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Abstract

In this paper wie proposde o conlfrol scheme bosed on
the velocity estimalion waing only postlion measurement,
through a state reconstructer of firsl order.  The esl-
mealed speed 45 nbroduced in the implicdt confrod daw |
for stabilizing a two degree of freedom elosd-kinchut
chain mechanism, 8 is shoun through somadations, tHhai
practically there és not ong diference belween the im-
plicel controd faw applica directly (usth doka of position
ol vedocify Lnown lI|, and e same low opplicd none-
ing ondy the posilion fand estimabing the velociy), 1V is
alee shotws that the sgeiem i asypnplolically atable. The
atabibity proof 18 basged on the S Lpapunor method

Keywords: Parslled Robotas, Lvapuanoy 2ol mectlod,
Implicit Systems,

Resumen

En exte articuln propomemaos un esquema o comiral havado
e la extimacion de la velocidad wrando solamente la medi-
i el f el dcicer, con e reconsirucior de extado de primerg
arden. Lo velocivad exiimada se imroduce on g [ ey -
rar ofe controf, Pmmuba':'r'::u' wdr mccorite e de png cadeng
clmemdiics cerrada de doy grades de Tiberad Se mruestra
con simulaciones, gue praciicamente moe exisle ninguna dife-
revcia entre I fey smplicita de control aplicads direcio-
micrte fomr fog oty conocidos de posicin v velocidi, vl
miftria ley aplicada corocicnds selamente fo posicion {v
estimcrio {o velocilad). Tambidn fe miesira gue @f sisiemod
e animplddicamente esfable, Lo demasiracidn de esabili-
dad ye boasa en el segunds srdiodo de Lpaprnor,

Palabras Claves: Robots Paraleélos, Segundo Método de
Lyapunoy, Siatemas Implicitos.

T

T# 2w

1 Introduction

At the presenl Lime, robotics rescacdi puls consids
ernbile effort m the stody of parslle]l robots becaise
il their high precison positioning capabilities  and
tiean eumilative link errors due o their high stroe-
taral rgidity,  Moreover parallel robods have higher
slrenglh-to-weight rabios In compars=m with conven-
Fiomal series manpipulsbors (see; [Nguyen and Poorand
1R8], [Fither, 1986] [Lebret. aml Lewis 1003] [Nguyet o
il IE'I‘.'IH] sl j:'rlr:rh::[ .|1I!HI|].H1H']| i5 1 he cose of the Stew-
arl Pl lor-Teeed manipislator (SPPHRM ) which B Ipears
1i|1||r1L' el peliivod to the eank :rr1=|r-.g|||r||::r:. IErmq't-.nrr. fhe
savrrie @hend kineminties thad provides mechanieal stifl-
ez sk presents an extremely diffionlt {heoretical prob-
kxan for dvoamicsel annlvss . This problem as blocked
the chsvelopnent of a praatieal conteo] algorit lim which
b capalsle of providing a trajpectory in real time, o ne-
cessity for application of the manipulator,

Althaoigh st of the reserch in Che llernture has de-
voter] extemive effort o the Bisemntes, dypamics, awd
mechanbcs deshgn of the SPBM, Hitle attention has been
paid tor the contreod prohliem of this bypss of manipaclslaons,
[Hebonbet ansd Pigeyre 1ER)] investigated the foroe posi-
tion coptrol of & menipulstor of a six degree-of-freedom
(el ) manipulator system SPEM. [Mguven, Pooran, gl
Premack, 98] propesosd s control scheme providing ac-
tive wospprlinniee Lo SPEM, and presented computer sim-
ulation ri=ulis of o 2-dof parallel manipubstor,

Most of these control algorithms for parallel manipa-
lntars, have boen developed taking in acomanl hat baoik
the prsttion awl specd ol the manpolator ame known
.Ij“ﬂﬂ il |"::l| 1I|.='ii]1'_|| E'K:II!!IIIE'.'G Wy rﬂln'l 1|1!' WETY .'\-ii.l'll
gl Lis tlae veery sodistiented, amd enn gunrmuobs asymp-
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totic stability and in some cases, exponentinl stability in
s local sense (see [Canudas and Slotine,1991], [Berghuis
and Nijmegjer,1993]). The central part of these con-
trol schemes are based on the fsct that the proportional
and derivalive conteol action or I:F'D':I are koown, e,
the position and speed are svailable to design a linesr
and non linear feedback atate. The state position can
be messured using code-sensora, which can provide a
measure of the position displecement with great mecu-
racy [Canudas and Fixot, 1991]. By contrast, the speed
value which can be known using techometers, very of-
ten can be polloted with noise or unwanted disturbances
[Berghuis1992 and 193], This problem reduces very
muach the manipulstor’'s control performance. For this
reazon it B important to wse control schemes based on
the nssumption that only accure data from the position
is svnilable,

