Computacion y Sistemas Vol.4 No.2 pp.158 -165pp
© 2000, CIC-IPN. ISSN 1405-5546 Impreso en México

Scheduling Malleable Tasks with Convex
Processing Speed Functions

Jacek Blazewicz!, Maciej Machowiak!, Jan Weglarz', Gragory Mounie?and Denis Tristram’
!Instytut Informatyki Politechniki Poznanskiej, Poland
?Laboratory Informatique et Distribution,
IMAG, Grenoble, France
E-mail: maciej.machowiak@cs.put.poznan.pl

Article received on February 15, 2000; accepted on August 23, 2000

Abstract

In the paper, the problem is considered of scheduling
very large applications on parallel computer systems.
These applications can be modeled as malleable tasks,
i.e. tasks which processing speed depends on a number
of processors granted. Using this concept it is proved
analytically that for convex curves relating processing
speed to a number of processors, gang scheduling strat-
eqy is optimal from the viewpoint of schedule duration.
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1 Introduction

We consider a set of n independent tasks, each of
them requiring for its execution one or more processors
among a set of m identical parallel processors. The
processors are fully connected by an interconnection
network. The allotment of the processors influences
the execution speed of a task (program), i.e. the more
processors the faster the processing of a program.

The dependence of task processing times on a num-
ber of processors alloted, leads to the so called mal-
leable tasks (MT). A malleable tasks needs one or
more processors for its execution, but the number of
them is unknown in advance, only a function describ-
ing this dependence is known. This property distin-
guishes malleable tasks from the multiprocessor tasks,
considered by Blazewicz et al. [1986] and [Lloyd, 1982],
where the number of processors alloted to each task is
known. The latter model has received a considerable
attention in the literature. The problem of scheduling
independent MT without preemption (it means that
each task is computed on a constant number of pro-
cessors from its start to completion) was studied in
[Turek et al., 1992, Ludwig, 1995]. The problem is NP-
hard [Du and Leung, 1989], thus, an approximation al-
gorithm with performance guarantee has been looked
for. While the problem has an approximation scheme
for any fixed value m, no practical polynomial approx-
imation better than 2 is known [Ludwig, 1995]. The
2-approximation presented in [Ludwig, 1995] is based
on a clever reduction of MT scheduling to the 2 dimen-
sional bin-packing problem, using the earliest result of
[Turek et al., 1992] that any A-approximation for the
bin-packing problem can be polynomially transformed
into a A-approximation for the MT scheduling. Based
on the above results Rapine, Mounie and Trystram
[1999] have found a 2-phases algorithm with perfor-
mance guarantee v/3. In [Rapine et al., 1998] on-line
scheduling strategies for time/space sharing were con-
sidered.
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In [Schwiegelshohn et al., 1998] it has been pre-
sented an approximation algorithm for a system of in-
dependent tasks to be scheduled without preemption
on a parallel computer with a minimum weighted av-
erage response time criterion. Prasanna and Musicus
[1991] have considered a set of parallel tasks and asso-
ciated precedence constraints, a finite pool of processor
resources, and specified processing speed functions for
each task as a function of applied processing power. In
the special case where the processing speed function of
each task is p®, where p is amount of processing power
applied to the task, 0 < a < 1, a closed form solution
for task graph formed from parallel and series connec-
tion was derived.

In this paper we propose a model of malleable tasks
in the form of a continuous function: processing speed
vs. number of processors. Using this model one can
utilize known results from the continuous resource al-
location theory for studying the properties of optimal
schedules. It will be proved that in the case of convex
functions, the optimal (i.e. minimum length) sched-
ules are built by a sequential performance of all tasks,
each of them using a full power of the computing sys-
tem. This proves also optimality of the gang scheduling
strategy for very large applications like Cholesky fac-
torization and out-of-core computation. In a practical
sense, by application we will mean a task which is com-
posed of the interacting processes (modules).

An organization of the paper is as follow. In Section
2 the scheduling problem is formulated, and in Section
3 its validity is discussed. In Section 4 main features

of optimal schedules are proved for convex function re-
lating processing speed of a task to a number of pro-

cessors alloted. Section 5 discusses optimality of gang
scheduling in the above context, Section 6 presents an
example of the application of the proposed approach,
and Section 7 concludes the paper.

