Computaci6n y Sistemas Vol. 4 No.2 pp. 166-177
© 2000, CIC-IPN. ISSN 1405-5546 Impreso en México

Two Techniques for Improvement the Speedup of Nautilus
DSM

Mario D. Marino
Computing Engineering Departament - Polytechnic School of the University of Sao Paulo
Av. Prof. Luciano Gualberto 158, trav 3, Cidade Universitaria
Predio de Engenharia de Electricidade, Depto. Computacao
sala C2-24, CEP 05508-900
e-mail: mario@regulus.pcs.usp.br

Article received-on February 15, 2000; accepted on August 23, 2000

Abstract

Nautilus is a home-based, page-based, multi-threaded
and scope consistency-based DSM system. In this s-
tudy, two techniques for improve the speedup of Nau-
tilus DSM are investigated: write detection and page
aggregation. The write detection technique consists of
maintaining the pages writable only on the home n-
odes and only detecting writes on the cache copies in
a page-based DSM. A consequence, this technique gen-
erates a less number of page faults and page requests,
consequently better speedups can be achieved. The page
aggregation technique consists of considering a larger
granularity unit than a page, in a page-based DSM sys-
tem. In order to have a fair and homogeneous com-
parison, a demo version of TreadMarks and JIAJIA
DSM were included in this study. The benchmarks e-
valuated in this study are EP (from NAS), SOR (from
Rice University), LU and Water N-Squared (both from
SPLASH-2).

Keywords: distributed, shared, memory, DSM.

1 Introduction

The evolution and the decrement of costs of intercon-
nection technologies and PCs have made the networks
of workstations (NOWs) the most used as a parallel
computer. Big projects such as Beowulf(Becker and
Merkey, 1997) can be mentioned to exemplify this.

The Distributed Shared Memory (DSM) paradig-
m(Li, 1996; Stum and Zhou, 1990), which has been
widely discussed for the last 9 years, is an abstraction
of shared memory which permits viewing of a network
of workstations as a shared memory parallel computer.

Some important DSMs, Munin(Carter, 1993),
Quarks(Carter et al., 1995; Swanson et al., 1998),
TreadMarks(Keleher, 1995), CVM(Keleher, 1996), JI-
AJIA(Eskicioglu, 1999; Hu et al., 1998a) and Nau-
tilus(Marino and Campos, 1999a; Marino and Campos,
1999b), are page-based DSM systems. Page-based so-
lutions have achieved good speedups for several bench-
marks, but there is still available place for improve-
ments. (Iftode et al., 1999)

In order to give a speedup improvement, in this s-
tudy two techniques are evaluated for Nautilus DSM
System:

- write detection(Hu et al., August 1999a; Hu et al.,
August 1999b);

- page aggregation(Amza et al., 1999; Keleher, 1999;
Keleher, 1998).

write detection is an essential mechanism in
multiple-writer protocols to identify writes to shared
pages. In order to implement multiple-writer proto-
col, software DSMs use virtual memory page faults to
detect writes to shared pages. Pages are protected at
the beginning of an interval to detect writes in it. The

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

write detection scheme used in Nautilus(Marino and
Campos, 1999a; Marino and Campos, 1999b) is based
on the scheme proposed by Hu(Hu et al., August 1999a;
Hu et al., August 1999b) for home-based DSMs as JI-
AJIA(Eskicioglu, 1999; Hu et al., 1998a). In home
nodes, a write to a shared page is detected and this
page will remain to be written by the home node until
it is written by another node. Thus, in this interval,
the page only is written by its home node and no write
detection is necessary, decreasing the number of page
faults and the overhead, thus improving its speedup.

In page-based DSM systems, shared memory access-
es are detected using virtual memory protection, thus
one page is the unit of access detection and can be
used as a unit of transfer. Depending on the memory
consistency model and the situation, also the diffs! are
used as an unit of transfer. For example, in homeless
lazy release consistency (LRC), such as TreadMarks, if
the node has a dirty page, diffs are fetched from several
nodes, when an invalid page is accessed. On the oth-
er hand, in JIAJIA, pages are fetched from the home
nodes when a remote page fault occurs.

The unit of access detection and the unit of transfer
can be increased by using a multipie of the hardware
page size. In this way, if an aggregation of several pages
is done, false sharing is increased. Besides, aggregation
can reduce the number of messages exchanged. If a
processor accesses several pages successively, a single
page fault request and reply can be enough, instead
of multiple exchanges, which are usually required. A
secondary benefit is the reduction of the number of
page-faults. On the other hand, false sharing can in-
crease the amount of data exchanged and the number
of messages(Amza et al., 1999).

One of the main goals of this paper is to evaluate
the write detection scheme for Nautilus and its influ-
ence on Nautilus’s speedup. In order to have a refer-
ence parameter of speedups, two DSMs are included
in this study: TreadMarks(Keleher, 1995) and JIAJI-
A(Eskicioglu, 1999; Hu et al., 1998a). These two DSMs
are well-known by the scientific community as optimal
speedups in DSM area.

Other main goals of this paper is to evaluate the page
aggregation technique(Amza et al., 1999) in Nautilus
DSM system. It will be investigated what is the in-
fluence of different page sizes in Nautilus speedup. In

14iffs: codification of the modifications suffered by a page
during a critical section

this study, two grain sizes are used for Nautilus: 4kB
and 8kB.

This study is an original contribution because the s-
tudy of Amza(Amza et al., 1999) is applied with Tread-
Marks, a lazy release consistency homeless system, and
this technique until the present was not applied in a
home-based and scope consistency, multi-threaded and
for Unix DSM, which are Nautilus’s features. In addi-
tion,, this is the first study which combines both tech-
niques, write detection and page aggregation, applied
and evaluated on a DSM with Nautilus features.

