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Abstract

We present an abduction mechonism copoble of correct-
ing faully formulze. A formuda, G, o5 said fo be faulty
if i is not derivable from o theory, T, urillen I’ JF G,
bul we infended 6 fo be. Given a theory, I', and a
faulty fermula, G, the mechanism aims to build a cor-
rective condition, P, that transgforms (7 inte o theorem,
'l P = G. The method tmposes restrickions upon
the guality of o corrective condition. The mechanism
e fully awtomatic. 7T iz given as a collection of hewris-
fics. Fach heuristic control caplures the restricted way
tn which the search for a proef of a faully fermula con
Jail, and provides knowledge to recover from such o fadl-
Hre,

Keywords: Abduction, Theorem Proving, Program
Synthesis,/ Transformation, Proof Planning.

Resumen

Presentamos wn mecantsms abductive sapesr de corre-
gir fdrmules imperfectas, Una formula, &, e onper-
fecta si, contrario a lo esperado, no puede deducirse de
una teoria, I, en simbolos I F &, Dada una teoria
. T,y una formula smperfectn, &, el mecynismoe hene
como shjebivo construir wna condicin cosrectiva, P,
tal que tronsforme 0 en own teovema, T H P = G
El meconismo ¢mpone restricfiones en o colided de
una condicion correctiva. B mecanisme es complela-
mente gutomdadice, FEsbd definndo come un eonfunio de
hewristicas, Cade uno capfura le forma restringida en
come lo bisguedn de wn plon de demostracidn puede fol-
lar y proves conocimiente para recuperar dicha falls,

Palabras clave: Abduceidn, Demostracion de Theo-
resmias, Sintesls ¥ Transformacidén de Propramas, Plani-
fleacidn de Demostraciones.

1 Introduction

The paper is concerned with understanding and correct-
ing mal-formulations, & fundamental process of theory
refinement. We present & mechani=m capable of cor
recting a faulty formula, A foully formula s a con-
tingent formula that we expected or intended to be a
thearem. A contingent formula is a first-order formula,
{7, such that neither &' nor =G arm derivable from some
aviomatic theory, I, written I' PG and T F -G
Given & theory, U, and a fanlty formula, &, the mech-
anlam sims to identify or build—if necesary—, a cor-
rective condition, P, with the following proportics:

correctness: P, together with the working theory,
tarms & into a theorem, ' - P — {7

consistency: P & not o contradiction with respect Lo
the working theory, T'U [P} F false; and

non-triviality: [ s a nontrivial explanation of &, F
PG

Butlding & corrective condition amounts to providing
an algorithm for computing the condition, The mechs-
ni=m renders an algorithm as a collection of egustional
cases, each of which might be conditional., The algo-
Athm output might be recursive and, in that case, it s
guarantestd to be terminating.” An algorithm is said to
be terminating if it dows not fall into infinite computa-
Licn.

The process of correcting a faulty formula via a cor-
eective condition is based on abduction {Peirce, 1959).
Abduection is a form of logical inference that allows s to
find couses that explain an observed phenomenon. Ab-
duction s closely related to deduetion: it B performed
when no further deduetion 18 posaible, exploring the as-
soiated] partial pecol tree. These tress are nsually hoge
and might well be infinite. Special care thus needs to
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be taken in order to tackle the combinatorial explosion
phencmenon. Fortunately, proof planning provides, at
least partially, an answer to this problem.

Proof planning (Bundy, 1988) is a meta-level reason-
ing technique. Ideally, it aplits the problem of proving
a theorem into two stages, one in which an Approgri-
ate plan is assemhbled by the planning engine, and an-
other in which the plan is executed by a theorem prover,
In practice, object level steps are interleaved with the
meta-level ones. Yet, proof planning ks cheaper than
searching for a proof in the underlying theory, This
is both because each plan step covers a lot of prisal
steps, and because a proof plan contains many heuris-
tice that dramatically restrict the search planning space.
We have used proof planning to implement an abductive
mechaniam for the correction of faulty formulas.

The abductive mechaniam is given as a collection of
heuristics. Each heuristic captires the restiicted way in
which the search for a proof plan can fail and provides a
basis for exploiting any fallure or partial success in plan
formation. This general knowledge i= then uwsed to turn
a faulty formula into a theorem, The sbductive mech-
anism is an extension of that introduced by Monroy,
Bundy, and Ireland (1994).

1.1 Paper Overview

The rest of the paper Is organised as fallows: First,
we describe the abduction rule of inference underlying
the detectlon and i=clation of faults, §2. Then, we ar-
gue that the meta-level reasoning embedded in proof
planning makes it possible te exploit any failure or par-
tial success in the search for a proof, §3. Next, we
ehow how to implement an abduction mechanism within
proof planning, vis an exception handling mechanism,
$4. Also, we show how to exploit proof planning fail-
ure s0 a8 to guide the correction process, henee prun-
ing the explanation search space. After summarising
experimental results, we compare the abduction mech-
anism with rival techniques, §5, and draw attention to
the lessons that we have learned through our investiga-
tiom, 5.