2 Problem formulation

We consider a set of m identical processors P =
{P\, P,,...,Pp} used for executing the set 7 =
{1, T3, ...,T,} of n independent, nonpreemptable mal-
leable tasks (MT). Each MT needs for its execution
at least 1 processor but less than m. The number of
processors alloted to a task is unknown in advance.
The processing speed of a task depends on the number
of processors alloted to it: namely, function f; relates
processing speed of task T; to a number of processors
alloted. The criterion assumed is schedule length. Let
us note that processing times of MT’s are sometimes
represented by some factor u, which determines the
loss of time during a task processing using more than
one processor, caused by communication delays or by
synchronization needs. - This factor, called inefficiency
factor, is a discrete function of a number of processors
and a type of a task and its geometrical interpretation
is given in Figure 1.
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Figure 1: Inefficiency factor.

The relation between the speed function and the in-
efficiency factor is as follows:
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where: r - a number of processors used, r € (0, m];
ti(r) - processing time of task T; on r processors; t;(1)
- processing time of T; on one processor; u; - ineffi-
ciency factor (a discrete function of r) for task Tj; f; -
processing speed function for T;.

In this paper we consider a special case of scheduling
independent MT, namely for convex processing speed
funtions. This case corresponds to some practical ap-

plications where superlinear dependence of the pro-
cessing speed on a number of processors granted (i.e.

speed-up) can be achieved [Gustafson, 1988], like out-
of-core computations or Cholesky factorization. For
this case, using a continuous f;(r) for modelling MT’s,
we prove optimality of the gang scheduling strategy.

3 Practical interpretation
of convex processing speed func-
tions

The convexity of the speed function may appear unre-
alistic in the context of the parallel execution of com-
putations, since, it means that applications allow su-
perlinear speed-up.” Such a behavior of an applica-
tion is to be expected if the computations use other
resources in addition to the processing power of the in-
volved processors. The main resource used in addition
to the processing power is the memory. In any modern
computer, the memory is organized as a hierarchy of
successive layers of physical memories where the size
of the memory is inversely proportional to its speed:
from the registers in the processors, through the one or
two levels of cache memory, the physical RAM, to the

swapped memory on disks. =
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We describe now two of such applications where su-

perlinear speed-up can be achieved: namely Cholesky
factorization and molecular dynamics.

3.1 The effect of cache misses in
Cholesky factorization

Matrix computations are basic routines in most sci-
entific applications, using fully the high performance
pipelines of modern processor floating point arith-
metics. The main problem is to feed the pipeline with
the data.

We choose to illustrate the convex processing
speed functions on one of the most popular nu-
merical kernels, namely, the Cholesky factoriza-
tion [Golub and Van Loan, 1996].  The speed of
computations depends in this case on the fact
whether or not a matrix fits into the cache memory
[Dongarra et al., 1999]. Let us assume that the whole
matrix does not fit into the cache and thus, it slows
down the computation on one processor. When the
number of processors increases, the size of the blocks
(a line or a column) of the matrix used in the compu-
tation of a processor decreases. When the blocks fit
into the cache, the speed of the computation becomes
more important than the ratio of additional processor
resources [Barrett et al., 1993]. This leads to superlin-
ear dependence of the processing speed on a number of
processor alloted (speed-up). The same effect occurs
when the matrix does not fit into physical memory and
thus some parts of the matrix are swapped on disks.

Figure 2 shows the time achieved in the execution of

Cholesky routine of scalapack [Dongarra et al., 1999]
on an IBM SP for a large matrix.

We see, that the computation does not complete on
less than 4 nodes. The time reported in Figure 2 shows
superlinear processing speed-up. This particular be-
havior is emphasized in Figure 3: the work is defined as
the time needed to complete the task times the number
of processors involved in the computations. In Figure
3, the work decreases when the number of involved pro-
cessors increases. Thus, there is a superlinear depen-
dence of the speed function on a number of processors
alloted.

3.2 Molecular dynamics and out-of-
core computations

The simulation of molecular dynamics is one of the
most challenging problem in science. It is modeled

as a N body problem. The computation of atom

movements is irregular if interactions are spatially

limited (cut-off). An efficient execution requires ad-

vanced technques allowing to overlap communication

by computation like asynchronous buffered communi-
cations and multithreading. In the cases of protein
behavior, computations may require to compute in-
teractions between hundreds of thousands of atoms
160

[Bernard et al., 1999]. Needless to say, such an exe-
cution needs a large memory.

