
Computación y Sistemas Vol. 4 No.3 pp. 213 -229
@ 2001, CIC -IPN. ISSN 1405-5546 Impreso en México

An Information Power Grid Resource

Management Tool

Luis Miguel Camposl , Fabricio Silval , Isaac Schersonl and Mary Eshaghian2
1 Dept. oflnformation and Compu,ter Science

University of Califomia-lrvine

Irvine, CA 92697, USA.
e-mail: {lcampos, fsilva, isaac}@ics.uci.edu

2 Departament of Computer Engineering

Rochester lnstitute of Technology
Rochester, NY 14623-5603

e-mail: mmeeec@grace.rit.edu

Article received on Februarv 15. 2000: acceoted on Auí!Ust 23. 2000

Introd uction

ground

and Back-1Abstract

Heterogeneous Computing (HC) is defined as a spe-

cial form of parallel and distributed computing.
Computations are carried out using a single au-

tonomous computer operating in both SIMD and

MIMD modes, or using a number of connected au-

tonomous computers (a.k.a. Cluster Computing).

Information Power Grid (IPG) a is form of HC in

which high performance computers located at geo-

graphically distributed sites are connected via a high-

speed interconnection network. It is desirable to

make IPG accessible to general users as easily and

seamlessly as electricity from the electric power grid.

The users should be able to submit jobs at any site,

the IPG should be able to handle the computations

using the resources available, and return the results

to the user. One of the many challenges in making

IPG work is the issue of Resource Management. We

present a Resource Management Tool for IPG called

IPG-SaLaD (Static mapper, and Load balancer, and

Dynamic scheduler). This tool uses the Cluster-M

mapping paradigm for initial allocation of tasks of

a given job onto resources. Later as new jobs come

in or as the status of the system changes, the tool

uses the Rate of Change algorithm for load balancing,

and the Concurrent Gang Scheduling for scheduling.

Currentlya window-NT based implementation of the

IPG-SaLaD using PVM is being constructed.

Keywords: Information Power Grid, Heteroge-

neous Computing, Resource Management, Parallel

Job Scheduling, Static Mapping and allocation, Dy-

namic Load Balancing

Since the early 90's, significant amount of attention
has been given to the type of computing in which
multiple computers are used concurrently in solving
single problems. These computers may be of dif-
fe.rent type and brand with different operating sys-
tems and capabilities. Furthermore, they may be
geographically distributed. A number of different
terms have been used for introducing this concept
such as Heterogeneous Computing, Cluster Comput-
ing, Meta Computing, Wide-area Computing, and
recently Information Power Grid (IPG) computing.
In an IPG environment a national computing infras-
tructure allows users to access the information re-
sources of the nation in much the same way as one
accesses electrical power today.

IPG is a topic that has been of interest to N ASA
and several other organizations such as DOD, DOE
and NSF. To this date, a number of sites have taken
part in IPG, such as Caltech/JPL, ISI/USC, SDSC,
and NCSA. IPG offers many benefits such as allow-
ing collaborative research among geographically dis-
persed teams in a virtual environment, enabling so-
lutions of problems that could not be done other-
wise, and cost and time savings through optimal use
of scarce computing resources. The design issues in
developing the ipformation technology that enables
IPG, can be classified into four groups: Application,
User environment, Execution environment, and Sys-
tem integration.

Among the four groups named above, design of
suitable execution environments for IPG stands per-
haps as the most challenging one. IPG requires exe-

*This rese.arch was supported in part by NASA under grant
number NAG5-2561, and by the Irvine Research Unit in Ad-
vanced Computing
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Static Allocation oí subtasks in a
single job

cution environments that are portable and scalable.
This includes design of efficient resource manage-
ment techniques, data storage and migration tech-
niques. Tools need to be developed to enable the
use of the execution environment such as automated
tools for porting legacy code, collaborative problem

solving environments, formal, portable programmipg
paradigms, languages and tools that express paral-
lelism and support synthesis and reuse. These exe-
cution environments should support applications for
the future such as application software that uses
1000 or 10000 processors. Furthermore, the execu-
tion environment, user environment and applications
all need to be integrated.

1.1

The focus of our work is in the area of execu-
tion environment design. More specifically we will
concentrate on an IPG tool for resource manage-
ment. The proposed tool called SaLaD (Static allo-
cator, and Load balancer, and Dynamic scheduler) ,
uses a three step mechanism. During the first step,
using the Cluster-M static allocator, it will take a
program-task (or so called a job) that is entered by
the user (or by a compiler) and will break it into
subtasks and will map/allocate the subtasks onto
available processors and or computers so that over-
all execution time is minimized. As new jobs ar-
rive and/or finish execution, it maybe required to
redistributed individual subtasks using the Rate of
Change load balancer. This step guarantees that no
processing element ever goes idle. Finally the Con-
current Gang dynamic scheduler is used to schedule
the execution sequence of multiple independent jobs
residing on the processors. The optimal use of re-
sources, and resource allocation based on the work-
load contents and site specific capabilities is consis-
tent with the IPG objectives specified by NASA. fn
this paper, we will present our preliminary results
towards the development of this integrated resource
management tool. Currently a simple version which
is NT-window-based and uses PVM is operational.

The rest of the paper is organized as follows. In
the remaining part of this section we briefly present
a brief background on the three areas studied in this
paper, namely, static allocation, load balancing and
dynamic scheduling. In the next section, we present
preliminary results on Cluster-M (static allocation),
Rate of Change (load balancing) , and Concurrent
Gang (dynamic scheduling). In Section 3, we will
present the operation of the three integrated com-
ponents of SaLaD, and in section 4, we will describe
our current windows-NT implementation of SaLaD
using PVM. In Section 5, we present our concluding
remarks.