2 Abduction

Abduction (Peirce, 1959} is a form of non-monotonic
reasoning used to discover explanations of phenomena
whose cause is not clear. Peirce pointed out that ab-
duction is the only kind of reasoning that supplies new
ideas. So, abduction iz synthetls:.

The: simplest form of abduction is as follows:

From a rule, 4 —+ A, and a result, B
Infer A ns & plausible explanation of B

In & logical setting (Levesque, 1989), abduction and de-
duction are closely related. Abduction is commonly ap-
plied whon no further dediction iz possible, exploring
the open leaf nodes—called dend endi—af the assoei-
ated partial deduction tree,

More generally, Kakas, Kowalski, and Toni {1098)
characterise the abductive task as follows: Given a set
of sentences, [, and a set of ohservations, (7, find & zet
of sentences, ', such that:

s TUCHG:
¢ Il i consistent; and
o TC A

where A is & set of abduclble smntences. & sentence s
sald to be abducible if it explains an ohservation and
if it itself cannot be explained in terms of some other
CRse,

The major problem with computing an abductive hy-
pethesis is the combinatorial explosion phenomenan, A
failled proof attempt quickly ylelds a huge, possibly in-
finite, deduction tree. This, in turn, gives rise to sxpo-
nentially many explanations {De Kleer, 1986), most of
which are not relevant. Choosing a good candidate ex-
planation antomatically s bence an extremely difficult
task. The problem is farther magnified if minkmal sieed
explanations are required. Computing minimal expla-
nations has been proved to be NP-hard, even in acyclic
Horn theories (Selman & Levesque, 1989). Thus, care
needs to be taken in order to make a productive use of
fallyre,

We suggest that a proof planning approach can strue-
ture the tisk of correcting a Baalty formula in such a way
as to allow significant automation, while dramatically
restricting the search space.

3 Proof Planning

Proof planning (Bundy, 1988) Is a meta-level reasoning
technique specially developed as a search control engine
to amtomate thearem proving, A proof plan captures
general knowledge about the commonality betwesn the
members of & proof family, and it s used to guide the
search for more proofs in that family,

Proof planning works in the context of a tactical style
of measoning (Gordon, Milner, & Wadsworth, 19799, It
applies Al planning techniques to bulld large complex
tactics from simpler ones. Proof planning i8 4 two step
approsch, In the fisst step, a tactic is assembled by
the planning engine; in the secomd one, the tactie is
executed by a theorem prover, In the normal case of
sucoess, the second step yields an actual proof. Some-
times, object-level steps need o be interleaved whilse
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assembling a tactic: Some of the later planning steps
cennot be made without the detail provided by the ear-
lier object-level ones.

Methods are the building-blocks of proof planning,
A method is a partial specification of a tactic, It is a
S-tuple, consisting of the tactic name, the goal, the pro-
vonditions, the effects and the output formulae, Proof
planning checks the preconditions against the goal to
predict whether the tactlc associated with the method
Is applicable and, if so, uses the effects to anticipate its
application, which results in the ontpot formule, Proof
plenning is the recursive process that reasons about and
composes tectics. Upon suceess, it returns a compound
tactie, called & proof plan, tallored to prove the Cojec-
ture at hand.

Proof planning is cheaper than searching for a proof
in the underlying object theory, This is for two reasons:
First, each plan step covers a lot of object-level theosem
proving steps: proof planning emphasises proof stric-
ture, flling in direct but tedious, onerous reRsoning.
Second, the method preconditions dramatically restrict
the search space: backtracking hardly occurs,

Proof planning has been implemented within the
Clam proof planning system (Bundy, van Harmelen,
Horn, & Smasll, 1990) and successfully applied in for-
mal methods, including synthesls (Armando, Smaill,
& Green, 1999) and verification (Monroy, Bundy, &
Green, 2000; Cantu, Bundy, Smaill, & Basin, 1096).

3.1 Proof Planning with Critics

The incorporation of an exception handler to proof plas-
ning iz called proof planning with eritics (Treland, 1002).
The exception handler is invoked if the goal at hand
is blocked and if the applicability precenditions of a
method partially hold. A goal is ssid to be docked if no
method applies to it. Upon request, the exception han-
dler will try the proof eritice associated to the partially
applicable methaod, if any, one at  time, in the order of
APPEATALNCE,

A proof eritic containg & high-level specification of a
[adlure pattern or partial attainment, as well &8 provid-
Ing the corrective actlon. It is a 4-tuple, containing the
critic name, the goal, the preconditions and the corree-
tive action, The application of a proof critic to a given
goal congists of checking the preconditions against the
goal and then executing the corrective action.

