t) be the number
of tasks Tj that are currently executing ( on a processor )
for which fjmax > t. Thus &(t) considers the NGC and
counts all tasks that could be still running at t.

In the following discussion, a task Tp is called a pre-
emptable task if it has a non-preemption interval Atp

We assume that the preemption cost is limited and
will guarantee progress in that a preemption will never
cause th~ adjusted execution time to exceed the stan-
dard execution time. We call this property Progress
Hypothesis. The motivation for the hypothesis is that
we want to guarantee that a preempted task can always
be re-inserted into its original SGC slot.

~ At this point in time some discussion is needed to
I 2 3 address issues of scheduling and dispatching. Tradition-

Pl ~ ally, the dispatcher is distinct from the scheduler. The
TI T2 T4 .

scheduler IS executed only once at design time using a
P2 T3 T6 Ts T7 scheduling algorithm to generate a SGC which meats

-e -e E S-E all real-time requirements. The dispatcher, on the other
I 2 3 hand, decides at run-time which tasks is to be executed.

In the context of this paper issues of preemption, which
involves task re-insertion into the SGC, are addressed.

T32~:61 Ts 3:5:7 ~ Strictly speaking this constitutes scheduling. However ,

in order to not leave the reader with the iinpression that
b) 'JJ .1,url'.I".'II)y , U" ti", N(;l... we use a scheduler that reschedules the entire SGC dur-

ing run-time, we use the term dispatcher in a more lib-
eral sense, thus allowing it to re-insert tasks into their

Figure 1: Example of Instability. original SGC slots. We assume that the re-insertion of

~l

~

~I

@I

NGCI

1

T2 I T4 T,
NGC2

Pl TI

P2

a) 1',ecedeJIce (;,arl"
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3.3 Safe Task Starting Conditions

The safe task starting conditions presented here follow
directly from the discussion of the three situations de-
scribed in the previous subsection.

which expires at or after the time of the current scan.
We will reserve subscript p to indicate preemptable
tasks.

Assume T; is the next ready task. The following two
situations are possible:

Safe Task Starting Conditions: A ready task 1'; can

be safely started if for each Tj with sjtd in (in, in +ciaX]No preemptable task with higher index (and thus

lower priority) is executing, i.e. no Tp with p > i is

executing.
1. U(sj)+E(sj) < M or

2. At least one preemptable task is executing that has
a higher index than i, i.e. one or more Tp with p > i
are executing and Tp has at least one preemption
point that has not expired yet.

2. U(Sj) + t:(Sj) ~ M and P(Sj) tasks can be pre.

empted such that

3. Similar to the previous situation at least one pre-
emptable task is executing that has a higher index
than i, however all preemption points have expired.

Let tn be the time of the current scan (the time
"now"). It will be shown that in the first and third
case task Ti can be started if for the entire interval
[tn, tn +ciaX] the number of unstarted tasks on the SGC
plus the number of executing tasks is less than the num-
ber of processors M. Thus in order to start Ti, for any
t in [tn, tn + ciaX] we need

U(t) + t:(t) < M (1)

Note that the first and third situation are essentially the
same in that task vulnerabilities need to be considered
in the absence of preemption. Furthermore, note that
by considering ~ for execution, it will affect U(t) since
it is now considered to be marked during the condition
check. For example, lets assume an initial situation of
the workload at time t = O in which there are M tasks
scheduled on the SGC. At this time all tasks are un-
started and no task has yet been dispatched. Now T1
is picked up by the dispatcher, thus reducing U(O) to
M -1. With I1O task executing yet t:(O) is still zero.
Thus inequality ( 1) is satisfied since M- 1 + O < Jv[ and
T1 can be started.