TreadMarks, a reference of optimal speedups by the
scientific community, is included in the comparison in
order to have a reference parameter of speedups. Un-
fortunately, the results from write detection technique
applied to TreadMarks DSM will not be showed nor
compared here because the version (1.0.3) used in this
study is a demo version, therefore, the source is not
available.

The speedup results from write detection technique
applied to JIAJIA DSM (version 2.1) will not be
showed nor compared here because, this technique has
showed any meaningful improvement in its speedup-
s, probably due some implementation problem of this
technique with JIAJIA DSM.

The evaluation comparison for write detection and
page aggregation is done by applying different bench-
marks: EP (from NAS), LU (kernel from SPLASH-
2)(Woo et al., 1995), SOR (from Rice University) and
Water N-Squared (from SPLASH-2). The environment
of the comparison is an eight-PC’s network intercon-
nected by a fast-Ethernet shared media. The operating
system used in each PC is Linux (2.x). Based on a com-
bination of write detection and page aggregation, four
combinations of these techniques can be created. They
are: i) traditional virtual memory write detection with
4kB of page size; ii) traditional virtual memory write
detection with 8kB of page size; iii) write detection
with 4kB of page size; iv) write detection with 8kB of
page size.

In section 2 a brief description of Nautilus is given.
In section 3, JIAJIA is described. In section 4, Tread-
Marks is briefly described. In section 5, write detection
mechanism for Nautilus is detailed. In section 6, page
aggregation technique is explained. In section 7, the
environment and the applications are defined. Section
8 presents the results and their analyses. Section 9
concludes this work.

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

2 Nautilus DSM

The main function of the new software DSM Nautilus
is to develop a DSM with a simple consistency mem-
ory model, in order to provide good speedups, and al-
so another one with a simpler user interface, totally
compatible with TreadMarks and JIAJIA. This idea
is very similar to the ideas utilized by JIAJIA, men-
tioned in the studies of Hu(Hu et al., 1998a) and Es-
kicioglu(Eskicioglu, 1999), but Nautilus makes use of
some other techniques, which distinguishes it from JI-
AJIA. These techniques will be mentioned below. In
order to be portable, it was developed as a runtime
library like TreadMarks, CVM and JIAJIA, because
there is no need to change the operating system ker-
nel(Carter, 1993).

Nautilus is a page-based DSM, as TreadMarks and
JIAJIA. In this scheme, pages are replicated through
the several nodes of the net, allowing multiple read-
s and writes(Stum and Zhou, 1990), thus improving
speedups. By adopting the multiple writer protocols
proposed by Carter(Carter, 1993), false sharing is re-
duced and good speedups can be achieved. The mech-
anism of coherence adopted is write invalidation(Stum
and Zhou, 1990), because several studies (Carter et
al., 1995; Eskicioglu, 1999; Iftode et al., 1999; Kele-
her, 1995) show that this type of mechanism provides
better speedups for general applications. Nautilus, as
JIAJIA does, uses scope consistency model, which is
implemented through a locked-based protocol(Hu et al,
1998b).

Nautilus is the first multi-threaded DSM system im-
plemented on top of a free Unix platform that uses the
scope consistency model because:

1)there are versions of TreadMarks implemented
with threads, but it does not use the scope consistency
memory model;

2)JIAJIA is a DSM system based on scope consis-
tency, but it is not implemented using threads.

3)CVM(Keleher, 1996) is a multi-threaded DSM sys-
tem, but it uses lazy release consistency and at the
moment, it does not have a Linux based version.

4)Brazos(Speight and Bennet, 1997) is a multi-
threaded DSM and uses the scope consistency, but it
is implemented on a Windows NT platform.

Let’s summarize Nautilus features: i) scope consis-
tency only sending consistency messages to the owner
of the pages and invalidating pages in the acquire prim-
itive; ii) multiple writer protocols; iii) multi-threaded

DSM: threads to minimize the switch context; iv) no
use of SIGIO signals(which notice the arrival of a net-
work message); v) minimization of diffs creation; vi)
primitives compatible with TreadMarks, Quarks and
JIAJIA; vii) network of PCs and Linux 2.x; viii) UDP
protocols.

Nautilus is different from other DSMs in several
ways. First, its implementation is multi-threaded, thus
it minimizes the context switches overheads, and in ad-
dition, does not use SIGIO signals in its implementa-
tion. Second, as JIAJIA does, Nautilus manages the
shared memory using a home-based scheme, but with a
directory structure of all pages instead of only a struc-
ture of the relevant pages (cached), used by JIAJIA.
Third, a different memory organization from JIAJIA.

To improve the speedup of the applications submit-
ted, Nautilus uses two techniques: i)multi-threaded
implementation; ii) diffs of pages that were written by
the owner are not created.

The multi-threaded implementation of Nautilus per-
mits: 1) minimization of context switch; 2) no use of
SIGIO signals.

The major part of all DSM systems created until
today implemented on top of an Unix platform uses
SIGIO signals to activate a handler to take care of
the arrival of messages which come from the network.
Some examples of DSMs that use the SIGIO signal are
TreadMarks and JIAJIA. One of the threads remains
blocked trying to read messages from the net. While
blocked, it remains asleep, thus non consuming CPU.
This technique decreases the overhead of the DSM and
allows to give as much CPU time as possible to the user
program. Thus, Nautilus is the first scope consistency
DSM system of the second generation which does not
use the SIGIO signal in its implementation. The use of
a multi-threaded implementation permits to eliminate
this overhead to take SIGIO signals and activate its
respective handler, in all arrivals of messages.