The mapping problem, in its general form, has been
known to be NP-complete and has been studied in-
tensively for homogeneous parallel computers during
the past two decades [Ber87, Bok81, CE95, Efe82,
ERL90, ES94, LA87, LRG+90, PSD+92, YG94]. In
mapping, an application task and a computing sys-
tem are usually modeled in terms of a task flow graph
and a system graph. The problem, then, is how to
map efficiently the task flow graph to the system
graph. A task flow graph is a directed acyclic graph
(DAG) that consists ofa set of vertices and a set of
directed edges. A vertex denotes a task module de-
composed from the given task. Each vertex is asso-
ciated with a weight that denotes the computation
amount within the corresponding task module. A
directed edge joining two task modules denotes that
data communication and dependency exist between
the two task modules. The weight of an edge repre-
sents the amount of data communication. While a
task flow graph is usually directed, the system graph
is usually an undirected graph. A set of vertices in
a system graph denote processors and a set of undi-
rected edges indicate physical communication links
for processor pairs. The weight of a vertex (edge)
represents the speed (bandwidth) of the correspond-
ing processor (communication link). We define a
graph as nonuniform if and only if the weights of
all vertices or the weights of all edges are not the
same; otherwise it is uniform.

Mapping can be static or dynamic. In static
mapping, the assignments of the nodes of the task
graphs onto the system graphs are determined prior
to the execution and are not changed until the end
of the execution. Static mapping can be classi-
fied in two general ways. The first classification
is based on the topology of task and/or system
graphs [CE95]. Based on this, the mappings can be
classified into four groups: (1) mapping specialized
tasks onto specialized systems, (2) mapping special-
ized tasks onto arbitrary systems, (3) mapping ar-
bitrary tasks onto specialized systems and (4) map-
ping arbitrary tasks onto arbitrary systems. The
second classification can be based on the unifor-
mity of the weights of the nodes and the edges of
the task and/or the system graphs. Based on this,
the mappings can be categorized into the following
four groups: ( 1) mapping uniform tasks onto uni-
form systems [CE95, Bok81, LA87, BS87, ERS90],
(2) mapping uniform tasks onto nonuniform systems,
(3) mapping nonuniform tasks onto uniform sys-
tems [WG90, MG89, Sar89, ERL90, YG94], and (4)
mapping nonuniform tasks onto nonuniform systems
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[ST85, Lo88]. In IPG, the task and system graphs
can be nonuniform. Therefore, the mapping prob-
lem in HC can be viewed as mapping of an arbitrary
nonuniform task graph onto an arbitrary nonuniform

system graph.
In this paper, we first concentrate on static map-

ping of arbitrary nonuniform task graphs onto arbi-
trary nonuniform system graphs. The existing map-
ping techniques in this grotlp include EI-Rewini and
Lewis' mapping heuristic algorithm [ERL90] for di-
rected task graphs and Lo's max flow min cut map-
ping heuristic [Lo88] for undirected task graphsl
The time complexity of these two heuristics are
O(M2N3) and O(M4NlogM), respectively, where
M is the number of task modules and N is the
number of processors. Another algorithm in this
category is called Clu8ter-M which can map arbi-
trary, nonuniform, architecturally independent, di-
rected task graphs onto arbitrary, nonuniform, undi-
rected, task-independent system graphs in O(M2)
time, where N ~ M. Cluster-M will be explained in
detail in 3.1

sponsibility of achieving global load balance. The
other factor often used to classify load balancing
strategies, implicit or explicit, is strictly speaking a
system issue rather than a load balancing one. Im-
plicit load balancing refers to load balancing per-
formed automatically by the system, whereas ex-
plicit means it is up to the user do decide which
tasks should be migrated and when.

Many Dynamic Load Balancing strategies have
been prop9Sed in the literature. Three of the best
known are: the gradient model [LK91], the sender
initiated diffusion [WLR93] , and the central job dis-
patcher [LHWS96] .The gradient model employs a
gradient map of the proximities of under-Ioaded pro-
cessors in the system to guide the migration of tasks
between overloaded and under-Ioaded processors.
The sender initiated diffusion is a highly distributed
local approach which makes use of near-neighbor
load information to apportion surplus load from
heavily loaded processors to under-Ioaded neighbors
in the system. Global balancing is achieved as
tasks from heavily loaded neighborhoods diffuse into
lightly loaded areas in the system. In the central job
dispatcher strategy, one of the network processors
acts as a central load balancing master. The dis-
patcher maintains a table containing the number of
waiting tasks in each processor. Whenever a task
a:rrives at or departs from a processor, the processor
notifies the central dispatcher of its new load state.
When a state change message is received or a task
transfer decision is made, the central dispatcher up-
dates the table accordingly. The network bases load
balancing on this table and notifies the most heav-
ily loaded processor to transfer tasks to a requesting
processor. The network also notifies the requesting
processor of the decision.

Load Balancing
tion oí Subtasks

by Redistribu-1.2

Dynamic Load Balancing (DLB) is an important sys-
tem function aimed at distributing workload among
available processors to improve throughput and/or
execution times of parallel computer programs either
uniform ornon-uniform (jobs whose workload varies
at run-time in unpredictable ways). Non-uniform
computation and communication requirements may
bog down a parallel computer if no efficient load dis-
tribution is effected.