On some of the top parallel computers, like Cray
T3E, in order to simplify hardware and optimize com-
munications, there is no virtual memory management,
thus the available memory is strongly limited. Thus,
when the instance of the problem does not fit into the
memory of a processor, the execution cannot be per-
formed directly. To complete the execution, the virtual
memory management needs to be done “by hand” using
out of core computations, that is loading and storing

intermediate computations on a disk. Of course, this
increases the time of an execution. Thus, when the

number of processors is sufficient for storing the whole
data in the memory of these processors, a superlinear
speed-up will be observed.

. Execution time (sec.)

4 6 8 10 12 14 16
Number of processors

Figure 2: Execution time of scala-
pack cholesky, 7000x7000 matrix
with bloc size 100x100, on IBM SP- 1.
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Figure 3: Work of scalapack
cholesky, 7000x7000 matrix with
bloc size 100x100, on IBM SP1.
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Figure 4: Function: a processing
speed vs. a number of processors.

Figure 4 presents dependencies of a processing speed
of large molecular dynamics simulation on a number
of alloted processors for different problem sizes : from
11615 to 413039 atoms [Bernard, 1997]. The baseline
Yy = z is also drawn. The largest simulation does not
execute on less than 8 processors. In order to acceler-
ate computations, lists of interactions of atoms need to
be kept. On 8 processors, these lists do not fit com-
pletely on the available memory. As the number of
processors increases, more interactions may be stored,
accelerating computations, and thus involving the con-
vex behavior of the processing speed function. This
convexity occurs until a threshold and then the pro-
cessing speed becomes again concave due to communi-
cation and load-balancing overhead for more than 32
processors.

As we can see for some very large applications su-
perlinear behavior of processing speed functions is
achieved. It means that the shapes of functions
(curves) are convex.

4 Basic results from optimal
continuous resource allocation

In this Section, we will assume for the moment that
functions relating a processing speed of a task (applica-
tion) to a number of processors assigned to it are con-
tinuous. Then, using some results from the resource
allocation theory [Weglarz, 1982], it will be proved
that for convex functions a sequential processing of the
tasks, each of which uses all processors available in the
system, leads to a schedule of minimum length.

Assume that a processing of task T is described by
the following equation:

£;(t) = dx;/dt = fi(ri(t)),
z;(0) =0, z;(C;) = ps (2)

where

e z;(t) - the state of T} at moment ¢ (i.e. the amount
of processing done so far),

* 7i(t) - a real number of resource units alloted to
T; at time ¢,

fi - a continuous, non-decreasing function, f;(0) =
07 f i (ri) > 07

C; - unknown in advance, finishing time of T;,

pi - the final state or processing demand of T;.

The total available resource amount is equal to m,
i.e.
n
Z r3(t) < m for every ¢

i=1

From (2) we have:

C;
/0 f(rs)dt = p, (3)
and thus p; = C; fi(r;) or C; = pif fi(r:).

Denote by R the set of feasible resource allocations.
Further, denote by U the set defined in the follow-
ing way: u = (uj,us,..,u,) € U iff r € R, where
u; = fi(r;). Elements of U will be called transformed
resource allocations.

Theorem 4.1 [Weglarz, 1982

The minimum schedule length for a set of n indepen-
dent tasks described by (2) can always be ezpressed by
the formula:

C:na:v (p) = C:na:c (p7 U) =
= Min{Cmaz > 0: p/Crag € convlU} (4)
where p = {p1,p2,...,Pn} is the vector of processing

demands of tasks, and convU denotes the convex hull
of U, i.e. the set of all convez combinations of elements

of U.

Proof Let us firstly prove the thesis for a step trans-
formed resource allocation u equal to u;, [ = 1,2,..,h
in h disjoint time intervals included in [0,Cnaz] with
length equal to A, , respectively,

Z?:l A = Cmaz

Then (3) can be written in the form

Sy wil = p;

or, for the set T of tasks,

Sz A =P, or Yy wA1/Crmaz = P/Crmas-
Putting Ay = A;/Cinaz, we have

Z?:l wA = p/Cma:ca Al
1,2,k S N =1

v

0, I =

161
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This means that the same schedule length C,,.; can
be obtained using the constant transformed resource
allocation u-, which is the intersection point of straight
line u = p/Cyn,; and the set of all convex combinations
of u, l= 1, 2, ceey h.