2.1 Lock-based Coherence protocol

Nautilus follows the lock-based protocol proposed by
JIAJTIA(Hu et al, 1998b), because of its simplicity, thus
minimizing the overheads: the pages can be in one of
three states: Invalid(INV), Read-Only (RO) and Read-
Write(RW). “Initially all pages are in RO state at all
home nodes. Ordinary read and write accesses to a
RW page or read access to a RO page, or acquire and
release on an INV or RO page do not cause any transi-

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

4 \ rel (wint, diff), acq
d, wt Q RW

wt (twin)

qinv acqinv

wt (getp, twin) rd (getp) inifial state

acq, rel

Notes

rd, wt: read, write

acq, rel: acquire, release

acqinv: invalidate the page on acquire
getp: get the page from its home
wht: send write-notices to the lock
diffs: send page diffs 1o home(s)
twin: create 2 twin of the page

Figure 1: JIAJIA Coherence Protocol (Hu et al, 1998b)

tion. Like the shared pages, each lock has a home node.
On a release operation, the node generate diffs for all
modified pages and sends them to their respective home-
s eagerly. Also, the processor sends a release request to
the home node of the lock, along with the write-notices
(list of a modified pages) for the associated critical sec-
tion. Similarly, an acquiring node sends a request to
the owner of the lock and waits until it receives a grant
message for the lock. Multiple acquire requests for a
lock are queued at the locks home processor. When the
lock becomes (or is) available, a lock grant message is
sent to the first node in the queue, piggybacked with the
applicable write-notices. After receiving the lock grant
message, the acquiring node invalidates the pages list-
ed in the write-notices and continues with its normal
operation(Hu et al, 1998b).”

In summary, the home nodes of the pages always
contain a valid page, and the diffs corresponding to
the remote cached copies of the pages are sent to the
home nodes. A list with the pages to be invalidated in
the node is attached to the acquire lock message.

JIAJIA (Eskicioglu, 1999; Hu et al., 1998a) only con-
tains information of the relevant pages, the cached
copies of the pages, because it argues that it reduces
the space overhead of the system. On the other hand,
Nautilus maintains a local directory structure for al-
1 pages, since it does not occupy a relevant space and
does not increase the overhead of the system. Inversely,
this helps increasing the speedup of the system.

In Nautilus, the owner nodes of the pages do not
need to send the diffs to other nodes, according to the
scope consistency model. So, diffs of pages written
by the owner are not created, which is more efficient
than the lazy diff creation of TreadMarks. The imple-
mentation of the state diagram of Figure 1 is done in
Unix with the mprotect() primitive, where pages can
be in RO, INV or RW states, thus their states can be
changed easily.

2.2 Data Distribution and Consistency
Related Informations

Nautilus distributes its shared pages across all nodes
and each shared pages has a home node. When home
nodes access their home pages, no page faults occurs.
When remote pages are accessed, page faults occur,
and these pages are fetched from their home node and
cached locally. Instead of JIAJIA, Nautilus does not
have a replacing mechanism of cached pages, since in
Linux, they are replaced as memory size increases.

Nautilus uses the scope consistency memory mod-
el(Iftode et al., 1996), where the coherence of cached
pages is maintained through write-notices? kept on the
lock (lock-based). As a result from the multiple-writer
protocols technique application, diffs are sent to their
home nodes. The implementation of Nautilus barri-
er mechanism is very similar to JIAJIA, because it is
believed that with less time consuming and a lower
number of messages, it becomes more efficient. Now,
the acquire/release mechanism of Nautilus is briefly
described. In order to signal the end of the critical
section, a release message is sent to the manager. Tak-
ing in advantage of the fact of sending this message,
the write notices are piggy-backed on the release mes-
sage. On the acquire, the processor which is doing it
sends a lock request to the manager. When granting
the lock, the manager piggy-backs write-notices asso-
ciated with this lock on the grant message. At the
acquire, the processor, which is doing it, invalidates all
cached pages that are notified as obsolete by the re-
ceived write-notices. On a barrier, all write notices of
all locks are cleared.

2write-notices: indication of which pages were modified dur-
ing the critical section

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

3 JIAJIA

JIAJIA (Eskicioglu, 1999; Hu et al., 1998a) is anoth-
er important DSM system that uses scope consistency,
which can be interpreted as an intermediary consisten-
cy model between release consistency and lazy release
consistency or also be interpreted as a kind of imple-
mentation of release consistency. So, diffs are trans-
mitted in each critical section to maintain the consis-

tency. Thus, the consistency model used by JIAJIA is

the scope consistency model, only sending consistency
messages to the owner of the pages and invalidating
pages in the acquire primitive.

To summarize the JIAJIA features: i) scope con-
sistency(Iftode et al., 1996) home based, minimizing
th€ number of consistency messages through the net;
ii)multiple writer techniques; iii) primitives compatible
with TreadMarks; iv)UDP protocols, minimizing net-
work protocols overhead; v) data distribution can be
chosen by the user (over the network nodes).

The main objective of JIAJIA (Eskicioglu, 1999; Hu
et al., 1998a) is to make the minimization of the over-
heads of diff creation and storage as simple as possible,
thus minimizing the number of consistency messages
through the net. The most interesting feature of JI-
AJIA is its simple ideas: home based, so the diffs are
transmitted only to the owner of the pages and not
to several nodes, minimizing the number of messages
through the net; the user knowing the behavior of his
program, chooses a data distribution which is more ap-
propriated, which allows for better speedups.

4 'TreadMarks

The consistency model used by TreadMarks is the lazy
release consistency(Keleher, 1995), so the propagation
of the modifications which occurred during a critical
section are delayed until the next acquire. By using
multiple writer protocols and the lazy release consis-
tency model, the speedups of TreadMarks are well-
known, making it one of the most used DSM systems.