Load balancing strategies fall broadly into either
one of two classifications, namely static or dynamic.
A multicomputer system with static load balanc-
ing distributes tasks across the processing elements
(PEs) before execution using a priori known task
information and the \oad distribution remains un-
changed at run time. A multicomputer system with
DLB uses no a priori task information, and must sat-
isfy changing requirements by making task distribu-
tion decisions during run-time. DLB can be further
classified as centralized or distributed. In a central-
ized strategy, load balancing decisions are made by
one PE only, which is responsible for maintaining
global load information. In distributed strategies,
decisions are made locally, load iIiformation is dis-
tributed among all PEs and they all share the re-

Dynamic Scheduling oí Multiple
Jobs or Tasks

1.3

Parallel job scheduling is an important problem
whose solution may lead to better utilization of mod-
ern parallel computers, It is defined as: "Given the
aggregate of all tasks of multiple jobs in a parallel
system, find a spatial and temporal allocation to ex-
ecute all tasks efficiently" .Each job in a parallel ma-
chine is composed by one or more tasks. For the pur-
poses of scheduling, we view a computer as a queuing
system. An arriving job may wait for some time, re-
.ceive the required service, and depart [FR98] .The
time associated with the waiting and service phases
is a function of the scheduling algorithm and the
workload. Some scheduling algorithms may require
that a job wait in a q1leue until all of its required
resources become available ( as in variable partition-

1 Mapping of directed task graphs (if there is precedence

relation among the task nodes) is called task scheduling
[ERL90]. If the task graphs to be mapped are undirected,
then it is called task allocation [ERL90].
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ing), while in others, like time slicing, the arriving
job receives service immediately through a processor

sharing discipline.
Gang scheduling has been widely used as a prac-

tical solution to the dynamic parallel job scheduling
problem. Parallel tasks of a job are scheduled for
simultaneous execution on a partition of a parallel
computer. Gang Scheduling has many advantages,
such as responsiveness, efficient sharing of resources
and ease of programming. However, there are two
major problems associated with gang scheduling:
scalability and the decision of what to do when a
task blocks.

2 Preliminaries

The IPG tool which is presented in this paper, called
SaLaD consists of three main components. In the
next section we will describe how they work together
in an integrated fashion. In this section, we present
preliminary background on each of three components
namely the Static Allocator, Load Balancer, and the
Dynamic Scheduler. The static allocation technique
used is based on the Cluster-M technique, Load Bal-
ancing is achieved using the Rate of Change algo-
rithm, and Dynamic Scheduling is performed using
a generalization of gang-scheduling dubbed Concur-
rent Gang.

Cluster-M Static Allocation2.1

Cluster-M is a programming tool that facilitates the
static allocation and mapping of portable parallel
programs [CE95]. Cluster-M has three main compo-
nents: the specification module, the representation
module and the mapping module. In the specifi-
cation module, machine-independent algorithms are
specified and coded using the Program Composi-
tion Notation (PCN [FT93]) programming language
[ES94]. Cluster-M specifications are represented in
the form of a multi-layer clustered task graph called
Spec graph. Each clustering layer in the Spec graph
represents a set of concurrent computations, called
Spec clusters. A Spec graph can also be obtained by
applying one of the appropriate Cluster-M cluster-
ing algorithms to any given task graph. A Cluster-
M representation represents a multi-layer partition-
ing of a system graph called a Rep graph. Given a
system graph, a Rep graph can be generated using
one of the Cluster-M clustering algorithms. At every
partitioning layer of the Rep graph, there are a num-
ber of clusters called Rep clusters. Each Rep cluster
represents a set of processors with a certain degree
of connectivity. The clustering is done only once
for a given task (system) graph independent of any

system (task) graphs. It is a machine-independent
(application-independent) clustering, therefore it is
not necessary to be repeated for different mappings.
For this reason, the time complexities of the cluster-
ing algorithms are not included in the time com-
plexity of the Cluster-M mapping algorithm. In
the mapping module, a given Spec graph is mapped
onto a given Rep graph. In an earlier publications
[CE95, Esh96] two Cluster-M clustering algorithms
and a mapping algorithm were presented for both
uniform an non-uniform graphs.

Below, we present a set of experimental results.
The following criteria are used for comparing the
performance of our algorithm with other leading
techniques: (1) the total time for executing the map-
ping algorithm, Tc; (2) the total execution time of
the generated mappings, Tm; (3) the number of pro-
cessors used, Nm; and (4) the total time executing
both clustering (task and system) and mapping al-
gorithms, Tcm. From (2) and (3), we can obtain the
speedup Sm = k and efficiency 1] = ~, where Ts
is the sequential execution time of the task.

In Table 1, comparison results are shown for map-
ping nonuniform random task graphs ranging from
100 to 1000 nodes onto the random system graph
of size 100, where the speed of the processors and
communication channels is ranged between 1-5 only.
In other words even though there are 100 processors
but they are very slow, and therefore the speed up
is expected to be low. What is really important here
is that both MH and Cluster-M lead to the same
type of results, but Cluster-M is very much faster
than MH both asymptotically and experimentally.
The running time of MH grows significantly as the
size of the task graph grows. Whereas the running
time of Cluster-M remains relatively stable. In most
cases, Cluster-M obtains a better speedup than MH.
But in all cases Cluster-M has a significantly lower
time complexity.

The experimental results shown in this section
were obtained by running a set of simulations on
a SUN UltraSPARC I workstation, and all running
times times (T c , T cm) are measured in milliseconds
The non-uniform task graphs are randomly gener-
ated.

2.2 Rate of Change Load Balancing

Previously proposed load balancing strategies cast
the problem as one of equalizing the absolute number
of load units among all PEs. Rate of Change load
balancing algorithm [CS99, Cam99] constitutes a
departure from this classical approach. We define
load balancing as the activity of migrating load units
from one PE to another so that all PEs have at least
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(table 3), the same initial set of tasks was divided
among only half of the PEswith the remaining being
idle. In both experiments, new applications were not
allowed to be submitted to the system. All new tasks
were generated internally due to the non-uniform na-
ture of the applications being simulated. For the
third experiment ( table 4) , the possibility of arbi-
trary arrival times for new jobs was allowed, and the
tasks that compose an application were distributed
randomly among all PEs.

The performance metric used in the experi-
ments is the normalized performance (NP) as used
in [WLR93, LHWS96] .