In the second case we may have to consider pre-
emption. If for any t in [tn, tn + ciaX] inequality (1)
does not hold, we must attempt to reduce t:(t) us-
ing preemptions. Let P(t) be the number of preemp-
tions needed to satisfy inequality (1) at time t. Then
P(t) = U(t) + t:(t) -(M -1) is the minimum number
of preemptions needed at t. Thus we have

(a) 'v' Tp re-insertion is feasible. Thus, the ad-
justed remaining execution time plus C(Tp )
does not cause f;td to be exceeded, i.e. s~td +

Cmax -c' + C( 7: ) < f ..td where c' is the frac-

p p P-p' p

tion of cr;ax that has already been executed,

(b) Tp cannot have been mortgaged to justify safe
starting of a task other than T; .

Condition 1 covers the first and third situations de-
scribed in the previous subsection. Condition 2 ad-
dresses preemption, which of course results in task re-
insertion into the SGC at the time of the physical pre-
emption by the dispatcher. It should be noted that if a
task Tp is re-inserted using its adjusted run-time, it is
effectively an unstarted task. If the re-insertion causes
the new s~td to be in the interval [tn, tn + craX], then
Tp itself will be subjected to the two conditions when

p=J.
Condition 2b prevents several Ti from using the pre-

emption of Tp to justify the availability of a processor.
Mortgaging Tp can be easily realized by a flag that is
set equal to the index of the task that relies on the pre-
emption, i.e. task Ti .

The safe task starting conditions can be used in an al-
gorithmic fashion by the run-time dispatcher: to justify
the safe starting of the highest priori ty task T; .If no pro-
cessor is available to start Ti, preemption is considered.
One question that might arise is which task should be
preempted in case there are several preemptable tasks
executing. Since actual task durations are not known
apriori, i.e. they are between crin and crax = citd,
optimal selection of preemptable tasks may be difficult
or impossible. However, with respect to response time,
preempting the lowest priority task would be a rea.'Son-
able greedy approac~. Another strategy could be to use
simple heuristics to attempt minimization of the number
of preemptions or total preemption cost.

U(t) + t:(t)'P(t) < M 2)

3.4 Dynamic Task Arrival

Many real-time systems experience dynamic changes in

their workloads, e.g. new tasks may enter the system.

If at any t in [tn, tn +ciaX] P(t) exceeds the number
of preemptable tasks, then inequality ( 1) cannot be sat-
isfied and, as will be shown, T; cannot be safely started.
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Lemma 1 In the presence of limited preemptions a sce-

nario can be unstable at Tv only if the number of pro-

cessors available to L at s~td is less than the number of

processors occupied by L at s~td on the SGC, i.e. only

if M -MX(s~td) < MLtd(s~td), ~here x is the set of

usurper tasks T x .

Proof: By the on-time hypothesis, the number of tasks
in L which are ready or running at s~td on an NGC
cannot exceed the number which were ready or run-
ning at s~td on the SGC. This is not only true in the
non-preemptive case but also in the limited preemp-
tion case, since adjusted tasks can be re-inserted after
preemptions only into the original SGC slot. On the
SGC, T" was on time so that Wltd(s~td) = o. There-
fore, RL(S~td) ~ Rrd(s~td) = Mltd(s~td). Thus, on any
NGC, L will require no more processors at s~td than it
did on the SG~) so that T" is unstable only if there are
fewer processors .],Vailable. The number of processors
available to L at s~td is simply M -MX(s~td). O

Such systems may include dynamic tasks in addition to
the static core workload. Priority list scheduling is tradi-
tionally a static approach. Feasibility tests for dynamic
task inclusion into the workload have been presented in
Krings (1998) for dif[erent dynamic task models. These
tests can be adapted for the scheduling environment al-
lowing limited preemption. We will demonstrate this by
considering the simple special case of non-preemptive
independent dynamic tasks, i.e. dynamic tasks Ti with
ó.ti = crax. High priority dynamic tasks are allowed
to enter the task system conditioned on a run-time fea-
sibility test. This test essentially employs the safe task
starting conditions and goes beyond traditional slack-

time reclaiming.
In Subsection 3.2 and 3.3 a counting argument was

stated that, in order to prevent instability, avoids pro-
cessor contention. In other words, there cannot be any
time during the execution of a task Ti in which the num-
ber of executing and unstarted tasks exceeds the number
of processors. The same arguments can be made in or-
der to justify inclusion of dynamic tasks. The result is
a feasibility test that is based on the safe task starting

conditions:

Lemma 2 Assume that a usurper task Tx has started

at time Sx, and define f':ax = Sx + c~ax .Then even

in the presence of limited preemption no task Tv with

s~td > f':ax can become unstable as a resultof starting

Tx.