To summarize TreadMarks features: i) lazy release
consistency and its variations (Keleher, 1995), mini-
mizing the number of consistency messages through the
net; ii) multiple writer techniques of Munin (Carter,
1993); iii) primitives compatible with m4; iv) IBM SP2,
Sun Sparc, PCs; v) AIX, Solaris, free Unix (Linux 2.x);
vi) UDP protocols to minimize network protocols over-

head

The speedups of TreadMarks made it the main DSM
used by the scientific community as a reference of opti-
mal speedups. Thus, it makes sense to compare it with
other DSMs in order to have an accurate evaluation of
its performance.

The efficiency of TreadMarks is mainly derived from
its lazy release consistency model. The major draw-
back of adopting this model is the need of large
amounts ofmemory to store the diffs all over the us-
er’s application execution. Thus, the size of the bench-
marks used to evaluate the speedups of the DSM sys-
tem can be compromised if there is not enough mem-
ory to execute the program or if the operating system
does swap. If it cannot use enough size to run the
benchmarks, the computation versus synchronization
becomes unfavorable for using a DSM system.

5 Write detection

Nautilus has several common features with JIAJIA,
i.e., by observing the item 3, where JIAJIA features
were mentioned, from feature i) to iv) Nautilus is sim-
ilar to JIAJIA, which permits Nautilus to adopt the
JIAJIA’s write detection scheme.

As other DSMs like TreadMarks(Keleher, 1995) and
JIAJIA (Eskicioglu, 1999; Hu et al., 1998a) do, Nau-
tilus uses virtual memory page faults to detect writes
to shared pages. Shared pages are protected at the be-
ginning of an interval (several critical sections). When
the first write to a shared page occurs, a SIGSEGV
signal is delivered, and in this moment the page can
be written without protection. At the end of the crit-
ical section, as JIAJIA does, Nautilus send the write-
notices related about the shared pages.

Several studies (Amza et al., 1999; Bershad et al.,
1993; Carter, 1993; Eskicioglu, 1999; Hu et al., 1998a;
Iftode et al., 1999; Keleher, 1995; Keleher, 1999) show
that the detection of writes to shared pages presents
significant overheads. Other studies show that appli-
cations with large shared data set and good data dis-
tribution, the writes hit in the home. Thus, it is possi-
ble to conclude that for applications with large shared
data set and good data distribution, if the write de-
tection would be eliminated from the home node, a
great overhead can be decreased. And going further,
it is not necessary to become the page from the read-
write state to read-only state(Hu et al, 1998b) if only

M. D. Marino: Two Techniques for Improvement the Sneedup of Nautilus DSM

the home node writes to this page. Concluding, if the
home page is written in some interval, several mprotect-
s() and SIGSEGV handlers calls are saved, improving
the DSM’s speedup. If the home page is not written
by its home in the interval, some unnecessary invali-
dations of remote cached pages can occur, thus more
remote accesses.

The study of Amza(Amza et al., 1999) showed
that in many applications, single-writer constitutes
the dominant part of the sharing behavior and shared
pages are normally written by the home node (owner)
for a certain interval. Nautilus implements its write de-
tection scheme which recognizes automatically a single
write to a shared page by its home node, presuming
that the page will continue to be written by its home
node until the page is written by remote nodes.

6 Page Aggregation

In terms of implementation, following the other DSMs
directions, in Nautilus there is a handler responsible
for request a page from a remote node when a segmen-
tation fault occurs. Following the Figure 1 diagram,
when a page is accessed and it is in the INV state a
SIGSEVG signal is generated and the respective han-
dler, as it was said before, requests the page from the
home node. When the page arrives the primitive m-
protect() changes the state from INV to RO.

When the page is written, another SIGSEGYV signal
is generated and the primitive mprotect() changes the
state of the page from RO to RW, as can be seen in Fig-
ure 1. As is shown in this figure, after the generation
of the diffs, also with the mprotect() primitive, pages
go to RO state again. And, when the write-notices ar-
rive, indicating the pages are modified by other nodes,
pages go to INV state (again with the use of mprotect()
primitive). The primitive mprotect() permits to con-
sider a granularity multiple of a page, thus giving the
same permission for a region multiple of a page. Thus,
this fact gives the condition to modify more than one
page at the same time, which is named page aggrega-
tion technique.

The study (Amza et al., 1999) says that if aggrega-
tion is done, false sharing is increased and aggregation
reduces the number of messages exchanged. In addi-
tion, the processor accesses several pages successively,
a single page fault request and reply can be enough,
instead of multiple exchanges of requests and replies,

which are usually required. The study (Amza et al.,
1999) also shows that there is a reduction of the num-
ber of page-faults, but false sharing can increase the
amount of data exchanged and the number of mes-
sages.

By changing the page size default (4kB) to, for ex-
ample, 8kB using mprotect() primitive in Nautilus, it
is possible to evaluate the effects of the incremented
size in page fault reduction in the speedups.

7 Experimental Platform and

Applications

The results reported here are collected on an eight-
PC’s network. Each node (PC) is equipped with a K6
- 233 MHz (AMD)processor, 64 MB of memory and
a fast Ethernet card (100 Mbits/s) . The nodes are
interconnected with a hub. In order to measure the
speedups, the network above was completely isolated
from any other external networks. Each PC runs Linux
Red Hat 6.0. The experiments are executed with no
other user process.

Related to page aggregation, two sizes are consid-
ered for page size: 4kB, which is the default (memory
hardware) and 8kB, which is multiple of 4kB. And, re-
lated to write detection, a version with this technique
will be compared to a version without this technique.