There are many research works based on the hypoth-
eais that only aveilable dete from the position & known.
Canudes and Slotine, for example, propoesd & modified
control version employing the calculated torque method,
in which the velocity was replaced for & speed estima-
tion through o non lineal obsarver, based on the robot

In this wark we propose a control scheme bescd on
the speed etimation through & state reconstructor of
firsi order. The estimated spesd i introdweed in the
implicit control law proposed in [Agoilar and Bonilla,
1998 and 1999]. That controf law has the property that
guarantess ssymptotic and exponential stability shen
the initial conditions are close to the equilibrium point
{see [Aguilar and Bonilla 1999]). Besides il guarantees
the "model matching™, i. e, the assignment of a dy-
namic behavioor to the system in elosed loop throogh &
feedbnck state.

This paper is organized as follows, section 2 presents
the traditional closed kinemat chain, we describe there
the dynamics]l model and diseuss some Important me-
chanien] properties related to the manipulator, these
properties will F-u-mi.{ us Lo establish the Lyapunov fone-
Lon in order to guarantes the stability of the closed dy-
namical system, In Section 3, we describe the implicit

control and proposes a state reconstructor to estimate

the velocity, Section 4, is devoted to study the stability
of the closed loop system using & state reconstructor, In
Section b, we present our conclisions and remarks. In
section G, we show simulations results and demonstrate
the self recovering features of the states using the recon-
structor. Finally, we include an appendix concernig the
proof of some properties and Lemmas,

Let oz finish this Section setting the following
notation:  Ap { X} and Ay {X] dosignate the maxi-
mum and minimom eigenvaloe of the symmetric matrix
X, Troce {A} and det {A} designate the trace and de

terminent of & given matrix A and

Flzf'i E‘:i:“'f-": 5'1=f.'-; S = £:
llAll = /3 [ATAFL.

I 87 = vaF+ 5%

2 Fundamental Closed Kine-
matic Chain

Let us consider the following basic trisngle chain :

Mp

Fig. D

This is basicallys constituted by two eloctrical pistons
linked to each other at the upper extremity by a ball-
and-socket joint; the other two lower extremities are
linked to & fixed beam which i the base of the platform;
each lower extremity in turn, is mounted to the platform
by one rotetory joint, There is also s mechanien) load
(8 mass M) located at the upper extremity. The left
piston can move about the fixed point 0 whereas the
right piston can move about the fived poiot Oy, and L
i the fixed separation between Oy and Og (length of the
hase platform). The origin of coordinates is chosen at
Ll left platon beam joiot Oy, the @ —axis [ at the base
of the platform and the y — axis points upward from the
base. To define the Cartesian variables we proceed to
asslgn two independent coordinates z(f) and yif); z(t)
s the projection onto the T — axis, and yit) is the pro-
jection onto the y — axis at the same distance from the
point £}, & and #y are the angles formed botween the
left piston and the © — axis and the right piston and
the i — axis respectively. The f; are the forees supplisd
by the pistons, r & the length of the main body of the
piston having a mass M, (we have assumed that the
mass 8 concentrated at r/2 and we have neglected the
piston rod mass), J is the inertis moment of each sctu-
ator, end [(t] are the varisble lengths of the pistons
satisfying &; = r.

Lt us express the angles ; in Cartesian coordinates;

H1=arctan]:§:}'. H::arctan(xlfa_}.
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Let us express Lhe lengbhs | in Cartesian coordinates
also:

i = 1..-'EE+EI'E i de= 1,,.'[.[,—1]5+EF" '