Unlike the application of 4 method, the application
of a proof eritic does not refine the proof plan under
construction. It just enables further proof planning by
rendering side effects. Critics effects may include a mod-
IAcation to the input formulae, eg., generalisation or
fanlt correction, or to the working theory, e, lemma
discovery, Proof planning with crities has been soe-

cessfully used for lemma discovery [Ireland & Bundy,
1996), formula generalisation (Treland & Bundy, 1964G)
and faulty formula correction (Monroy et al., 19494,

3.2  Inductive Proof Planning

The application of proof planning to theorem BT
ing by mathematical induction Is called industive proaf
planning [Bundy, 1088).) It is characterised by the
following methods: The induction method selects the
most promising induction scheme via a rippling enaly-
15 (Bundy, van Harmelen, Hesketh, Semaill, & Srevens,
1988). The base case(s) of proofs by induction are dealt
with by the elementory and sym eval methods. Ele-
mentary is a tautology checker for propositional logic
and has limited knowledge of intultionistic propositional
sequents, type structures and properties of eguality.
Sym.eval simplifies the goal by means of exhanstive
symbolie evaluation and other routine reasoning,

Similarly, the step case(s) of proofs by induction are
dealt with by the wave and fertilise methods, Wave ap-
plies rippling (Bundy, Stevens, van Harmelen, [reland,
& Smaill, 1993}, & heuristic that guides transformations
in the inducthon conclusion to enable the use of an in-
duction hypothesks. This use of an induction hypoth-
exin 35 called fertilisation by Boyer and Moare {1979),
hence the name of the method. The inductive proof
plan, summarized in Table 1, is both the most studied
and the most suceessful (Bundy et al, 1989). Given
that rippling is the key for success within the inductive
proaf plan, we shall discuss it further.

3.2.1 Rippling

The key idea behind rippling lies in the ohasrvtion that
one af maore induction hypotheses are (simultaneous!y)
embedded in the {initial) induction concluslon. The
differences between the conclusion and the hypotheses
constet of extra terms, e.g., & constructor function weap-
ping an induction variable. By marking them explicitly,
rippling can attempt to place these differences st posi-
tions where they no longer preclude the conclusion and
hypothesis from matching. Rippling is therefore an an-
notated term-rewriting system. It applies a special kind
of rawrite rules, called a woee-rule, which manipulates
the differences hetween two terms while keeping their
COMMman stroactare intact.,

Udathematical induction ahauld not be caefusml with phila-
eophical Induction, a form of symthetic ressoning that infers a
rule from a case and a resalt {Peirce, 1958). Doth abduction and
philcsaphical nduction are weak kinds of inference. Their rela-
tian and integration are still under development (Flach & Kakas,
D). Menceforth, we ghall gee the term Inductlos as & shart-
hand of mathematical induction.

2T
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Method Deseription

elementary I8 a tautology checker for propositional logie and has Hmited knowledge
about nkuitionistic propositional sequents, type ciractures and
properties of equality

| looks Tor expressions of the form var=ferm amongst the hypotheses,

_and replaces every occurrence of ferm in the current goal for var

sym eval putu the input expression inte canonical form by means of cxhaustive
rewrite rule application

generalise  replaces a subbermn, appeacing I:;_!-:-iElfi"}-|'.'~i.]-{{§'ﬁ?_ﬁ-{ﬁual11y,
implication or an |-:u::q1udlty. by simple wariable

normalise  skmplifies sequent formulae using rales for manipelating sequents, such
as implication introduaction — A, Fl_ E s

[FA— B

wive applies wmave-ricles, as dictated by rppling, a beurisitbe that guides
transformations in the nduction conclusion o enable the ase of an
induction hypothesis 2T

casesplit divides a proof into cases, considering the partition defined by a set of
complementary rewrite mles

furrtilise simplifies goals using an induction hypothesis

induecthon applies induction, this involves the selection of a suitable

miuctgfm scheme and one or more induction variables

Table 1: The Standard Meihod Data-Base

Wave annotations are introduced by Induction,® as
illustrated by the rule below:?

#: nat, Gz} E’{[Isf;}l |

HEF Yz :nat Gx)

HF Q)

(1)

Wase-torma, a.g., a[;}q are eoatposed of & weave-front,

and one or more wave-holes. Waee-fronts, e, (8. ..} |,
are pxpressions that appear in the induction conclu-
gion but not in the loduction hypothesis,  Inversely,
wwave-holes, e, &, are expressions that appewr in wive-
terms and also in the induction hypothesis, By deleting
the symbaols that are within wave-fronts but not within
wave-holes and, then, the annotations completely, we
get the skeleton. The skeleton is & copy of the indwc-
tion hypothesis and, so, should be kept unchanged,

A wove-rule is an annotated rewrite role, L o= I,
such that it is skeleton preserving and messure de-
creasing, under a suitable ordeting, =, on annotated
terms (Basin & Walsh, i446). This is characterised by
skell L) = skel{ /) and ne( L) = m{R). The well-founded
measure 18 the inverted list of the depths, with respect
to the skeleton, of the wave-fronts, at each level, ordored

Tyoer annotationa can also be introduced by spplying differ
ence unificotion (Basin & Walsh, 1993) ta the hypotheses and
the concluson. Difference unification ectemls unification so that
differential stroctures betwesn the terms o be unified can aleo be
hidden, while compwting a subsatitutian,

g g the soce=wor Fenction deflned over nataral rombers,

lexicographically, The well-founded meagure can be
shown to be stable and monotonic ander a non-standaed
term replacement. Hence, rippling can be shown to be
bermimuting

With this, we complete our revision of both abadwc-
tion and prool planning. We are ready to introduce the
abduction mechanism, the subject of the next section.