Feasibility Conditions: A dynamic ready task Ti
with ~ti = crax can be safel~ started if the Safe Task
Starting Conditions of Subsection 3.3 hold.

Proof: Assume Tv is any task with s~td > fr:ax ,
i.e. Tv is any task whose standard statting time does
not overlap time-wise with the execution of Tx on the
NGC. Recall that an unstable task by definition is the
lowest numbered task to start late. Theref<:>re assume
all Ti E T <v are on time. Lemma 1 states that Tv is
unstable only if the number of processors available to L

at s~td is less than the number of processors occupied
by L at s~td on the SGC. If Tx had not started,
Tv would be stable and thus at s~td, by Lemma 1,
M -MX(s~td) ? MLtd(s~td). However in the presence
of Tx we still have M- MX(s~td) ? MLtd(s~td) since
fr:ax < s~td, i.e. Tx has finished and thus MX(s~td)
cannot increase. Thus Tx has no impact on the number
of processors available to L at s~td and Tv is stable by
Lemma 1. O

Proof of Correctness4

We are now ready to prove that the Safe Task Starting
Conditions presei1ted in Subsection 3.3 are sufficient to
avoid instability. To enhance readability, the conditions
are restated in the following theorem.

Theorem 1 A ready task T; can be safely started if for
each Tj with sjtd in [tn, tn + ciaX]

1. U(Sj) + t:(Sj) < M or

tasks can be pre.2. U(Sj) + t:(Sj) ~ M and P(Sj

empted such that

It will be shown that the Safe Task Starting Conditions
just described are sufficient to avoid instability, but first

some definitions are needed.
Assume that a priority inversion occurs so that task

Tx starts before TtI, i.e. Sx < Stl, where x > v.
Then Tx is called a usurper task. Recall that T <tI de-
note the set of all tasks which started before TtI on
the SGC. The Leftover Set L is defined as all tasks

in T<tI which have not finished by sx. Specifically,
L = [1l E T <tI : fl > Sx }.

Next, we w~nt to define the status of a task set T to be
the number of tasks in T executing., ready to execute, or
waiting to be executed. Let MT (t) denote the number
of tasks in T running at time t, i.e. the number of
processors occupied by T at time t. Furthermore, let
WT (t) be the number of tasks in T which are ready but
waiting for a processor at time t. Lastly, let RT(t) =
MT(t) + WT(t). Thus, RT(t) is the total number of
tasks in T which are either ready or running at t. When
we address R, M, and W with respect to the SGC, we
use the notation R!fd(t), M~d(t), and WTtd(t).

The following two lemmas build the basis for our proof

of correctness.
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of the task duration, i.e. [tn, tn + ciaX] .This was cap-
tured in inequality (1) and inequality (2) which can be
rewritten as U(t)+&(t) ::; M -1 and U(t)+&(t)-P(t) ::;
M- 1 respectively. Recall that the term M- 1 reserves
the processor needed to start Ti. With respect to the
safe task starting conditions of Theorem 1, Ti was un-
started and therefore unmarked on the SGC. It will be
marked as it is selected during the Safe Task Starting
Condition check. The marking of Ti has immediate ef-
fect on the number of unstarted tasks U(t) for any t
overlapping with the SGC execution of Ti, i.e. for t
in [s:td, fttd]. If the Safe Task Starting Conditions do
not hold, Ti is unmarked, reflecting that it did not get
started after all.