2.1 Dynamical Model

In [Agui.hr amnd Bonilla 199-3], we alidnined L fn"nwinu
mm - . .
Miq) 9 +2(q.9) 9 4+C(q) = [; (1)

whmqhthcpuailhllqu=[.r y]rﬂﬁd_fqh
l'h-l:l"nrl::-:vl::tﬂr[f_t fy ]i

fr=fiCi— Ty fo=05+ 5, (2}

H{q] i the symmetrical inerlia mabrix

My+d(SF+3) IS
M[q} - ik T
TGS a(F S
(4]
®{q, 7} is the Coriolis matrix
BaCaf, 6,05,
Mg ) =d "ﬁ& “!*T" E'q & ;
(4)
§y and dg arc defined ss Tollows:
il Ham {5)

and (7(q) is the gravity vector:

il + 95) )

Glg) = ﬂ,.;'p_.-_]+ {E1£I.+_.I§i:|

2.2 Energy Equations

In this subsection we give important relations of poten-
tial and kinetic energies. Lot E_ he the kinetic energy
ereatod by the translational motion of losd mass A,
plus the kinetic energy produced by the rotational mo-
tion of each actuator:

B = LM (7)

Let By the potential energy of the load mass plus the
potentind energy stored in esch actustor;

Eyplg) = Mgy + ;ipliks o lillleme ()

Let us note that;

4" (ACglrdr = Ejlglt)) — Enlal0)) - (9)

2.3 DMlechanical Properties

Iis this part we establish seoe importsnt properties that
will be sed to analize Lhe stabibity of the implicil con-
Lyl

In [Aguilar and Bouilla, ]EIEFH-] wp have provesd the Fal-
lowing properties {(See Appendix for detsils)-

Py Miyg) s a positive definite matrix
P2V N isa matrix defined as follows:
N =M (q) = 20(q.9). {10}
then 4" N {gly =0 ¥ pe RYL

s gz O anel g = 0 sueh that:

BEAm {"h’l:f.'r:l} = ||MWJ|| s

= "‘“' =20, +
P4 ) JKg > 0such thek:
. ‘ : . GAL,

€] — Giw)l| < Kg ||z —w]; Kg= ‘T"’ (11)

3 Control Law

In [Aguilar and Bonilla, 1R, wo have proposed the
following Linear Implicit Control Law

= [ :E o |3+ B [ r l ) (12)
b= ::;' é]u-r—}:i,.,-[ H (13)
= fl 50|~ pbat — e 4 ey + GURy),
(14}
where By is the matnx
[k -8
BE=| —xof (ko — ) l

[re ]

hpe = pitsla gy, = g lech (15

ity 18 the constant reference vector A, =
) is the operator delined in [8) |

£ amwl @ are two positive constants and &5 and &) are
the positive coefficients of the Hurwite poly ool AE +
Ey A+ k.

Remark 1 y and ¢ are implicils veriables that giurr-
anfee the linear model matehing cecurately when £ — (L
That is, we assign to the non bnoor spslem a presstab-
fished linear dimamics of second onder. For the case that
£ = 0, we con find as® > 0 Ywhich in born depends of the
stales iniliod conditions) such thal, for allz € {0,2°) fhe
ripsed loop system behoves Ble g lineor sysiem of second
oreder, For mare details see [Aguilar and Bondila, 1988].
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4 State Reconstructor

In this section we are Lo sssame that the state § (Lhet
is, the velocty) i not available and we will take into
sroount the stabe reeonstructor proposed in [Bonills and
Malabre, 1995]. Let ws first propose the following proper
filter:

o q =4 (18)
where the vector §=[F §]” is the estimated state and
gg = L

Lot us nesct substitute g by § in the LO.L. (equations
12 to 14), then we have;

F[::; ;]1+5ﬁ[;'“]. (17)

| =% 1 [ =

u_l—kn n]u+b’-ﬁ i ]- (18)
fq=%[§: — pkgl§ = Ry} = ke 7 +GR),  (19)

Mote that this control law can alss be expressed ss fol-
Jovwes:

fo=—kpeld — Ry} — Ky T+ + G{Ry), (20}
where {1 = [ ¥y +OF—re) w4 G0 =y T isthe
solution of the following ordinsry vectorial dilferentinl
erpuiskion:

1 ks §1 kol = 0. (21)
Let us express (21) by the following state space notatbon:
d [ i i
E[ﬁl—ﬂnlﬁ]. (22)
whern
| ] Iy ’
A“_— [ —kﬂ.:': _kl-f? ] E [ﬁ:l

Sinee Ap 8 exponentially stablo, there exisls a posi
tive definite matrix /) such that the following Lyapunov
equation is fulfilled

