Computaebin v Skatemas Vil S Wa | pp. 5 - bé
2200, CIC - TPM, IESY PR35 Impnese en Aexins

Pattern-Based Simulation: Simulating the Actor Model
Using the Active Object Behavioural Pattern

KSimulacion Basada en Patrones: Similando el Modelo de Actores
Utilizamda ef Patran del Objeto Activo

Jurge Lois Chriega- Arjona ond Grabham Roberrs
|1|.:[!uﬂ:II:|l.'|'|I of Cempuner Soienee. Universiny College Losdon
Crorwer Strees, Lomdon, WOILE GV, LK, Tel <43 1 TI408 3679

M HIT

L Cepasdrgonn G Robens | wesackocak

Artiche rrcemed ow Ccfotey (L TERE arogned! an Fobvparn 28 3000

Abstract

Thix JHERT PN T s rme:,f.i1L'ur..r Juriferms gy o vahde
hare faals for sipedating and analiing eofrected amrihaney
of specific software sestemes. Poarticadarly. i this peaper the
Active et pativrn s congldered, showing Bow 0y
ceanbination with o stocfaxtic siarlabioe fechmigae pradivees
o simailation apoded This simclotion mocled reflecis the
provhahdy resadting behenveonr i e of oo aetive obfect, and
thiy, of oo b v o Fi e far ferrviecrsiiey cond :#.-.'..ufl i
the pereforracnagce befavioane of e actiee siics rroanely D

The simulation modeld has ay bepet the dctive Dhject
Hehonvioral pntern ctind efowicily rg" (AR N T:I'M'rl-.'j' ceiied
feditcey oy oslpal exfisrares abosd e genivg ohjec s
perfarirance heliendoue

Keywords: Software Pattemns, Simualation Moedels. Adive
Chrject, Quieuing Theory, Performance Behavioar,

Resumen

Exte arricnln progesie ef e o poirores o SofTiaie Courn
herraarienras do b viables para somadar | analizer
cirrileietons dfeseahley o sfemoy ae softwore crpecdfions,
Porficilomneipie, en exid arfcmls cremsiderarng of poede il
Cibienenr Aeviva, meadiraedn cdme sy o PRl ool e
fecnien de stenclaciin extocdarica prodiece s meckedo de
siafuciey. Eae prodele de simadecidn pefefa of peohabie
comprefostieaio resafioeie del obpeseo aofivo i el o, |
P derenden, prucals ser wsado como Fofirencia pura pronosiicor
.|'.|Jr:|r.r|'r_'.'..-.l' ef PRt e R P ek du:-'.\'n‘n'l,':t'l'.'rl el enlietres et v
e frentds aled Tictrapan E3 aodelo e siauelaoddn fade oo
entrada ef parrin de comperlamisnie del Eaio Aonive o
clenenien de Tearfo df Colas, v pradice oome solidla
extiracieies avereg dod copporiarientn de desempedo gl
ofyfeto aotive

Falabras Clve: Patrones de Software, Modelos de Samulacion,
Objeto Activiy, Teoria de Colas, Comportamiento de
Dhesempedid,

34

1 Introduction

Concurrent software design is a complex activiey, siming for
performance improvement while diminishing thie costs of
concurrent software developrent It requires exera ¢dfort from
ihe software designer, who has to balonce between these two
conflicting design issues. Thus, it would be highlyv valuable
and advoniagesus for the software designer to count with o
method ar mode! thnt could assist himc'her on estimating and
forecasting the performance propedies of a concurrent
PrOETIm.

Software Paftterns are proposed as new technigues that
describe usetul selutions for softwore desien, Moreover, they
potentially present the oritecion of simulatability: they might
b a winble base to simulnte the behaviour of a resulting
soffware svstem, using s informaotion aboutl strectore and
befhaviour of the soluton. The motivistion for this paper 15
precisely e test such oritenion of simulatability for concurrent
sysiems, in order to estimate the performonge behaviour of a
concurrent prograom as the imporont atiribute of inferest,
Henee. this paper proposes o pottern-bosed simulation to
eatimate the perfonmanee propectics of o congurrent progmm.
More specifically. the Active Object pottern, which was
imitinlly proposed faor the design and implementation of active
obpects (Lovender & Schimide, F9%s), = used ns base te simulate
thse poerformance of active ehjeos