Now we assume that Ti is a dynamic task trying to
enter the system conditioned on the feasibility test. This
Ti has no representation on the SGC and therefore has
no affect on U(t) for any t, i.e. it does not reduce U(t)
during the check. Still, both conditions of the theo-
rem ensure that one processor is available for Ti without
causing contention for any task on the SGC. As a result
the Safe Task Starting Conditions still hold, i.e. it is
safe to start T; if the conditions are met. O

s ummary5

This paper addressed dispatching in real-time systems in
which task response time is a concern. It subjects a task
sy.stem represented by a task graph to the list schedul-
ing paradigm under the consideration of limited preemp-
tion. Preemption points are defined for each task based
on non-preemption intervals. After each expiration of
a non-preemption interval, tasks can be preempted in
order to improve response time to higher priority tasks.
It has been shown that similar to non-preemptive list
scheduling, the inclusion of limited preemption leaves
the task system vulnerable to timing anomalies, i.e. un-
der this scheduling paradigm, unavoidable variations in
task durations at run-time can result in instability when
one or more tasks execute for less than their maximum
duration.

Safe task starting conditions have been presented
that avoid these anomalies. The conditions can be
used in an algorithmic fashion to dispatch tasks safely,
or they can be used by system designers as the basis
for deriviltg more efficient dispatching or scheduling
algorithms. The dispatcher can be augmented by a
scheduler using the Feasibility Conditions in order to
allow inclusion of dynamically arriving tasks. A simple
counting argument is used that insures availability
of processors to each task in a timely fashion, while
improving response time for high priority tasks and

guaranteeing scheduling stability.

(a) 'v' Tp the adjusted remaining execution time

plus C(Tp) does not exceed f;td, i.e. s~td +

Cmax -c' + C(1: ) < f std where c' is the fra c-p p P-P' p
tion of c;,ax that has already been executed,

(b) Tp cannot have been mortgaged to justify safe
starting of a task other than Ti .

Proof: Let Tv be any unstarted task with standard
starting time s~td in [tn, tn + ciaX]. Tasks with stan-
dard starting times outside of this interval need not be
considered by Lemma 2.

Condition 1: By Lemma 1 Tv can only be unstable if
M < MX(s~td) + MLtd(s~td). This can only be the case
if processor contention arises at s~td. However, since Ti
is only started if U(sv) + E(sv) ::;: M- 1 < M, this
implies that there is at least one processor available at
s~td. As a result processor contention is not possible and
the instability condition of Lemma 1 cannot be met.

Condition 2: Since condition 1 cannot be met we
must rely on P(sv) preemptions. Thus U(sv) + E(sv) -

P(sv) ::;: M- 1 < M. However, similar to part 1, with
the restrictions in condition 2, processor contention can-
not occur ana the instability condition of Lemma 1 can-
not be met. Preemption has to be considered together
with task re-insertion. However, any reinserted Tp with
adjusted starting time s~td in. the interval [tn, tn + ciax]
cannot cause processor constriction, since it will be con-
sidered when p = j. Condition 2(b) prevents incorrect
counting, since a processor that is made available by
preempting a task Tp can only be used by one Ti.

So far we have assumed that any scenario of the SGC
is bounded by the original SGC, i.e. on the SGC no task
is ever moved outside of the slot that it was originally
assigned to. In the presence of preemption of tasks Tp
and the associated re-insertion into the SGC we need to
check if it is possible that an original SGC slot may be
exceeded, i.e. if upon re-insertion a task Tp is not con-
tained in its previous SGC slot. This is only possible
if the remaining task execution time c;,ax -c~ plus the
preemption overhead C(Tp) is greater than c;,ax. How-

ever, condition 2(a) prevents this with respect to f;td,
and the Progress Hypothesis with respect to s~td. D

Theorem 2 A dynamic task Ti with ~ti = ciax can be
safely started if for each Tj with sjtd in [tn, tn't- ciaX]
the two conditions of Theorem 1 are met.

Proof: The theorem is basically identical to Theo-
rem 1, except that Áti = ciax and the origin of task Ti
is different. In Theorem 1 T; was present on the SGC,
whereas now it is not. AII we have to show to prove the
theorem is that the origin of Ti does not interfere and
alter the validity of the conditions.

The conditions of both theorems are based on the
avoidance of processor contention throughout the period
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