Based on the combination of write detection and
page aggregation techniques, as it has already been
mentioned, four versions of Nautilus DSM will be eval-
uated and compared to TreadMarks and JIAJIA. They
are with Nautilus using: 1. traditional virtual memory
write detection with 4kB of page size; 2. traditional
virtual memory write detection with 8kB of page size;
3. write detection with 4kB of page size; 4. write de-
tection with 8kB of page size.

The test suite includes some programs: EP (from
NAS), LU (from SPLASH-2(Woo et al., 1995)), SOR
(from Rice University) and Water N-Squared (from
SPLASH-2). SPLASH-2 is a collection of parallel ap-
plications implemented to evaluate and design shared
memory multiprocessors.

The Embarrassingly Parallel (EP) program from the
NAS benchmark suite generates pairs of Gaussian ran-
dom deviates with a scheme that is well suited for par-
allel computation and tabulates the number of pairs
succesgively. The only communication and synchro-

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

nization in this program is summing up a ten-integer
list in a critical section at the end of program (Hu et al.,
1998a). The parameter used in EP program is M=224,

The LU kernel from SPLASH-2 factors a dense ma-
trix into the product of a lower triangular and up-
per triangular matrix. The NxN matrix is divided in-
to an nxn array of bxb blocks (N = n*b) to exploit
temporal locality on submatrix elements. The ma-
trix is factored as an array of blocks, allowing blocks®
to be allocated contiguously and entirely in the local
memory of processors that own them. LU is a kernel
from SPLASH2 benchmarks that has a rate compu-
tation/communication O(N®)/O(N?), which increases
with the problem size N. The nodes frequently syn-
chronize in each step of computation and none of the
phases are fully parallelized(Hu et al., 1998a).

SOR from Rice University solves partial differ-
ential equations (Laplace equations) with an Over-
Relaxation method. There are two arrays, black and
red array allocated in shared memory. Each element
from the red array is computed as an aritmethic mean
from the black array and each element from the black
array is computed as an aritmethic mean from the
red array. Communication occurs across the bound-
ary rows on a barrier. The SOR from Rice Universi-
ty solves Laplace partial equations. For a number of
iterations it has two barriers each iteration and com-
munication occurs across boundary rows on a barri-
er. The communication does not increase with the
number of processors and the relation communica-
tion/computation reduces as the size of problem in-
creases (Hu et al., 1998a).

Water is an N-body molecular simulation program
that evaluates forces and potentials in a system of wa-
ter molecules in the liquid state using a brute force
method with a cutoff radius. Water simulates the s-
tate of the molecules in steps. Both intra- and inter-
molecular potentials are computed in each step. The
most computation- and communication-intensive part
of the program is the inter-molecular force computa-
tion phase, where each processor computes and up-
dates the forces between each of its molecules and each
of the n/2 following molecules in a wrap-around fash-
ion(Eskicioglu, 1999).

application EP LU Water SOR
t(1) 121.80 | 350.90 | 2983.00 | 29.10
t(8).Tmk 15.62 54.45 403.20 8.66
t(8).JIA 15.60 65.44 429.54 18.22

t(8).NautVdk | 15.65 | 54.32 | 426.40 | 7.66
t(8).NautWD4k | 15.67 | 49.60 | 422.07 | 4.37
t(8).NautV8k | 15.66 | 55.52 | 426.69 | 6.54
t(8).NautWD8k | 15.67 | 49.28 | 427.55 | 4.14

Sp.Tmk 7.80 6.44 7.39 3.36
Sp.JIA 7.81 5.36 6.94 1.60
Sp.NautV4k 7.78 6.46 7.00 3.80

Sp.NautWD4k 7.77 7.07 7.07 6.66
Sp.NautV8k 7.77 6.45 6.99 4.45
Sp.NautWD8k 7.78 7.12 6.98 7.03

SG.JIA 1 5882 106 1177

SG.NautV4k 2 7980 | 10210 | 12425
SG.NautWD4k 2 440 824 927

SG.NautV8k 1 5029 855 7912
SG.NautWD8k 1 245 671 458
gp.JIA 1 3110 1924 855
gp-Naut Vak 1 1528 505 118
gp.NautWD4k 1 340 448 74
gp-NautV8k 1 1232 440 72
gp.NautWD8k 1 195 331 33

Table 1: Table comparing TreadMarks, JIAJIA and
Nautilus (virtual and write detection, with grain sizes
of 4kB and 8kB)

8 Result Analysis

Before presenting the results and their analyses, it is
necessary to emphasize that the execution time for
number of nodes=1 in all evaluated benchmarks is ob-
tained from the sequential version of the benchmarks
without any DSM primitive. So, the primitive used to
allocate memory to obtain the sequential time (num-
ber of nodes=1) is malloc(), default primitive of C
programming,.

In order to have an accurate, homogeneous and fair
comparison, the same programs are executed using
TreadMarks (version 1.0.3), JIAJIA (version 2.1) and
Nautilus (version 0.0.1).

There are some constraints with TreadMarks version
(1.0.3) used:

i)the applications were executed and the speedups
measured using Naeutilus running on up to 8 nodes;

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

ii)bigger input sizes: the shared memory size is lim-
ited in this version;

iii)the source code was not available: only time and
speedups can be obtained from this version, thus it
was not possible to obtain number of page faults and
SIGSEGYV signals.