4 Correcting Faulty Formulae

Like Monrov et al. [1994), our abduction mechanism is
built within inductive proof planning with critics. Tt
is given by a collection of proof critics, each of which
captures heuristics to detect, solate and correct some
gorts of mal-formuolations.

Roughly, the mechanism works as follows: Given con-
Jecture €7, then:

1. Use inductive proof planning to search for a proof
of (. If @7 i a thearem, this process will often ter-
minate yielding & proaf plan. Otherwise, it will ter-
minate failing and polnting at an unprovable sube
goal. Call this sub-goal G° and call the method at
which proof plan formatlon stopped M.

2, Use M's proof critics to perform a syntactic anal-
yais en (. I the failure pattern is captured, this

N “-I-‘m- figrttier details, readers are relerred to the Mathematical
Reasoning Group hoe page, hrtp: ffdrenn.dad . ad . ac.ult.
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analysim often bdentifles or builds a eomdition, P,
which will (hopefully) remove the bug fram {7,

3. Use this procedure recursively, considering P —+ 07,
until a proof plan is found.

Corpective conditions take the form of the following
recursive scheme:

FP{Bg) = Fg,

F(B,) = Fu
Fs, =+ PlLo(N]) = F(N)
Ps, = PICh[N)) = BN

where By, By, ... and O, 0, ... denote base case ele-
ments and constrictar Tunetions. These terms are fixed
by the inductive rule used to attempt to prove &7,

Bullding P amounts to fixing Pg,. Fs, and F;, for
i 2 0. Predicate construction takes plare upon proof
planning failure. Py, (i > 0) is fixed to false if the
base case {1 could oot be escablished, or fixed to true
otherwise. It might be equally fixed to other, possibly
recursive, proposition,  induction was further applied
So, nested recuraion is vielded.

Poli = 0) is Axed to P if fertilization was wsed to
complete the proof of step case i, Otherwise it is set
to true and, so, P might not be recursive. Py, (i = 0]
ig fixed to true I peither nested induction nor extra
assumptions were required to complete the proof, Extra
assumptions are often introduced by case analysis. We
insist that neither B nor P ace ever set to false. I no
critie captures any one step case Badlure, prool planning
will fiil.

P i not necessarily unary. Extra arguments are
pdded to its structure i elther case analysis or nested
induction is used, We will eome back to this ssue later
on in the text., First, though, we will look into fsult
correction using non-recursive conditions, which are in-
teresting on their own. As we shall see, they mend
specification formulae that overlook boundary case con-
ditions, a comman mistake [n software development,

4.1

Specileations which overlook boundary case conditions
develop in either of two sorts of blocked goals contra-
dictory or contingent.

Mon-Recursive Conditions

4.1.1 Contradictory Blocked Goals

A goal is contradictory Mocked if it is blocked, ground,
and invalid with respect to the working theory, Contra-
dictory blocked goals may originate when we tTy to solve

either & base case of an inductive proof, or a branch of a
proof by case analysis, To recover from failure, the ab-
duetlon methanksm will suggest to tntroduee the nega-
tion of the case as & condition to the origlpal conjecture.
If it I8 & base case and nested inductlon was used, the
mechanism will select the case for the mest recent in-
duction. By omitting thiz case, the contradictory goal
will not be experienced again.

To give an impression as to how the mechantsm
works, consides the following Falty formula:

WL o list, length(L) # 0 (2)

Proof planning attempis to addresa (2} wsing primitive
list. induction on L, henceforth abbreviated as ML in-
duction., The basze case, L = nil, gives rise to a contee-
dietory blocked poal, namely: 0 # 0. With this failure
pactern, the mechanism will postulate L # all as the
required condition, vielding the new specification:

Yoo list, L # nil — length{L) 0 (3

This is & theor s Ie can be proved by Induction or case
analysis. If Induction is used, however, the step case can
be establisherd] without fertilisation. ‘This explains why
the condition s not recarsive. We will have more to say
aboit this ln §4.2.1.

To give the reader a flavour of the implementation,
Figure 1 provides the definition of the critie following
the Clam convention,

Mow, let us consider the alternate case, where the
blocked goal is not contradictory.