Normalized performance (NP) determines the ef-
fectiveness of the load balancing strategy (such that
N p -+ O if the strategy is ineffective and N p -+ 1
if the strategy is effective). This is a comprehensive
metric; it accounts for the initiallevel of load imbal-
ance as well as the load balancing overheads. NP is
formally defined as:

N p = ~TnoLB -Tbal)

one load unit at all times. The rationale is that if
any given PE is busy executing tasks then the load
differential with respect other PEs is irrelevant since
no performance gain can be obtained by transferring
load. Hence the decision to initiate load transfers
should not depend on a PE's absolute number of
load units, but on how the load changes in time.

Our novel approach uses the Rate of Change
(RoC) ()f the load on each PE to trigger any load
balancing activity. It can be described as a dy-
namic, distributed, on demand, preemptive and im-
plicit load balancing strategy. Dynamic, because
it does .'1Ot assume any prior task (unit of load in
this study) information and must satisfy changing
requirements by making task distribution decisions
at run-time. Distributed, because allload balancing
decisions are made locally and asynchronously by
each processor. On demand, because only PEs that
" need" tasks are allowed to initiate any migration

activity. Preemptive, because running tasks may be
su~pended, moved to another PE and restarted. Im-
plicit, because allload balancing activity is done by
the system, without user assistance.

Furthermore, our proposed RoC-Load Balancing
strategy achieves the goal of minimizing proces-
sor idling times without incurring into unacceptably
high load balancing overhead. It does so by striking
a balance between the cost of evaluating load infor-
mation which now is a local activity to each PE, and
the cost of transferring tasks across the system.

Experimental results have been obtained and are
briefly described in here. For a complete descrip-
tion of the experiments, algorithm and supporting
data structures please refer to [Csgg, Camgg]. The
first experiment (table 2) simulates a stable situa-
tion where an initial set oftasks (representing several
competing applications) was distributed uniformly
among all 16 processors. In the second scenario

(TnoLB -Topt)

where TnoLB is the time to complete the work on a
multicomputer network without load balancing, Topt
is the time to complete the work on one processor
divided by the number of processors in the network
and Tbal is the time to complete the work on a mul-
ticomputer network wiih load balancing.

2.3 Concurrent Gang Dynamic

Scheduling

Gang scheduling has been widely used as a solu-
tion to the dynamic parallel job scheduling problem.
Gang service is a paradigm where all tasks of a job
in the service stage are grouped into a gang and con-
currently scheduled in distinct processors. Reasons
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Table 2: Stable situation.

Hypercube I Fully Connected Network~f Workstations

I Sender lmtiated D~on I

Table 3: Unstable situation

3to consider gang service are responsiveness [FA97],
eflicient sharing of resources[Jet97] and ease of pro-
gramming. In gang service the tasks of a job are
supplied with an environment that is very similar
to a dedicated machine [Jet97]. It is useful to any
model of cómputation and any programming style.
The use of time slicing allows performance to de-
grade gradually as load increases. Applications with
fine-grain interactions benefit of large performance
improvements over uncoordinated scheduling[FR92] .
One main problem related with gang scheduling
is the necessity of multi-context switch across the
nodes of the processor, which causes difliculty in
scaling[ea98] .In our work, we use a class of schedul-
ing policies, dubbed concurrent gang, that is a gener-
alization of gang-scheduling and allows for the flexi-
ble simultaneous scheduling.of multiple parallel jobs
in a scalable manner .

IPG-SaLaD Components

IPG-SaLaD is composed of three inter-related com-
ponents: Static Allocator, Load Balancer and Dy-
namic Scheduler. Their interaction can be thought
of as a three stage process with a feedback loop as
shown in figure 1.

During the first stage, arriving jobs one at a time,
are passed to the static allocator which is respon-
sible for performing a suboptimal matching of the
individual tasks that compbse a job to the resources
available. The task assignment froni the first stage
is fed to the load balancer whose aim is to mini-
mize idle time among the processing elements that
constitute the system. Note, from the details pre-
sented in the last section, t~at the Rate of Change
load balancing is only triggered when individual PEs
predict that their future load will lead them to an
idle state. As new jobs come in and are fed through
the static allocator and poseibly altered by the load
balancer the dynamic scheduler is invoked to handle
the scheduling ofthe multiplejobs present in the sys-
tem. This may require redistribution of tasks. The
load balancer also receives input from the dynamic
scheduler in the form of the current task allocation
for each resource. Given both the inputs from the
dynamic scheduler and the static allocator, the load
balancer decides based on the Rate of Change al-
gorithm whether or not to further redistribute the
load. This interaction between load balancer and
dynamic scheduler continues through the execution
of the entire workload.

Concurrent Gang is an strategy that increases uti-
lization and throughput in parallel machines when
compared with other implementations of gang ser-
vice, for the same resource sharing strategy, as sim-
ulation studies indicate[SS99b, SS99a]. The utiliza-
tion in Concurrent Gang is improved because, in the
event of an idle slot or a blocked thread, Concur-
rent Gang always tries to schedule other tasks that
are either local tasks or tasks that do not require,
at that moment, coordinated scheduling with other
tasks of the same job. This is the case, for instance,
of 1/0 intensive tasks and Computation intensive
tasks. Improved processor utilization in .turn leads
to better throughput.

Preliminary results have been already obtained
and published. In Tables 5, 6, 7 we present a sum-
mary'of those results. For a complete description of
the experiments please refer to [SS99b].

It is important to note that at any given instance
all stages can be active simultaneously which allows
for a high degree of parallelism.

A detailed description of the internal functioning
of each individual component follows.
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I Simulation time

Seconds

5000

10000

20000

30000

40000

Table 7: Experimental results -Synchronization inténsive workload

is as follows: if any given PE is busy executing tasks
then the load differential with respect to any other
PE is irrelevant since no performance gain can be ob-
tained by load transfer. Moreover the decision fac-
tor to initiate a load transfer request should not be
a PE's absolute load but instead how much its load
has changed since the previous time interval. Our
goal is then to minimize processor idling time with-
out incurring high load balancing overhead. To do
so, an optimal tradeoff between the processing ( cost
of evaluating load information to determine task mi-
gration) and communication (cost of acquiring load
information and informing other PEs of load migra-
tion decisions) overhead and the degree of knowledge
used in the balancing process must be sought.