The data input size N used in the LU and SOR eval-
uation is 1792x1792; the number of iterations for the
SOR benchmark is 10 . The number of steps used in
Water is 25 and the number of molecules is 1728. For
EP, M=2%,

Table 1 shows some features and results of the bench-
marks: sequential time (t(1)), eight-processor parallel
run time(8), speedup (Sp), remote get page request
counts (gp) and number of local SIGSEGV of Nau-
tilus(SG). The sequential time t(1) was obtained from
the sequential program without no DSM primitives and
malloc() primitive. In order to evaluate the write de-
tection speedup, remote get page request counts and
the number of local SIGSEGVs of Nautilus are tak-
en. For Table 1, Tmk means TreadMarks, JIA means
JIAJIA, NautV means Nautilus with the traditional
virtual memory write detection and NautWD means
Nautilus with the write detection. NautWD assumes
that a page will only be written by its home in the
future barrier interval, keeping its home page writable
if only the home writes to it. When 4k is mentioned,
it means that Nautilus is using grain size of 4kB and
8k means Nautilus using 8kB of grain size. Thus, for
Nautilus using: i) Nautilus versions with 8kB of page
size: Naut8k; ii) Nautilus versions with 4kB: Naut4k;
iii)traditional virtual memory write detection with 4k-
B of page size, the notation is NautV4k; iv)traditional
virtual memory write detection with 8kB of page size:
NautV8k; v) traditional virtual memory write detec-
tion versions: NautV; vi) write detection with 4kB of
page size: NautWD4k; vii) write detection with 8kB
of page size: NautWDB8k; viii) write detection versions:
NautWD.

Except for EP benchmark, some general conclusions
can be taken from Table 1: the number of SIGSEGVs
and the number of page requests decreased when both
mechanisms, write detection and page aggregation,
were employed. It can be seen lower remote page ac-
cesses (gp rows) in NautWD than in NautV, because of
the correct home page write assumption. It was said
before that if a home page is assumed to be written
by its home next barrier interval and if the home does

Speadup of EP
g T T
‘ ! o:%m‘(“ J
L e
‘oo NautVid' A
L tep NautWOdgr o |
“apN ' -
“sp Nagto8k™ - o
.'/
] AJ*" -
.g/
(2% /74‘
8" : |
§ P
@l f‘/
’/"'
3 s 4
(8
Vs
< "
ya
1 / L 1 L L 1 1
4 3
Number of Nodes

Figure 2: speedups of EP: M=2 24

not write it, the assumption causes unnecessary inval-
idation of remote cached pages and consequently some
other page requests. This justifies the decrement of
the number of SIGSEGVs and page requests. Related
to aggregation, it was said before that if the page size
increases, the number of page requests and SIGSEGVs
decreases, which justifies the observed behavior.

Now, for each benchmark, the behavior of the tech-
niques is analyzed.

8.1 EP

EP (NAS) has a small amount of communication and
a small number of messages transmitted through the
net, as can be observed from Table 1. By looking at
Figure 2, all Nautilus’s versions, JIAJIA and Tread-
Marks have similar speedups, only differing about 1-
3%. Due to the small number of messages generated
by this applicative, it was possible neither to notice
the difference when the write detection nor the page
aggregation techniques, when both were applied.

8.2

By looking at Figure 3, the speedups of LU can be
seen. It can be noticed from this figure that mainly the
write detection technique improved Nautilus’s speedup
and the page aggregation technique practically did not

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

improve Nautilus speedup.

Analyzing the write detection technique in LU , ma-
trices are distributed across processors in a way that
each processor writes to its home part of the matrices
in the computing.(Becker and Merkey, 1997) Since the
computation of an iteration is synchronized with bar-
riers and passing a barrier causes all shared pages to
be write-protected in traditional virtual memory, page
faults occur for writing all home pages in an iteration.
The method does not write protect shared pages on a
barrier, and writing to home pages of a processor can
process without any SIGSEGV.

From Table 1, for eight nodes, it can be noticed that
for Naut4k (page size of 4kB), the write method im-
proved the speedup up to 9.78% and for Naut8k (page
size of 8kB), the method improved the speedup of Nau-
tilus up to 0.7%. The increasing of the speedups can be
Justified by observing the number of SIGSEGVS from
Table 1 an order of magnitude lower for the technique
versions compared to traditional versions. The num-
ber of page requests (gp rows) were reduced an order
of magnitude when this method was applied.

Analyzing the page aggregation technique, for eight
nodes, for NautV, this method decreased the speedup
up to 0.1% and, for NautWD, this method improved
the speedup up to 0.7%. The justification of the de-
crease of speedup is increasing of false sharing. The
number of SIGSEGVs was reduced by 36.98% for
NautV and by 44.32% for NautWD; in addition the
number of page requests was reduced by 19.37% for
NautV and by 42.64% for NautWD.

With both methods applied, write detection and
page aggregation, the speedup of Nautilus was im-
proved up to 10.21%, for eight nodes.

Comparing TreadMarks generically with NautV4k,
both have similar behavior, some times TreadMarks
outperforming NautV4k (six nodes for example) and
some times NautV4k outperforming TreadMarks (for
five and seven nodes). This alternate behavior is due
to choice of data distribution and the needing of diff
storage of TreadMarks, which can cause in some cas-
es the swapping of the operating system(Marino and
Campos, 1999b). With the adoption of the mecha-
nisms (write detection and aggregation), Nautilus out-
performs TreadMarks up to 10.56%.

Comparing with JIAJIA, for eight nodes, Tread-
Marks outperforms it by 20.15%, and Nautilus with
both techniques outperforms it by 32.83%. Better data

Speedup of L

i H ! T l

1 i | i i i
< 3 4 5 6 7
Number of Nodes

Figure 3: speedups of LU: N=1792

distribution (choice of the page owners) improves data
locality and gives a lower cold start up time to dis-
tribute shared data are factors which also contributes
to the better speedups of TreadMarks and Nautilus
over JIAJIA. In addition, the elimination of SIGIO sig-
nals minimizes the overheads of Nautilus over the other
DSMs. In terms of number of SIGSEGVS (from Table
1), JIAJIA has 26.29% lower than NautV4k, but com-
paring to NautV8k, the later has 14.51% more speedup
than the former; for the versions, Nautilus is one order
of magnitude lower than JIAJIA. In terms of page re-
quests, NautV has lower number of them (50.87% and
60.38%) and for NautWD, it is one order of magnitude
lower than JIAJIA.