4.1.2 ﬂnnﬁnﬂznt.la-‘ BElocked Goals

A poal is contingently blocked if it Iz blocked, open and
contingent with respect to the working theory. A for-
mula is apen if it is not ground and the status of all
the variahles that ocedr in it has not been announced
with a quantifier. Recall that a formula s contingant if
it is a proposition and 17 the proposition holds in some
interpretation. Put in a logical way, a formula is contin-
pent. if either the formula or the negation of its closure
is a theorem. The closure of a formula is as the formula
except that there is a universal guantifier attached to
each of its free varables. Contingently blocked goals
may appear ab any prool step. (ften they serve as con-
ditions to patch the buggy specifications from which
they originated, Here is one such & specification:

WX, Voot X +¥V > X (4]

Proof planning would attempt to address (4) usng
single-step induction on X, henceforth abbreviated as
#{X) induction, The base case, X = 0, would yield a
contingently blocked goal, namely: ¥ # (. With this

20
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CRITIC elementary
Input: Plan Address,

Precondition:

Meanings of the meta-logic terms:

the case analysis.

oode{ Plan, Address, [ = Y)Y

T € {! ¢ £ ia iealid },
' = T'— Ia a substitution

failed_ati Plan, Address, Var, Case),; the original goal, &

Pateh:
node{ Plan, [, I" = YVars 7],
WCase(Var))
Output:
YWars. P =

= node| Plan, Address, Seq) means that node at position Address of proof plan
tree Plan contains the sequent Seq. N.B. [] is the address of the root node.

» failed stl Plan, Addreas, Var, Case) Cose denotes the case at which Failuee
has oecurred with respect to the moest recent inductlon or casesplit
application. Var is the current induetion variable or the variable lavolved ln

: IF curpent. goal, G, 18

; contradictory blocked,
7 negate the condition

; for the most recent

7 induction or case nnd
add it as a condition to

Figure 1: Critic: comtradictory blocked goals

failure pattern, the mechanizm would postulate thig new
conjecture:

YE . Fmmat. Y #0=+X+Y =X

This abductive strategy resembles resolution based ab-
duction mechanisims, where the residue 6 used as a
patching condition IF I belongs to a set of abducibles
Figure 2 provides the definition of the critic handling
this situation.

When contingently blocked goals cannot be used
a8 patching conditions, equation solving and symbolic
evaliiation are required. Fortunately, these formulee of-
tén contain no recursive symbaols and, hence, it is easy
to write the corresponding procedure.

4.1.3 Contingently Blocked Goals—Case Anal-
yais

It only remains to illustrate abduction in case analysie,
We shall work by example, Consider this faulty formuala;

WX o Loor list. insert( X, L1 =X o L (&)

together with the rewrites glven by the wsual defintion
of in-order insartion:

ingertl X, nil) = X il
Iil“'-ri.naerl:{x,i'_]’:::éh = XVl

X£Y = inﬂguf.-"ﬁ',l YL |l|

= | ¥ :tinsert(X, L) |

30

Froal planning would try to desl with {3) using ML in-
duction. 1t would establish the base case, but get stuck
in the step case, alfber an application of case analyvsis,
The cagses are X < H and X £ H. The second case,
X ﬂ H., cannot he ph,:lml.. o X s HsLbsHae Xz L
15 mot valid but contingent. Thus, b wlll be rejected.
The mechanism will produce:

Pipgl X, 0ll} = true
X<H = PpdX,H:=T) = true
XEH - Pp X, H:=T) = false

Three aspects deserve absecvition;

1. Inductive proof search involving mal-formulaced
houndary case specifications does not necessarily
break in base cases.

2. Neither the second dﬁﬂr_‘dng srpuation e thes thired

one are recursive, for the induction hypothesis was
not wsed in the step case.

3. Pjpg is binary; the extra argument was introdooed
by the use of case analyslks,

Figure 3 formulates this patching stracegy as a proof
eritie.

The failure patterns yielded by blocked moaks, baoth
contingent and contradictory, are represented in three
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CRITIC elementary
Input: Plan Address,

Precondition:
contingent (),
Pateh:

P=G"
Y. P

node[ Plan, Addreza, ' - G")

37 € {t : ¢t i abducibis},
G' = T'¢— is a substitution

nodel Plan, [T F .,

i If current goal, &7, is
; an instance of an

i abducible predicate,
1 then use it ns a

i patching comdition to
; the original goal

Chutput:

Figure 2; Critic: contingently blocked goalks

Table 2: Some formular corrected using non-recursive patches

Faulty Conjecture Patching Condition 1
lengthlapp( A, B)) > length{d) B # nil
lﬁigth:npp{ﬂ,ﬂ:jllll > length{B) A # nil
X+ > X Y#O
X+Y > ¥ X#£0 —
double(X) > half(X] X#0
double(X}] > X AZ0Q
X > hallX) X Z0
Pine (X, 0il) = true
insert{X, L] = XL X<H =+ PFiglX\,H=T) = 1true
X€H -+ PigX,H:T) = false |

proof critics. These critics are associated to the proof
methods elementary and casesplit. Combined, they deal
with & number of faulty formulse, some are shown in
Tahble 2.