-"’-I;‘;If'l + Py Ap = —faaa [24)
whera
(PR H Sy
P = [:'!t""ﬁ?-?f'}f? Bikg ~ 0
1% (ks + milar ) 72
(:26)

5 Asymptotic Stability

In thiz secton we .-l.‘|.1:|"|._'|-' Lk ﬂL&H]iL}F al By Lo I:|.] for
the case when Lhere s feedback caised b the implicit
ool hiw[I.E.I_..]-, e qu]..nt.luhzl {16-19}). Using Lya-
punoy s second method we show that if the positive
roefficients £ and =5 of the LOL are chosen less than &
spescific bouisd, we can guarantes that the closed loop
syslem s asymptotically stahbe
Submtituting the control law {20} into system (1} we
gel the ellowing elosed-loop description:
7= L
Mig) ¢ £®(g,7) 7 +C{g) =
P M) = kge{R-Hy)-ky,

and ket ws define @ oas:

{26)

(g-R)T & 0F a (F-m)T ]T

Theorem 1 The clesed loop system (26] da asgmpfoti-
cally stable [(AS) if

T M s

At [ 2! e 5+ o < min{2, Ay, {P})
i K |1
A2 = | = ——
£ { ,I:-IIH I .u!,“l
ey
ir — kl.l = 'FI:H‘;':H {E?}

Proof: Thiz Theorem will be proven in four steps
Firet, we present the Lyapunov function and we show
that is definite positive. Mext, we compute Uhe deriva-
tive of the Lywpunov functbon, Then we show that it is
negative semi=definile. AL the end, we study the asymp-
toically stabality of the closed loop system.

First step: we first introduce the following Lyapunov
lanetion

V(@) = ValT) + Val@), (28)

where

.

W (m)=
3l@) =
Viz is the potential gravity energy,

Enl) — Bl Ry) — GT(Ry){g — ql0)),  (30)

which satisfies (see the Lemomin A2 in the appendix for
ihie proal);

'-.!.'_;lrl = Vilg);  nnd
au = 2Mugr+ K, || By — D) ]| + Fetpfel

Vila) + g + Vi (1) + Valg);

(28]
*:-IFE'? § J-H'IJ'I i + W “'”

i

(1)

s
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where
vi(i) = LM, am:hl-%—wﬂm'”
V() = [ ar ﬁT]P[ﬁT_], e

_| A O
F‘[um A ]

We next show that this Lyapunov lunction is definite
positive. Noting that by the condition 4.2 and the def-
inition of ky,, weclearly have that ko, = pf @+eky) /e =
1 and from {31), it follows that:

V(@) = fmalipBell _ Joull o Jafull

therefore V4 () = 0.
On the other hand, if A, {P} /2 = £q then Vy(T) = 0,
Indesd [rom Vg, we have:

(43

Vil = oiid _ :*_u'_. +Valfl 2
EJi sl 100 | ool
In & word, V(@) = L"':[:"}+l«&fﬂ:|}{l

Second step: The derivative of V{T) = Vi{Z) + V@),
is computed as follows; the deriwtive of V) (T), -

Vo (D)= —kye @ G—kae i (7-Ry).  (34)
And the derivative of aach term of V.is given a5
Vg (q) = soko. 0 §+ko 0 (7~ R):;
=T . =
ﬁfﬂf‘}=k!qq € ﬁjl H
(35)

$(-end8) = _sma( 000, L),
Va {ﬁ]=_%”5i_

Finally, Euhati’r_futiug {#) and each term of (35} into the

expression of V, we have

¥ @)= & i+ o0 - a0 1]
(38)

Third step;  We find an upper bound for V. For this we
apply the following inequality 2ab < (0 + #) into the
last equality, to obtain

V@) s- t_+£+f Jof -4
- (2-

. (37)

£

wsing A.1 we have ¥ (2] < 0.