8.3 Water

By looking at Figure 4, the speedups of Water can be
seen. It can be noticed from this figure that mainly the
write detection technique improved Nautilus’s speedup
and the page aggregation technique did not improve
Nautilus speedup.

From Table 1, for eight nodes, it can be noticed that
for NautV4k the write method improved the speedup
up to 1.00% and for NautV8k, the method decreased
the speedup of Nautilus by 0.15%, this because of
the false sharing effect. By observing the number of
SIGSEGVS from Table 1, NautWD4k version has an

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

order of magnitude lower, and NautWD8k has 21.52%
lower SIGSEGVs . In the same way, the number of
page requests (gp rows) were reduced: 11.28% for 4k-
B’s page size and 24.77% for 8kB’s page size.

Analyzing the page aggregation technique, for eight
nodes, for NautV, this method decreased the speedup
by 0.15% and, for NautWD versions, decreased the
speedup by 1.30%, both speedup reductions justified
because of the increasement of the false sharing effect.
With this technique, the number of SIGSEG Vs was re-
duced an order of magnitude for NautV and by 18.57%
for NautWD; in addition the number of page requests
was reduced by 12.87% for NautV and by 26.11% for
NautWD.

Considering the two techniques, the write detection
and page aggregation, the method proportioned better
speedup for Nautilus, up to 1.00%, for eight nodes. The
problem with this application is its high synchroniza-
tion, which is the dominant feature. Also, the false
sharing effect increases with the increasement of the
page size, which contributes to decrease the speedup
when the aggregation technique is applied.

Confronting TreadMarks generically with NautV4k,
TreadMarks outperforms it up to 5.7%, due to its bet-
ter data distribution and the semaphore implementa-
tion of Nautilus is until in developing. Confronting
with JIAJIA, for eight nodes, TreadMarks outperform-
8 it up to 6.48% and NautV4k outperforms it up to
1.87%. In terms of number of SIGSEGVs, JIAJIA has
an order of magnitude lower than NautV4k, and 70-
80% lower for the other versions, mainly due its better
data distribution than Nautilus.

8.4 SOR

By looking at Figure 5, the speedups of SOR can be
seen. It can be noticed from this figure that mainly the
write detection technique improved Nautilus’s speedup
and the page aggregation technique practically did not
improve Nautilus speedup.

In SOR, as the same way in LU, matrices are dis-
tributed across processors in a way that each proces-
sor writes to its home part of the matrices in the com-
puting.(Becker and Merkey, 1997) Since the computa-
tion of an iteration is synchronized with barriers and
passing a barrier causes all shared pages to be write-
protected in traditional virtual memory, page faults
occur for writing all home pages in an iteration. The
method does not write protect shared pages on a bar-

Speedup of Waler

T T T

‘waler Tmic' —
‘waler JIA"
‘e Nautyek'
‘wate NautVek'
"wale NafWhk' ~m s
“wader NaufWOgK” - -5

LR
-

q - Il 1 L
: - . 4]
Number of Nodes

Figure 4: speedups of Water: 1728 molecules and 25
steps

rier, and writing to home pages of a process without
any SIGSEGV.

From Table 1, for eight nodes, it can be noticed that
for Naut4k, the write method improved the speedup
up to 75.26% and for Naut8k, up to 57.98%. The in-
creasement of the speedups can be justified by observ-
ing the number of SIGSEGVS from Table 1, an order
of magnitude lower for the NautWD versions compared
to NautV versions. The number of page requests were
reduced too.

Analyzing the page aggregation technique, for eight
nodes, for NautV version, this method improved the
speedup up to 17.11% and, for NautWD version, up to
5.56%. In this technique, the number of SIGSEGVs
was reduced by 36.32% for NautV version and by
50.59% for NautWD version; also the number of page
requests was reduced by 38.98% for NautV and by
55.41% for the NautWD.

With both methods applied, write detection and
page aggregation, the speedup of Nautilus was im-
proved up to 85.00%, for eight nodes.

Confronting TreadMarks generically with NautV4k,
it outperforms TreadMarks up to 13.10%. This hap-
pens because of the better data distribution (choice of
the page owners) adopted by itself improving the ma-
trix data locality (minimizing the number of messages
through the net) and resulting in a lower cold start up

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

Speecip of Sor
8 T T
3 s
i
.
o8
i
1]
g, i ;
i e
i : -
H +
. @
I X & +
[7% 1
(% — 1 1 1 L L
4 5
Number of Nodes

Figure 5: speedups of SOR: 1792x1792

time to distribute shared data. In addition, the avoid-
ance of SIGIO signals and the multi-threading help to
improve the speedup of SOR. In addition, with all tech-
niques proposed and applied in this paper for Nautilus,
it outperforms TreadMarks up to 109.22%.

For this benchmark, it seems that JIAJIA proba-
bly has an implementation problem for this bench-
mark, so it is not considered for speedup analysis. For
number of SIGSEGVs, JIAJIA outperforms NautV4k
and NautV8k by one order of magnitude and for the
NautWD versions, they outperform JIAJIA by 21.24%
and 61.09%. For the number of page requests, JIAJIA
is 86.20% higher than NautV4k and has an order of
magnitude higher page requests than other Nautilus’s
versions.

9 Conclusion

The contribution of this study is an evaluation of two
techniques, write detection and page aggregation, on a
DSM with Nautilus features. In order to have a fair
and homogeneous comparison, two well known DSMs
are used: TreadMarks and JIAJIA. In addition, these
three DSMs are compared with respect to speedups,
number of page requests and number SIGSEGVs.