The load balancing problem can be thought of as
a four phase decision process, namely:

When to initiate task migration

.Where, which PE, to send the task migration

request

.How many tasks to migrate

.Which tasks to migrate

In RoC- LB these four phases occur asyn-
chronously at each PE and are purely distributed.

The When Phase3.2.1

this point. First, each PE may calculate this quan-
tity independently from other PEs in the system, i.e.
there is no concept of global synchronous clock in the
system. Second, the length of the sample interval
may vary with time for a given PE, depending, for
instance, on the number of load requests received or
network traffic. As a consequence different PEs may
use different sampling intervals at any given time.
The sampling interval is therefore an adaptive pa-
rameter. The sampling interval is usually measured
as a multiple of the time slice duration. The finer
the sampling the faster we detect the need for load
balancing, but the greater overhead we incur .

Each PE uses its own DL as a predictor for how
manytasks will finish in subsequent intervals. Each
PE assumes that DL will remain the same forever .
Given that it calculates the .number of sampling in-
tervals it will take to reach an idle state (no tasks to
process). If the number of intervals (times its dura-
tion) is less than the network delay (ND), then the
PE will initiate a migration request.

From the above, one can conclude that only when
DL is negative (reduction in load) will a PE consider
requesting load from other PEs. Network delay is
an adaptive parameter. It is defined as the time it
takes between the initiation of a load request and the
reception of load. It may vary with time and each
PE may use a different value depending on its own
record of past load requests. Initially, before any
request has been made, ND is set to an arbitrary
(positive) value.

There are two exceptions to the general rules de-
scribed above. The first exception is the situation
in which a PE will initiate a request for load even
though it does not predict it will reach the idle state.

At the beginning of each
calculates the change in i
interval. Let us call this
load (DL). Two key obser

sample interval, each PE
ts load since the previous
quantity the difference in
vations should be made at
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Clustering Nonuniform Undirected Graphs (CNUG) Algorithm
For all nodesPi do
begin Make a cluster for Pi at clustering layer 1

Set the parameters of the cluster to be (1, Bi, 0,0)
end
Set cluster layer L to be 1
While there is at least one edge linkingtwo clusters of layer L do
begin Sort all edges linking any two clusters in descending order

While sorted edge list is not empty, do
begin Take the first edge (Ci,Cj) from sorted edge list

Delete the edge from the list
Merge ci and Cj into cluster C' at layer (L + 1)
Calculate the parameters of C'
Delete clusters ci and Cj from current layer L
For each edge ( Cx , Cy) in sorted edge list
begin

If ( C;r is a sub-cluster of c') and
(Cy is not a sub-cluster of any cluster) and
(Cy is connected to all other sub-clusters of c') then
begin Merge Cy into c'

Recalculate the parameters of c'
Delete (C;r, Cy) from edge list

end
Etse if Cx and Cy are sub-clusters of two different clusters at layer (L + 1), then
begin Add the weight of ( Cx , Cy) to the edge between the two super-clusters

Delete (cx, Cy) from edge list
end

end
end

Increment clustering layer L by 1

end

Figure 2: Clustering Nonuniform Undirected Graphs (CNUG) algorithm,

In order to understand why it chooses to do so, let
us introduce the three thresholds used by the algo-
rithm. High threshold (HT) and Low threshold (LT)
are used to determine the load status of the proces-
sor. If a PE's load is greater or equal to HT it is
considered a Source PE. If on the other hand it is
less or equal to LT it is considered a Sink PE. If its
load lies between these two thresholds then the PE is
in a neutral state. If however a PE's load falls below
a Critical threshold (CT) the PE immediately ini-
tiates a request for load regardless of the predicted
future load based upon the current DL value. We
decide to request load even though we do not expect
to reach the idle state since even a small change in
load at this level will result in immediate task star-
vation by the PE. The only exception to this rule is
that if a PE has already a request pending in the
network it will not issue another until either load is
received from other PE(s) or the request comes back
as unfulfilled. This last observation applies in every
case even when a DL 's value would deem necessary
to issue another request. The other exception to the
general rule is the situation when a PE's load level is
above HT. In that case even if the value of DL pre-
dicts that the PE will reach an idle state we do not

initiate a load request because at this load value the
value of DL necessary to force the PE to become idle
must be quite high. There is a good chance that such
a value is rare and short lived in which case during
the next sample interval the newly calculated DL
will be such that it does not warrant an initiation
of a transfer request. By delaying any action until
the load value falls below HT we are immune to any
spikes in load that may occur over time.

The Where Phase3.2.2

Each PE keeps two local tables containing system
load information. One contains information regard-
ing the location of sink PEs, called Sink table the
other of source PEs, called Source table. Any PE
that initiates a request for load is considered to be
a sink by the receivjng PE(s). This is true regard-
less of the level of load at the time the request for
load transfer was issued. Selecting the PE to which
send a load request is a simple operation. The sink
PE (request initiator) selects a source PE from its
source table ( the first entry in the table) and sends a
message requesting load to it. Every time the static
allocator produces a task-to-resource mapping for a
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Figure 3: Clustering Nonuniform Directed Graphs (CNDG) algorithm

given job, the entries in the source/sink tables are
updated with this new information. The selection
process described above is used by all PEs alike,
w:hether they are the request initiator or the recip-
ient of a load transfer message who might need to
select a source PE to whom forward the message to.

cost [HBD90] Age in this cage refers to the CPU
time a tagk hag used thus far and not how long ago
.the tagk wag created meagured in wall time clock.

Figure 5 shows the internal data structures in-
volved during the load transfer update process.