We are now ready to consider the construction of re-
cursive conditions, the subject of the next section.

4.2 Recursive Conditions

Owverlooking boundary case conditions is but one sort
of error people make when writing specifications. We
shall consider one more: failing to Wentily properties
of the operators involved in the conjecture. Here is one
example of such faulty formulae:

WL list. sork( L) = L (6]

Though it looks unusual, conjecture () is appealing.
It can arise as & result of an over generalisation of the
conjecture sort{sort[M)) = sort(M), which states sort
is idempotent.® In the following, we show that our ab-

8 hn oner ’mﬁuiil::q i2 an cperation that transforms & the-
arem iote a fauity foemla.

ducticn mechanism tackles it
We pssume the availability of the insert rewrltes, as
WE'.]] HE hh,l_‘.' :I'E:u:w.-]ng:

sort(mil) :=> mil

sort([X = L)) = [insert|X,sort(L))

To attempt to prove (G), rippling analysis suggests the
use of KL inductlon. The base case is easily solved,
g0 attention will be only given to the step case. The
induction hypothesis and the induction conclusion re-
gpectively are:® sort{l) = [ F m:rrt.[lh i+ Ll]- =|hu=il As
panl, we work on the conclusion. Hippling then
fertilization yield:

voo Finsert(h, ) =K ol
This sub-goal is then transformed Intao:
VX o, Hoolist, Insert( X, BV =X o B
% mnel h are Skolem constants imrdiced by the induction
rule. They respeciively replace L and I, Strictly speaking, we

should add wype information to formalee. However, for the sake
of readahility we have prefereed to omit it

3
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CRITIC casesplit

Input: Flan, Address, o IF current goal, &7, I8 contingent,
node Plen, Address, ¥ F G i then set current equation case to
Precondition: i False and bulld P aceording to the
contingent () ; struciuee of the partial proof tree
Pateh:

falled_at(Plan, Address, Var, Case;),
freevars{Casey, Vara),

Case; — P{Vars) = falss,

Wi £ i. closed(Clase; ) —+ Case; — P{Vars) = true,
build_condition] Plan, Stractura, P)

nedel Plan, [|,I' F¥X. &)

Output:
vX. PG

Meanings of the meta-logic terms

= [reevars{Case, Vars) Vars contalns the variables that appear Tree In Clase

« bulld_condition[ Plan, Struciure, P) Structure is the structure assoclated with the
partial proof plan, Plan, which is used in order to construct the corresponding
corcective comdition

Figure 3: Critle: contingently blocked goals in case analysis

which i (5}, the example conpecture reviewsd in §4.1.3.

S0, to correct (6), the abduction mechaniam Brst re-
paira the new instance of (5), yielding Pjpg: Next it
performs an analysis upon the entire proof search of
{G), gathering the following information:

1. The proof of the initial base case I8 complete. So
the patching condition evalustes Lo trie when the
Input fist is ermpty, e.f. (7).

2. The proof of the initial step case is incomplets. Fer-
tilisation and then nested induction were used, aut-
putting a sub-goal that can be patched via P,
c.f. (8).

So the patching predicate is recursive, the side condition
belng Pi,,. Thus, the mechanism synthesises Py

Fgglnil) = true (7}
PustH, T) = Po(HaT) = Pu(r) (8)

With which, it Gnally patches {6):
WL:aligt, P (L) = sort(L) = L

{Observe that Py 18 recursive, beopnss the bnductive
hypothesis was used. Furthermore, ohserve that Py
s added a8 an extra condition in the second Brjuation,
because it was suggested to repair the new sub-goal.

By unfolding and symbolic evaluation, we can oom-
pose both definitlons to yield & simpler one:

Pilnil) = truwe
FolH nnil) = truse
Hy SHs = By(Hy = Hy =T = Pyu(H; =T

which defines the predicate ordersd.

4.2.1 A Word on Recursion

Conditions are recursive only if fertilisation is applied.
In #.1.1, we emphasised that fertilisation is not re-
quired for demonstrating the step case of (3), namely:

! # nil = length(l) # 0
b ] # il = length([ L) # 0

This is because the antecedent and the conseguent. of
the implicational conclusion are both readily provable
using arithmetical reasoning. So if no notice of this is
taken, we conld then carelessly extract P

Finil} = Ffalse
M{H:L) = PYL)
which is nod intercsting as it evaluates to false, Thus,

care 18 to be taken in order to gain & profit from proof
failure.
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If the abduction mechanism yields the proposition
false, the conjecture at hand is considered a non-
theoremn. If the current conjecture is the top goal, then
the abduction mechantam suggests to consider the nega-
tion of the closure. Otherwise, the abduction mecha-
nism treats it as a contradictory blocked goal and pro-
ceeds accordingly.