The study shows that for LU application, both pro-
posed techniques have improved Nautilus speedup up
t0 10.21%. For SOR application, which have shared da-

ta and single-writer behavior, the write detection tech-
nique can improve its speedup. For SOR, a speedup
increasement of 85.00% for Nautilus was obtained. For
other applications with high synchronization like Wa-
ter, both techniques do not contribute to increase the
speedup. The number of SIGSEGVs and the number
of request page faults have reduced by one order of
magnitude in several cases, mainly when the write de-
tection technique was applied.

In future works, other benchmarks will be evaluat-
ed in this comparison. Also, an improved version of
JIAJIA will be evaluated and a complete version of

TreadMarks to measure the number of page faults and
SIGSEGVs.

References

Amza C., Cox A. L., Dwarkadas S., Jin
L. J., Rajamani K., Zwaenepoel W., Adap-
tive Protocols for Software Distributed Shared
Memory, Proceedings of IEEE, Special Issue on
Distributed Shared Memory, pp. 467-475, March
1999.

Becker D., Merkey P.; Beowulf: Harnessing
the Power of Parallelism in a Pile-of-PCs, Pro-
ceedings, IEEE Aerospace, 1997.

Bershad B. N. , Zekauskas M. J. , SawDon
W. A., The Midway Distributed Shared Memory
System , COMPCOM 1993.

Carter J. B., Khandekar D., Kamb L.,
Distributed Shared Memory: Where We are and
Where we Should Headed, Computer Systems Lab-
oratory, University of Utah, 1995.

Carter J. B., Efficient Distributed Shared Mem-
ory Based on Multi-protocol Release Consisten-
cy, PHD Thesis, Rice University, Houston, Texas,
September, 1993.

Eskicioglu, M.S., Marsland T.A., Hu W,
Shi W.; Evaluation of the JIAJIA DSM System
on High Performance Computer Architectures,
Proceeding of the Hawai’i International Confer-
ence on System Sciences, Maui, Hawaii, January,
1999.

M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

Hu W., Shi W., Tang Z., JIAJIA: An SVM
System Based on a new Cache Coherence Proto-
col, technical report no. 980001, Center of High
Performance Computing, Institute of Computing
Technology, Chinese Academy of Sciences, Jan-
uary, 1998.

Hu W., Shi W., Tang Z.; A lock-based cache co-
herence protocol for scope consistency, Journal of
Computer Science and Technology, 13(2):97-109,
March, 1998.

Hu W., Shi W., Tang Z., Adaptive write detec-
tion in Home-based Software DSMs, to appear in
Proceedings of the 8th IEEE International Sympo-
sium on High Performance Distributed Comput-
ing, August 1999, Redondo Beach, CA.

Hu W., Shi W., Tang Z., Write detection in
Home-based Software DSMs, to appear-in Pro-
ceedings of Euro-Par’99, August 31-September 2,
Tolouse, France.

Iftode L., Singh J.P., Li K; Scope Consisten-
cy: A bridge between release consistency and entry
consistency. Proceedings of the 8th ACM Annual
Symposium on Parallel Algorithms and Architec-
tures (SPAA’96), pp. 277-287, June, 1996.

Iftode L., Singh J. P.; Shared Virtual Memo-
ry: Progress and Challenges; Proceedings of the
IEEE, Vol 87, No. 3, March 1999, 1999.

Keleher P., Lazy Release Consistency for Dis-
tributed Shared Memory, PHD Thesis, University
of Rochester, Texas, Houston, January 1995.

Keleher P., The Relative Importance of Con-
current Writers and Weak Consistency Models, in
Proceedings of the 16th International Conference
on Distributed Computing Systems (ICDCS-16),
pp- 91-98, May 1996.

Keleher P., Update Protocols and Cluster-based
Shared Memory, In Computer Communications,
22(11), pp. 1045-1055, July 1999.

Keleher P., Update Protocols and Iterative Sci-
entific Applications, In The 12th International
Parallel Processing Symposium, March 1998.

Li K, Shared Virtual Memory on Loosely Cou-
pled Multiprocessors, PHD Thesis, Yale Universi-
ty, 1986.

Marino M. D., Campos G. L., Sato L. M.,;
An Ewvaluation of the Speedup of Nautihis DSM
System, IASTED PDCS99, pp 250-255, Boston,
USA, November, 1999.

Marino M. D.; Campos G. L.; A Preliminary
DSM Speedup Comparison: JIAJIA z Nautilus, to
be published at HPCS99.

Speight E., Bennett J. K., Brazos: A third
generation DSM system, In Proceedings of the
1997 USENIX Windows/NT Workshop, pp. 95-
106, August, 1997.

Stum M. , Zhou 8., Algorithms Impleme’ntihg
Distributed Shared Memory, University of Toron-
to, IEEE Computer v.23 , n.5 , pp.54-64, May
1990.

Swanson M., Stoller L., Carter J., Making
Distributed Shared Memory Simple, Yet Efficient,
Computer Systems Laboratory, University of U-
tah, technical report , 1998.

Woo S., Ohara M., Torrie E., Singh J.P.,
Gupta A.; The SPLASH-2 programs: Character-
ization and methodological considerations. In Pro-
ceedings of the 22th Annual Symposium on Com-
puter Architecture, pages 24-36, June, 1995.

Mario D. Marino, graduate: Electrical Engineering at
Escola Politecnica da Universidade de Sao Paulo,
December, 1992. Master of Science: Computing
Engineering Department at Escola Politecnica da
Universidade de Sao Paulo, October, 1996.
PHD: Computing Engineering Department at Escola
Politecnica da Universidade de Sao Paulo, January,
2001.