Fourth step; Sinee V' is pesitive definite and 1V is only
negative semidefinite, we have only prowsd stability in
the sense of Lyapunov, namely, thet the error and wve-
lescities are bounded, The AS 1:|I' Lhe equilibrium point
@ = (g" = AT 4= 00" =0, ﬂ =0,§" = RY) follows

from LaSalles’s Theorem. Indeed, let us first note from
[28) te (33}, that V@) is redinlly onbounded, ket us
texl define the ollowing maximal invariant set:

{mew"ff{man};
{fmefW|w=[c" 0 0 0 ]},

g =

and let us finally take any trayectory = belonging to S
for all £, i,

git) = @ (t)=0; Dt)=0; D (t)=0; 1) =e,

also by the sccond equation of {26), we obtain
Kou [le = Hall = [[Gic) — G{R)I = Ka lle— gl

From A2, we have that by > K and substicuting this
condition into the lest inesquality, we must have that
et = M. Therefore the only one solution that can sty
in 5 for all £ s the equilibrium point

= —.r
Fe= (" =R 4=0,0T=0,1 =0, =

Thus the closed bop system s AS. O

Hemark 2 i}||:‘»‘.1'} represends the sum of the polential
and kinetic energiea of the mecanical system. F:;I:E:I is
the sum of the kinetic energy associated with the esti-
maled stale § , plus the energy asseciated with the tme
plicit parinble {1, plus the inlerations betreen the states
{1 and §.

Corollary 2 Under the same conditions as Theorem |,
the gmpdicil condrol faw [16)-(18) s AS with respect ta
Ehe equilihrivm prind T,

T
AT,

Froof: Let os frst prove that the signels y and »,
Ei."u"l.'.l:l in Lhe |r|'||:l|:||.'.H. Control Low e A5

Led s pode that the equations (17} are equivalent to
the following two differential equations

Xy kL Xy hoxy = (=0F +iy T HRol(E —ry)),
Yz +k Xg HhoXg = (ko — k J)(ZF +ky T +kolT = ;).

Hel'mmg the auxilinry 'r'llrl-l'l-:hlﬂ-'z- i, = x4+ HT—r,) and
W, = (kg — &y F)(F — r4) = xp.! we can rewrite the last

"Mecalling that g = |z, ¥| and H,

= [Fa. Fy «



C. Aguilar |, 5. Sandove! R, L. Garcla N Welocify Estimation by Using a State Reconstructor for Stabilizing a Two Degree ...

two equations as

ﬂ:: l"kl ﬂ: 153]“1— = I:'l
1&: +k|. 1I'= 'I'kﬂir.-: =L

From the above equations we note that £1, aml ¥, are
Hurtwitz and by Theorem 1, we have that § and §are
bounded and satisfics:

lim F=rs, imT=0, lim ¥ =ry, lim ij=0
| [ f— o0 b
Then by definition of 11, and ¥, we have that i, and
Xy are AS. ie:

i xi =05 Jim x, =0

In the same way, we show that s AS |
Let us finally prove that f; s AS with respect to the

equilibrium point T.. Sinee the wariables v, o, g, § and §
are A5, then from (19), we conclude that [, is boanded
and fulfilled:

Jim f, = G(R,)

In summary all the internoel signals of the implot con-

trol law are bounded and converge in asymptotical way
to its eguilibriem point. O

6 Concluding Remarks

In this paper we have proposed o slale reconstrocbor 1s-
ing & [lter Lo estimate the position amd velecity of the
closed kinematic chsin . This estimated state s used as
input of the implicit contral lew which sim is to stab)-
lize o two degree of resdom pacallel manipulator. The
state reconstructor depends on the parmmeter g5 and
the mplicl control needs to adjost only four parsme
ters, namely £, 3 %, and &y, The constants s and &
determine the siability of the closed loop system {soe
Theorem 1) , § determines the smoothnes of the cone
trol Bction [ Ses (15} ), and the constants By and &y
determine the dynamics of the implicit action {see (17
to 19]).

Mote that Theorem 1 states that the syatem is AS when
the parameter £ is less than Ay, {F) and the parsmeter
¢ is less than a certein bound which s directly related
with the Lipschitz constant fg (see Pd); namely the
AS is directly related to the weight of the linear density
of the sction load,

The authors thank o the Drs. M. Benilla £ and J.
Cadiehan,

T  Simulations

In this section we will show seversl d'iﬁ'ilnl. simne ks
of the punipulater’s dyoamic model deseribed inoegine.
tiodes 1 Lo G note that we begin the analysis applying
Lhe byplicit conteal law -equatbons (12) to [15) [with-
out estimator, e, with data of position and velocity
known}-, and then applying the same law using only
the position, and estimating the velocity through the
state roconstructor (seo oquations 17 to 210,

The ollowing mechanical parameters and initial comdi-
tions were considered

Mp=0Kg M,=I1Kg r= lm
L=1LTm z(0)=08m 0)=L12m
@ () = 0.1 i (0) = 0.1m;

with the following control peremeters and relationships
given by;

k=1, £=05 £g=005
i = LEm, pa= LB

=1,
=1,

Furthermore ¢ = |r .y and f; = [fs, fil.