The strategy shown In this section was implemented
as an extension of the casesplit critic,. Tt extends the
range of faulty formulae that the mechanism can patch
automatically. Some are shown in Table 3.

4.3 Working by Refinement

Working by refinement was designed to refine previous
atfempta at patching faulty formulse. This technique
ta Invoked any time proof planning is stuck and there
i8 evidence which suggests that old patching conditions
are necessary but insufficient to transform the conjoc-
ture into a theorem. It combines the strategies seen so
far.

To illustrate, consider the following buggy specifica-
tlon (Monroy et al., 1994):

¥X rnat. double(half{ X)) = X (9)

where double and half have their natural interpretation
returning twice and half the integer part of their inputs:

double(l} = 0
double([s(N) |} = |a{n{|:luuhh:{N‘,|]|}
half(0) =
half(s{0)) = O
L OO

Proof planning suggests to attempt to prove (8] using
s{s( X)) Induction. The firss base case goes through but
the second one does not. The abdurction mechaniam
therefore suggests to omit the second case, yielding the
fallowing formulation:

¥X -nat. X # s(0) = double(haif{ X)) = X
With the refined conjecture, the use of s(s{X)) in-
duction is agan suggested. Now both basis cases go
through. In the step case, the induction hypothesis is:
r # 5[0 = double(half(x}) ==z (1)
and the annotated tnduction conclu=son 1a:

F iﬂ[ﬂllﬂ | # s(l) —=

double(half( s(s(z)) [}) = | s(s(z)) |

Rippling followed by fertillsation transforms the induc-
tion conclusion outputting E s(s(z)) £ s{0) = x ¥ s(0).
This goal constitutes a blockage for plan formation. Tt
b4 not a theorem or & contradiction, but a contingency.
So the abduction mechanism is called.

As before, the entire proof plan is inspected to recover
from failure. We can then make these obssrvetions:

1. The base cases are complete but the step case is
o,

2, At the beginning, the step case is of the following
grhematic form;

P(X) =+ GIX) + P C(X)) = G C(X)
while the residue ks of the form P{C(X)) = P(X).

3. The (implicational) hypothesis was used [right to
left].

Together, these features suggest that the condition
P(X) Is necessary but not enough to mend (9). A re-
fined condition must be bullt so that it is consistent with
the current definition of P{X ), and prevents the block-
age P(C{X)) = P(X). Thus, the abduction mecha-
nism will synthesise the following recursive definition:

Pan(0) = true
Pdh [Sm” = false
Pau(s(s(X))) = PgplX)

The cases assoclated to Pyy, the corrective condition,
can be checked to constitute the predicate even. The
method has therefore corrected (9) suggesting it holds
only if N ls divisible by two. The proof critic represent-
ing the strategy of working by refinement is shown in
Figure 4. Table 4 shows some example faulty formulas
that wers successfully corrected working by refinement.
In total, we tested our mechanism on a set of 35
faulty formulse. It proved to be capable of correct-
ing 93% of them. Most failures had to do with the
method used to construct an equational procedure,
c.f build condition/3. Since it works backwards, from
the tip of the partial proof tree to the root of it, this
method is complex and hard wo formalise. So it is largely
ad-hoc {We will have more to say about this issue in §5.)
Here are the failures:

odd{half{ N'}) (11}
ord(L) A crd(M) — ord(L <> M) (12)
L<»{M<>N=(L<>N)<>M (13
Patchlng [11) seems to require a mutually recursive con-

dition, a form of recursion that both the design and the
development. stage of our method missed to identify.
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Table 3; Some formulae corrected using recitaive patches

Faulty Conjecture Patch |
Pulnil, B) = true
sort(app( A, B)) = app(sort{A),sort(B)) Faln By Fﬂtﬁ:{; ',ﬂﬂ j Ef:éﬂ' B
XN<H o5 Py(XHu:B) = (X, B)
. P‘j.:um'[ll-il;.u} = ftrue
app(4, B) = app(B, A) Pa(H4.B) - PLﬁlh[ﬁ:{;:Enqi:; = Fﬁimim B)
i Hi=Hy = PyiHaHg:B) = PyHa B
Preselnll, B) = true
rev{rev(app(4, B))) = app(B, 4) R T i o [
A Ha=Hy = Pa(Ha, Ha:8) = PglH,. B)
3 = Po(0, X) = true
X-¥)+Z=(x+2)-Y X—Y#0 = Pols(VLX) — Po¥,X)

CRITIC fertiliae
Inputs: Plan, Address,

Precondition:

node( Plan, [|,T' F @),

Ot poiit s
VX, P{X) = X}

node( Plan, Address, I = G
G is of the form P(C{X)) = P{X), : then build and then add
G is of the form VX P(X) = G[X) condition to the

Build P*; base cases are built according to the current definition
of P, while the step case i set to PeiX)) = PX)

i If current goal, G, is
i an instance of the
; refinerment patiern,

: the associnted patching

i originel goal

Figure 4: Critie: Warking by Reflnement

Patching {12) is really complex. It roquires the method
to build a condition asserting thas the last element of
L ought to be lesser than or equal to the first element
of M, unless L or M is empty. The bulld_condition /3
predicate cannot handle this level of nested recursion,
80 the whole abduetion mechanism halts failing. A sim-
ilar gituation arises when the abduction mechanism 1s
faced with (13).