FBevertheless, in order to use the Active Object pattern to
describe the temporal perormance of an actor, it 15 necessary
to express s behaviour in time temms. Quesing Theory and
stmuladion rechnigues are used 1o accomplish this, imroducing
time parnmglers for the activities perfommed by the acior, Then,
the performonce of an actor 15 simulated by pdding 1o the
patiern description e information abiad the sctor”s behavsor
parameters in fime. The expected output of the simulation ane
e rmistles At the .'IL'IiI-rI'-u]'h.'r‘lﬂl'l'l:l:ll'll:l."I.'l hile eyl a lisk

J. L. Oiega A | G, Roberts: Patfern-Based Simulation: Simulating fe Actor Mode! Using the Active Object Behaviowral..,

In general, there are no other clear approaches that intend
to obtain performance forecasting or analysis based on
software patterns information. The paper by Smith and
Willinms (1993) consider wsing software pattems for improving
the design of a software system, but it does not precise or
identify a relation between the performance of a software
system and the software pattern used to design it.

The present paper is organised as follows: first, a brief
introduction to the Actor Model is presented to outline its
basic characteristics and components; second, the Active
Ohbject pattern is deseribed, mentioning its principal elements,
and commenting on the relation between its structiure sl
behaviour with the Actor Model; third, an introduction fo the
Active Object Simulation Model is made, using concepts from
stochnstic and quening modelling. Using these concepts and
the behaviour of the Active Object pattern as a base, the
implementation of a simulation model is developed. Finally, in
order to validate this simulation model, an experiment is carried
out, using a simple actor program as example.

2 An Introduction to the Actor
Model

The objective of this section is 1o only provide an
introduction to the basic concepts and characteristics of the
Actor Model. These concepts and characteristics are used fo
understand the basic theory of concurrent programming using
objects, They are re-taken later in the following section, when
describing the Active Object pattern as an actual
implementation of the Actor Model,

2.1 General Description of the Actor
Model

Traditional objects encapsulate a state and an expected
behaviour, and provide an interface defined as the names of
procedures that are visible, These procedures, often called
methods, manipulate the state of the ohject when invoked.

The interface is a representation of the functionality of the
object. Interfaces representing the same functionality may be
interchanged transparently.

The concept of actor (or active object) has been developed
as an extension o traditional Object-Oriented (OO0
programming, aiming to eliminate the limit imposed by
considering programming as a sequence of actions, Commaonly,
00 lanpuages are sequential due to they allow only one object
to be active at a precise time during program execution. The
behaviour of an object is then the result of a sequence of
actions, which may be blocked by invoking methods in another
object. Actors are proposed as the underlying basic building
blocks for concurrent programming, due to they are a more
natural representation of objects as computational elements

Rased on the Actor Model (Agha et al, 1993a; Aghactal.,
1993k}, an actor application consists of a collection of
asynchronous objects that execute concumrently. Actors are
autonomous and concurrent objects, executing al themr own
rate, and able o communicate by passing each other messages,

Since they are conceptually distributed, communications
between them is asynchronous, preserving the available
potential for concurrent activity: an actor sending a message
asynchronously does not need to block uniil the receiver is
ready to receive or process a message. If a sender object is
requiresd 1o block, the available potential concurrency s
reduced.

2.2 Message Passing

Actors communicate exclusively by sending messages,

invoking each other's methods. Message passing is the only

means of inter-object communication; there s no shared

memory notion between actors, Message passing between

ar:tﬂrs present the following characteristics (Frolund, 1996];
Messapes are asynchromous, Sending a message is a non-
Blocking operation,

* Messages are guaranteed (o reach eventoally their

destination, but subject to arbitrary communication delays.

Message ordering is not guarantesd, messages may not

arrive in the order that they were sent.

* A message mvokes a method o its destination object; we
say that messages are dispatched into method invocations.
Oibjects are reactive endities that execute their methods
only in response (o messipes.