In ligure 1 and 2, it & shown the position = and y re-
.-hrpn'.l.nlnl_l,r. =g Ll .-'.'FHﬂ] e=ibinalor I:-r]nldnrl. line :I and
withoul it {continuous line).

In fgure 3 and 4, i 15 shown the spesd bebaviour
in the direction = and g rm'p-urLi\rr.:IJ.-, using the welocity
estimntor [dotted line) and without it {continuoos line},

In figare 5 and 6, i€ is shown the behaviour of the
action of control [ amd f, repectively, agam wsing the
velocity estimator [detted line) and without it {contin.
vons line} in Newtons, From these figures, it is clearly
evident that from time ¢ = 6 & , practically there s
not any difference between the implicit control law ape
plied directly [without estimatos, that b=, with data of
position and velocity koown}, and the same b applied
with the velocity estimador wing only the position,

2 K-Pozitian [ m |

L

i TIME [ Sarconds )

|
Fig liposithon x
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8 Appendix

2.1 Proof of statements of section 2

Proof of { P.1); Westand for Mig) = M, By com-
puting the determinant of M{g), from {3} we have (rocall
that ly =r=0,withée=1,2and¥ 1 >0}

det(Mg) =

-"Fr? i "I'"r'é:lé_li:l + JJL'--!-";:-W ~ 1 '
amdd, sinee Lhe diagonal elements are positiee, we ooi-
chide the positivemss of M(.). O
Proof of { P.2 )i In view that: 1) Mg} 15 a pesi-
tives definibe matrix: 2} The kinetie cnergy is expressed
in quodratic form in terms of §, see (T); and 3} The
potential eoergy is indopendent of g ( see {(8) } | then
hawve, that y" Ny =0, ¥, y € B2 therefore, & & skew
:-.:,rmmr'_.l.ril::. (|
Proof of { P.2 ]: Led us firsl compuotie Lhe appser
henamed of [[A(g)]] . Freom (3), we have:

(48]

4.
1081l = Mg M} < Trnce { My} < 20, + —5
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Lt us next compaste Ay [M' I- From abowve, we have
M2 < Ayg (MG} Mg [ M} < A { M) Trace { M, }

nnd Lhen
M3 M

_|== = Trace] h':-'r:l.' = Am {M‘Ti

L1
Proof of { P.d ):  Setting (7{q) = {07, )7 and using
the fnct that 1/0(t) < 1/r and 1/ly < L/r, from Bag.(6)
ome can gel Lhat:

max ||V, = M

max |V ()] < Ko
Thnu, wre have '|'.||'4:.|\~|:1:| Lhat J|t-’{'.‘|| iz bownded. Abko,
opplying the mesn valie Theorem we can show that:
|¥GE 8 (z—w)|| = Kellz—wl| for (£,8) = za +

(1= aju and 0 < o < 1. The second inequality is
proved in the same way. |

8.2 Proof of statements of section 4

In this subsection we prove the ineguality of Eq.(31}.

For this we noesd the following Lemma.

Lemuma A.1: The following inequality s fulfilled:
|Eplan) — Eplae)| < 2Mygr + Mypgllo —qul]  (39)

Proof : Let s = (xi,1) , 1= 12, from (8], we have:
|Eplg1) — Eplaa)] = Mpglyn — el + 2Mugr. (40}

Substituting
|:..|L,-"1,.-":|:E + y,!| =1
into (40], we obiain;

|Ealn ) = Enlg)] < 2Mugr 4+ Mg |lon — qull

wil VIE— 5+ <1,

O

Lemma A.2:  Let us consider Vi defined in (3], then

we EUAranten:
Viala) = —fi, — Lifal” ;
By = 2Mugr + Ky || Ry — q{0)] + L2etptal

Proof : From Vi {see (30]) and using .4 and Lemma
A1, we have:

Volgl =

41
“aM,gr— Mugllo— Ryl — Ky la—uioy 4V
Substituting;
gt} — atOl = llale} = Ryll + 1 — al0)ll;
(Mg + Ky) llg— 1| <= Bl 4 (Mapthel

into (41), we cnn estimate a bound for 3 | O
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