3.3 SaLaD Dynamic Scheduling

In this section we describe the Concurrent Gang
algorithm. We first introduce the concepts of CY-
cle, slice, period and slot, which are fundamental to
understand the internal workings of our algorithm.
Then we describe the task classification that is made
by the algorithm; we shall see that this task classifi-
cation is used by Concurrent Gang to decide locally
which task to schedule if the current task blocks. In
3.3.3 the algorithm itself is detailed, with the de--
scription of the components of a Concurrent Gang
Scheduler .

3.2.3 The How Many Phase

At the beginning of each sample interval each PE
calculates its DL. Using DL it computes how many
tasks it would have, assuming DL would stay con-
stant, after a length oftime equal to ND. Let us ca"
this quantity Predicted Load (PL). If PL is greater
or equal to zero then the PE does not expect to be-
come idle within the next ND period and therefore
does not initiate a request for load. If on the other
hand PL is lesser than zero the PE requests load, ac-
cording to the mechanism described in 3.2.2, in the
amount of abs(PL). On the receiver side, a PE wi"
only transfer tasks if its load is above the HT level,
in which case it transfers tasks above this value up
to the requested transfer amount.

3.3.1 Time Utilization

In parallel job scheduling, as the number of proces-
sors is larger than one, the time utilization as well as
the spatial utilization can be better visualized with
the help of a bi-dimensional diagram dubbed trace
diagram. One dimension represents processors while
the other dimension represents time. Through the
trace diagram it is possible to visualize the time uti-
lization of the set of processors given a scheduling

3.2.4 The Which Phase

Finally, to answer the question of which tasks to
migrate, we have decided to migrate older tasks
because these tasks have a higher probability of
living long enough to amortize their migration
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Mapping Algorithm
For each layer of Spec graph (starting from maximallayer number) do
begin

Sort all Spec clusters at current layer in descending order of uS!A .SS!A .nsu. and 7rS!A .
Sort all Rep cllisters at current layer in descending order of u Rj SRj. nRj. and 7r Rj .
Calculate f(u,ti) , if f(u,ti) > 1, let f(u,ti) = 1.
Calculate the required size of the Rep cluster matching S't to be f(u,ti) xuS't
For each Spec cluster at current layer sorted list. do
begin If the cluster has only one sub-cluster, then

Go to a lower layer where there are multiple or no sub-clusters
If at least a Rep cluster of required size is found, then
begin Select the Rep cluster of required size with minimum estimated execution time

Match the Spec cluster to the Rep cluster
Delete the Spec and Rep cluster from Spec and Rep list

end
end
For each unmatched Spec cluster. do
begin If the size of the first Rep cluster > the required size. then

begin Split the Rep cluster into two parts with one part of the required size
Match the Spec cluster to this part
Insert the other part to proper position of the sorted Rep cluster list

end
Else begin

Merge Rep clusters with largest size until the sum of sizes :?: the required size
If =, then
Match the Spec cluster to the merged Rep cluster
Else
begin Split the merged Rep cluster into two parts with one of required size

match the Spec cluster to this part
Insert the other part to the sorted Rep list

end
end

end
For each matching pair of Spec cluster and Rep cluster, do
begin If the Rep cluster contains only one processor, then

Map all the modules in the Spec cluster to the processor
Else if Inequality is satisfied, then

begin Select the sub-cluster of the Spec cluster with the largest size
Embed the nodes of other sub-clusters to the connected nodes of the selected sub-cluster
to the connected nodes of the selected sub-cluster
embed these sub-clusters onto the selected one
Calculate the parameters for the new cluster
Insert it into the sorted Spec cluster list

end
Else
begin Delete the Spec cluster from Spec cluster list

Delete the Rep cluster from Rep cluster list
Go to the sub-clusters of the Spec and Rep cluster (thus they are pushed to current layer)
Call the same mapping algorithm forthese clusters

end
end

end

Figure 4: Mapping algorithm.
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algorithm. One such diagram is illustrated in figure
6. A Workload change occurs at the arrival of a new
job, the completion of an existing one, or through the
variation of the number of eligible tasks of a job to
be scheduled. The time between workload changes
is defined as a cycle. Between workload changes, we
may define a period that depends on the workload
and the spatial allocation. The period is the mini-
mum interval of time where all jobs are scheduled at
least once. A cycle/period is composed of slices; a
slice corresponds to a time slice in a partition that
includes all processors of the machine. Observe that
the duration of the slice for Concurrent Gang is de-
fined by the period of the global clock. A slot is the
processors' view of a slice. A Slice is composed of N
slots, for a machine with N processors. If a processor
has no assigned task during its slot in a slice, then we
have an idle slot. The number ofidle slots in a period
divided by the total number of slots in that period
defines the Idling Ratio. Note that workload changes
are detected between periods. If, for instance, a job
arrives in the middle of a period, corresponding ac-
tion of allocating the job isonly taken by the end of
the period.

Figure 5: "°ad Transfer Update Process

3.3.2 Task Classification

In Concurrent Gang, each pE classifies each one of
its allocated tasks into classes. Examples of such
classes are: 1/0 intensive, Synchronization intensive,
and computation intensive. Each one of these classes
is" similar to a fuzzy set [Zad65] .A fuzzy set asso-
ciated with a class A is characterized by a member-
ship function f A ( x) with associates each task T to
a real number in the interval [0,1], with the value of
f A (T) representing the "grade of membership" of T
in A. Thus, the nearer the value of F A (T) to unity,
the higher the grade of membership of T in A. For
instance, consider the class of 1/0 intensive tasks,

with its respective characteristic function fIO(T). A
value of fIO(T) = 1 indicates that the task T only
have 1/0 statements, while a value offIO(X) = O in-
dicates that the task T have executed no 1/0 state-
ment at all.

In principIe, four major classes are possible: 1/0

intensive, Computing intensive, Communications
(point to point) intensive and synchronization inten-
sive. We will see in the next subsection that only a
subset of them are used in Concurrent Gang.