Taking into account (2) and (4), as well as the fact
fi, are non-decreasing, we come to the conclusion that
the minimum schedule length C7, .. can always be de-
termined by the intersection point u™* (not necessarily
being a transformed resource allocation!) of straight
line u; = p;/Cmaz, ¢ = 1,2,..,n and the boundary
of the set of all convex combination of set U, i.e. the
boundary of set convU. That means that (4) holds. O

Figure 5: Set U and convU.

Now we describe geometrical interpretation of the
problem (see Figure 5). From the above Theorem
we know that the minimum schedule length is deter-
mined by the intersection point of straight line u; =
9i/Cmaz, + = 1,2,...,n and the boundary of set convU.
This means that the shape of boundary of convU is of
basic importance for the form of an optimal schedule.
Because set U results from a transformation of set R
using functions f;, only these functions f; decide about
the shape of set U, and thus convU.

5 Gang scheduling and its opti-
mality

Gang scheduling is a concept introduced by Ouster-
hout [1982]. He observed that a MIMD (Multi-
ple Instruction Multiple Data) system performance
degrades when a parallel application (task) does
not have all its interacting processes scheduled at
the same time. Gang scheduling (called also co-
scheduling) consists in granting simultaneously (in
the same time quantum) the processors to the same
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task. It has been demonstrated experimentally in
[Feitelson and Rudolph, 1992] that gang scheduling
performs well in a wide range of conditions and for var-
ious models of parallel tasks. Some practical examples
describing a concept of gang scheduling can be found
in [Drozdowski, 1996][Scherson et al., 1996].

Below we will show analytically that in case of mal-
leable tasks and convex processing speed functions
gang scheduling is an optimal strategy (i.e. leads to
a minimum length schedules).

Corollary 5.1

For convex f;, i = 1,2,...,,n, the processing of in-
dividual tasks consecutively on all available processors
(i.e. so called gang scheduling) is optimal.

Proof For convex f; (n = 2) set U has the shape
like the one presented in Figure 6. The intersec-
tion point u* of straight line u; = p;j/Cmqc and the
boundary of the set convU is never a transformed
resource allocation (except where f are linear), but
the same (minimum) schedule duration is also ob-
tained using transformed resource (processor) alloca-
tion which convex combination gives u*. These trans-
formed resource allocation for arbitrary n are: uj =
0,...,0, fi(m),0,...,0), i=1,2,..,n, where fi(m) ap-
pears on the i-th position of the n-element vector.

This means that tasks are processed consecutively,
each of them on m (all) available processors. O

It should be stressed that the above result s valid
for both: continuous and discrete functions, describing
the behavior of malleable tasks.

6 Example

We have two processors and a set of two tasks T7,T>
with processing demands p; = 2 and ps = 3 units,
respectively, and convex function f; = z?, i = 1,2.

The minimum schedule length C;.. = p1/f(m) +
po/f(m) = 2/4 + 3/4 = 5/4. We know that uj =
f(T:) = pi/C:na:c‘ Thus, ri = f_l (pi/c:naz)'

We have, r} = 1/2/% ~ 1,2649 and r; = V33 ~
1,5492. On the other hand, >, i differs from m =
2. This processors allocation is wrong, although the
point (u} = 1,6; uy = 2,4) is the intersection point
of the boundary of set convU and straight line u; =
Di/Crmaz, but it isn’t a transformed resource allocation.
The same (minimal) solution gives convex combination
of vectors: u? = [4,0], uj = [0,4]. It means that
the tasks are processed consecutively on 2 processors.
Thus, from (1) we have: ¢;(2) = 0,5, t2(2) = 0,75 and
C.ax = 11(2) + t2(2) = 1,25 (see Figure 6).
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Figure 6: a) an optimal processors
allocation, b) an optimal schedule.

7 Conclusion

In the paper, a concept of malleable tasks has been ap-
plied to an analysis of scheduling large computer pro-
grams for some specific applications. Using the results
from control theory it has been proved that for convex
functions relating speed of processing to a number of
processors assigned to a task, gang scheduling strategy
is optimal from the viewpoint of schedule length mini-
mization. This is not the case of concave curves, where
heuristic approaches need to be analyzed. The work on
this topic is in progress.
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