Tables 2, 3 and 4 aim to justify the strength of our
mechanism. They convey empirical evidence in the form
of resulis obtained from testing the abduction mecha-
nigm on & set of examples. Thiy evidence cannest he
taken as conclusive, though. For example, more re-
search is to be done in order to characterise the class of
faylty formulae our method is able to deal with, Fur-
ther, we should test the method on larger example prob-
lems, or try the incursion of it into other domains. So

far, the test set involves problems that we gathered from
the literature and, hence, 18 not representative with re-
Epect to any sort of fault,

5 Comparison to Related Work

In his thesis, Moore (1974) introdoced & method that
attempts to avoid over generalization. Roughly, the
method intercepts any atbempt at replacing a compound
term by a single variable and then guesses the type in-
formation of that term. If the guessed type and the type
of any of the variables that appear in the developed for-
mula do not correspond, the method marks the formuola
as faulty. Then, the method will try to build a, paxssibly
recursive, definition of the guessed type so as to patch
the fanlty forenula, Given that it needs both the ariginal
formula and the over generalised one, Moore's method
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Table 4: Specifications corrected by refinement

Faulty Conjecture Patch
= wven A ) add({ X}
double{half{ X)) # X _ el X}
even( X + 1) even( X ) A cven(Y )
odd{X + ¥) even[ X ] A odd[¥)
plall) =  true
evenilength[A}) plH 2nil) = [alss
PlH; = Hyg 2 4) = pld)
plol) — false
odd(lengthi A)) plH anil) = true
pli; = Hy 2 4) = pld)

does not deal with the problem of correcting faulty for-
mulag in general. Tt is nevertheless a first attempt at
foult correction,

Franowvs and Kodreatoff [1092) Investigated the prob-
lern of mending faulty formulae from a general perspes
tlve. They introduced a method, eallad PrefS which
bullds a corrective condition using the constructive prin-
ciple of proofs-as-programs (Howard, 1980). Predicate
comstruction takes place along the search for a proof.
So & use of induwetion ghves sige W a recursive condition
and a use of case analysis to conditlonal cases. PreS,
however, does not consider the immediate abdaction of
dead end goals and, henes, i cannot handle all of the
conjectures shown [n Table 2.

Also Protzen (1996) has investigated the use of
procis-as-programe for building cormective comditions,
He applied Pre5S in several interesting faulty formo-
lag, vielding conditional, recursive comective conditions,
Howewer, like Franowm and Kodratof, Protzen does
not consider abducible goals. Neither Proteen (1086
nor Franova and Kodratoff (1992) have provided a pre-
cige specification of the abduction mechanizsm, Introdue-
ing it only by example.

Previously, we ipireduced & method for cormecting
faulty formulae (Monroy et al_, 1984), The method com-
prises three proof crities: 1) contradietory blocked goals,
i1} working by refinement and iii} lochs and dikes. Lochs
and dikes aims to complement the job done by working
by refinement and, so, I8 special-purpose. The method
|s amenabli io mechanisation: readers can vasily repro-
duce the reported results, However, the method deals
with the problem of correcting faalts but partially. For
example, it cannot build a corrective condition, only
tdenttfy it, provided that it is present in the working
theory. Similarly, the method cannot correct false stato-
ments If fallure shows up in the step case of an inductive
proof attempt.

In an earlier version of this papéer, we poinbed oot
that it would be worthwhile o sirive towards the in-

corporasion of proofs-as-programs to our approach. We
have suceessfully developed this observation in (Monroy,
2000}, vielding an implementation that s much cleaner
and more efficient than the one presented here. In par-
ticular, the revised mechanism is able to cope with fairly
-I'f'l'.ll:IILE'Il]I‘_'I: Ea.l.l|L3.' [t las. B:,r 1:|:|I'!r.|p.:1.r'ﬂ|.'rn. t.]'ll: RCoEsg-
Ful cases reported in this paper are all simple: dealing
with each faulty formula requlees no more than 3 nestad
applicitions of Induectbon,

6 Conclusions

We have introduoced an abductive mechanizm which
works within inductive theorem proving. The mecha-
niam has been Implemeanted u=sing inductive proof plan-
ning with crities, built within Clam. It is given s &
collection of proof critics. Fach critic captures the re-
siricted way in which the search for a proof of a faulty
formula can fail, as well as providing general knowledge
wo patch the associated fault, The mechanism avoids
a combinatorial explosion. This iz both because proof
planning carefully guides the search for an inductive
proof, and because it assists fault analysis.
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