3.3.3 Description of Concurrent Gang

A Concurrent Gang scheduler is composed by a set of

local schedulers, one for each PE, and a mechanism

Arriving Jobs

sraric,Allocaror I
,Task-ro- Rcsourcc IMapping

Load Balancer

~~n
Dynamic Schcdulcr

--r-~
Dcparring Jobs

CUrrcnt Task Allocation

Period -1-Peri-¡ Period-1 -Period-

Tinle

* I die Slols

Figure

ponents

Interaction between the different SaLaD com

Figure 6: Definition of slice, slot, period and cyclj
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bership of a task to each one of the major classes
described in the previous subsection. Formally, the
priority of a task T in a PE is defined as:

Pr(T) = max(Q x >.l0,>.COMP) (1)

Where >.10, >.COM P are the grade for membership
of task T to the classes 1/0 intensive and Com-
putation intensive. The objective of the parame-
ter Q is to give higher priority to 1/0 bound jobs
( Q > 1) .The choices made in equation 1 intend
to give high priority to 1/0 intensive jobs and com-
putation intensive job, since such jobs can benefit
the most from uncoordinated scheduling. The mul-
tiplication factor Q for the class 1/0 intensive gives
higher priority to 1/0 bound tasks over computation
intensive tasks, since those jobs have a higher proba-
bly to block when sclieduled than computing bound
tasks. By other side, synchronization intensive and
communication intensive jobs have low priority since
they require coordinated scheduling to achieve effi-
cient execution and machine utilization[FR92, ea98] .
A synchronization intensive or communication inten-
sive phase will reflect negatively over the grade of
membership of the class computation intensive, re-
ducing the possibility of a task be scheduled by the
local task scheduler. Among a set of tasks of the
same priority, the local task scheduler uses a round
robinstrategy. The local task scheduler also defines
a minimum priority {3. If no parallel task has priority
larger than {3, the local task scheduler considers that
all tasks are either communication or synchroniza-
tion intensive, thus requiring coordinated schedul-

mg.
In practice the operation of the Concurrent Gang

scheduler at each processor will proceed as follows:
The reception of the global clock signal will generate
an interruption that will make each processing ele-
ment schedule tasks as defined in the trace diagram.
If a task blocks, control will be passed to another
task as a function of the priority assigned to each
one of the tasks until the arrival of the next clock
signal. The task chosen is the one with higher pri-

ority. ,
In the event of a job arrival, a .job termination or

a job changing its number of eligible tasks the front
end Concurrent Gang Scheduler will :

for the coordination of the global context switch in
the machine, which can be either a central controller
or aglobal synchronizer .

A local scheduler in Concurrent Gangis composed
of two main parts: the Gang scheduler and the lo-
cal task scheduler. The Gang Scheduler defines the
next task to be scheduled by the arrival of the global
context switch signal coming from a synchronizer or
a central controller. The local task scheduler is re-
sponsible for scheduling sequential tasks and parallel
tasks that do not need global coordination, as de-
scribed in the next paragraph, and it is similar to
a UNIX scheduler. The Gang Scheduler has prece-
dence over the local task scheduler .

We may consider two types of parallel tasks in
a concurrent gang scheduler: Those that should
be scheduled as a gang with other tasks in other
processors and those that gang scheduling is not
mandatory. Examples of the first class are tasks
that compose a job with fine grain synchroniza-
tion ínteractions [FR92] and communication inten-
sive jobs[ea98] .Second class task examples are local
tasks or tasks that compose an 1/0 bound parallel
job, for instance. On other side a traditional UNIX
scheduler does a good job in scheduling 1/0 bound
tasks since it gives high priority to 1/0 blocked tasks
when the data became available from disk. As those
tasks typically run for a small amount of time and
then blocks again, giving them high priority means
running the task that will take the least amount
of time before blocking, which is coherent to the
theory of uniprocessors scheduling where the best
scheduling strategy possible under total completion
time is Shortest Job First [MPT94]. In the local
task scheduler of Concurrent Gang, such high prior-
ity is preserved. Another example ofjobs where gang
scheduling is not mandatory are embarrassingly par-
allel jobs. As the number of iterations among tasks
belonging to this class of jobs are small, the basic
requirement for scheduling a embarrassingly parallel
job is to give those jobs the larger fraction of CPU
time possible, even in an uncoordinated manner.

Differentiation among tasks that should be gang
scheduled and those that a more flexible scheduler
is better is made using- the grade of membership in-
formation computed by the local scheduler ( as ex-
plained in the last subsection) about each task asso-
ciated with the respective processor. The grade of
membership of the task previously scheduled is then
computed at the next machine-wide context switch,
and is that information that is used to decide if gang
scheduling is mandatory or not for a specific task.

The local task scheduler defines a priority for each
task allocated to the corresponding PE. The priority
of each task is defined based on the grade of mem-

2

3

Update Eligible task list
Allocate Tasks of First Job in General Queue
While not end of Job Queue

Allocate all tasks of remaining parallel jobs
using a defined spatial sharing strategy

Run4
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Between Workload Changes
-If a task blocks or in the case of an idle slot, the

local task scheduler is activated, and it will decide
to schedule a new task based on:

.Availability of the task (task ready

.Priority of the task defined by the local task
scheduler .

AII processors change context at same time due
to a global clock signal coming from a central syn-
chronizer. The local queue positions represents slots
in the trace diagram. The local queue length is the
same for all processors and is equal to the number of
slices in a period of the schedule. It is worth noting
that in the case of a workload change, only the PEs
concerned by the modification in the trace diagram
are notified.

It is clear that once the first job, if any, in the
general queue is allocated, the remaining available
resources can be allocated to other eligible tasks by
using a predefined partitioning strategy.

In the case of creation of a new task by a parallel
task, or parallel task completion, it is up to the local
scheduler to inform the front end of the workload
change. The front end will then take tlie appropriate
actions depending on the pre-defined space sharing

strategy.

4 Implementation ofCurrent

SaLaD

Software solutions for IPG are still in their infancy.
As examples of some experimental meta-computing
systems we have the NOW project 2 and Legion3,

which enable users to use resources across multiple
machines. A number of attempts are being made
to address the problem of allowing programmers to
write portable code that will run across networks
of computers. One such to.ol is HENCE4 (Hetero-
geneous Network Computing Environment), an x-
window based software environment designed to as-
sist in developing parállel programs that run on a
network of computers. HENCE allows a user to lay
out tasks in a graphical format and execute them.
HENCE uses a static table of costs tha.t describes
the cost of executing various program modules on
various machines. Selection is then done using this
table so that the overall cost is minimized.

In this section, a Windows NT based implemen-
tation of the SaLaD tool for distributed execution
of arbitrary heterogeneous tasks onto arbitrary suite
of heterogeneous systems using PVM is presented.
The main components of this tool are the Cluster-
M Clustering and Mapping Module, the Rate of
Change Module, the Concurrent Gang Scheduling
Module,the Graphical User Interface Module and the
PVM based Distribution Module. The user inputs
the task and system graphs using the tool 's Graph-
ical User Interface module, where the Nodes of a
task graph represent an arbitrary executable pro-
gram written in C, C++ or Fortran, and the Nodes
of the System Graph represent any system with a
PVM implementation. Once the mapping is done,
the Distribution Module using PVM dispatches the
tasks on the underlying heterogeneous systems and
displays the results graphically. Next, the Rate of
Change Load Balancer and Concurrent Gang Sched-
uler will redistribute the jobs and the tasks as nec-

essary.

The current implementation of SaLAD requires
the application programs to be described by graphs.
SaLaD graphs are variants of directed acyclic graphs,
or DAGS. There are two kinds of graphs namely Task
and System graphs. Nodes of the task graph repre-
sent executables and the arcs represent data depen-
dencies between the executables. Similarly Nodes of
the system graph represent computer systems and
the arcs represent the communication bandwidth
available between them. SaLaD uses the Cluster-
M algorithms for clustering and mapping of the task
graphs and the system graphs in an efficient way,
based on the data dependency between the tasks and
the communication capacity available between the
systems. Once the tasks have been mapped onto the
systems, individual tasks ar~ distributed using PVM.
As the load of the system changes and/ or as new jobs
come in the Rate of Change load balancer and Con-
current Gang scheduler are invoked and they will re-
distribute the tasks using PVM. SaLaD is composed
of integrated graphical tools for creating, executing,
and analyzing parallel programs. During execution,
SaLaD displays an event-ordered animation of appli-
cation execution. Through SaLaD, a user can easily
schedule and execute applications written in any lan-
guage over an existing collection of workstations or
supercomputers. SaLaD depends on PVM and hence
the task graph modules can reside on any Computer
system for which a PVM implementation is avail-
able.

The SaLaD tool runs on the Windows NT, Win-
dows 95 environments. PVM implementations for
Win32 must be installed before using SaLaD. The
task graph the user draws is a directed graph in

2Network of Workstations (UC Berkeley Project)
3Vlsit http:/ /www.cs.virginia.edu/ legion
4 Heterogeneous Network Computing Environment (X.

Windows based network programming tool)
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Gang Dynamic-scheduler. In section 3, we presented
how these three components operate in an integrated
fashion, and section 4 we preseJlted a simple imple-
mentation of SaLaD using PVM which distributes
the tasks to the locations determined by the map-

per.
We propose to extend the windows-NT based im-

plementation of SaLaD using PVM with a portable
programming interface. Currently a user has to
specify a set of threads which can be C or C++ code,
and their interdependency. Then SaLaD takes this
information and produces a mapping using Cluster-
M mappingroutines, and then the load balancer and
dynamic schedulers are triggered as needed. We pro-
pose a portable programming interface such that the
user just enters the program and then the program
is decomposed into a task graph showing the depen-
dencies and extracted parallelisms, and then that
information gets supplied to the Cluster-M mapper.
One way of pursuing this would be to use a portable
parallellanguage from beginning such as PCN. Our
initial investigation shows that clustering constructs
can be implemented in PCN so that the process of
clustering the graphs is automated. Another ap-
proach would be to use a Functional and/or object
oriented programming language such as SISAL or
JAVA.

which nodes represent executables written in C or
Fortran. Arcs represent execution ordering con-
straints. A node may execute when all nodes that
precede it in the graph have executed. The restric-
tion placed on the task modules is that they should
be using the PVM library to send back results to the
SaLaD tool, if it has to be passed to other depen-
dent modules. If the task modules have dependen-
cies in the order of execution but do not have to pass
data amongst themselves, then no change needs to
be done to the executables. The above restriction is
placed due to the fact those unlike tools where users
write their programs graphically, SaLaD is more of
a Cluster-M scheduling tool for executable modules.
Unlike Task modules there is no restriction on the
systems. Any system for which a PVM implementa-
tion is available can be part of the system graph.

When the SaLaD executable is run the opening
screen is divided into four windows as follows:
1.Information Window -Shows the names of the
currently loaded task and system graphs.
2.Drawing Window -Used to draw task and system

graphs.
3.Map Window -Shows the result of the Cluster-M

mapping.
4.Run Window -Show the results of executing the
tasks (graph) on the systems (graph) using PVM.

The steps a user must perform to create and run)
a parallel program under SaLaD are as follows: 1.
Draw a task and system graph in the Drawing Win-
dow that shows the desired parallel structure. 2.
Once the Task and system graphs have been drawn,
use the " Map" menu command to Map the task

graph on the system graph. Once the mapping is
done, the Rep and Spec Clusters and the Mapping
results are displayed in the mapping information
window. 3. After the tasks have been mapped, they
can be executed on the respective systems by us-
ing the "Run" Menu command. The Run Results
Window displays the status of the execution as it

progresses.
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