2.3 Structure of the Actor Model

Since each actor has one thread of control, which 15 used o
exceute methods in response 1o messages, 8t most one methaod
can be executed af any time by the actor. The Actor Model, as
originally described by Agha et al, {1993b). contains the notion
of imtermal concurrency, allowing multiple methods to execute
concarrently within an object. However, the semantics of the
model pusrantees serializability, and the overall effect of
internal copcurrency i made equivalent to execute the methods
one ot a time, Therefore, it may be considersd that there is no
concurrency within an object, focusing only on inter-ohject
concurrency. As an actor is considered only to execute one
method at a time, it can be modelled as a structure hased on a
message delivery mechanism, an input queve, a scheduling
mechanism, one or several methods, and a state. Figure |
illustrates a proposed basic structure of an actor with these
characteristics

Using this structure, an actor is composed of elements
described as follows:
* Message delivery. A message pasaing mechanism thit
can be used as pn interface to deliver and accept messages
to be processed by the actor,

a3

J. L Ortega A, G. Roberts: Pattern-Based Sirmulation: Simulating the Actor Model Uzsing the Active Objoct Behavioural,.,

* fnpnf guewe, Messages received by the actor are queued
in the actor’s input quewse, and stored until they can be
dispatched,

Figure 1: amponents of an actor

® Scheduling Mechanism. In the origimal Actor Model
{Aghaetal,, 1993b), the scheduling mechanism is simple:
messages are execuied in order of armival by the currem
behaviour, and cach behaviour nominites a replacemen:
behaviour to execute the next measage. The new
behaviour can be nominated possibly before the
nominating behaviour has completed its execution.
Scheduling mechanism variations allow messages in the
imput gueue o be executed based on criteria other than
arrival order,

* Methody, The different behaviowrs defined foran actor’'s

FESpHMLEE [0 MIEssapEes.

Starte. The set of instance variables that collectively

represent the state of an actor. As in the rraditional object

model, an actor’s state s modified by its methods, reacting

to messages recelved from other actors.

This completes a brief introduction 1o the basic concepis.
characteriztics, and components of the Actor Model, A mone
extensive and complete analvsis of the deseription and
behaviour of the Actor Model can be found in Agha et al.,
(1993a), Aphaetal., { 19930, and Frolund {1996},

3 Software Patterns and the Active
Object Pattern

3.1 Software Patterns

Software patterns are becoming pepular in the QO
PrORTAMMING community, proposing a particular language for
software design. The software patterns practitioners, known
& the Pattern Community, focus on develop and communicate
the most successful practices of expent OO programmers,
through an iterative and incremental method (Gamma et al |
1995, Buschmann ot al. 1996; Fowler, | 9596),

—

6

Briefly. a software pattern is considered to be a three element
rule, relating a praddem (in the form ofa system of forces) and
it cowrfend (in which the problem occurs) with a sefidion (a
soflware configuration, described as a strueture, with an
associnted behaviour, which allows the forces 1o resolve
themselves) (Gabriel, 1996; Buschmann et al., 1996),

Software patterns are expressed using several forms, The
mast commonky used forms are the GoF (“Gang of Four™)
lorm {Gamma ot al., 1995} and the POSA {Pattern-Oriened
Software Architecture) form (Buschmann et al., 1996), This
last form has become popular among software patterns
practitioners with an engineering background, and ex presses
a sofiware pattern usually in termns of sections such as hwdef,
LORERT, prrJFlIﬂH. Jorces, sofution, L e L R T
divramics, conseguences, krov et and related patferns.,

3.2 The Active Object Pattern

In the following sections, the Active Chhject pattern is
presented, based on the original version proposed by
Lavender and Schied (1996), and using the MYSA form, This
pattern is actually used as an OO0 design intended 10 implement
actors. For our actual purposes of simulating the behaviour of
an actor, we only presenl some of the relevant detafls about
the Active Object pattern,

3.2.1 Bricf

The Active Object pattern describes how to decouple method
execution trom method invocation in order to simplify
synehronised access to a resource by methods invoked in
different threads of control. The Active Object patiern allows
one or more independent threads of execution 1o interleave
their access 1o data modelled as a single object. A method can
be executed in a thresd of controf separate from the one that
originally mvoked it, in contrast with passive ohjects, which
execiie in the same thread as the object that called 0 method
on them { Lavender & Schmidr, 1996),

3.2.2 Context

Use the Active Object pattern during the design and
implementation of a concument program {Lavender & Schmidy
1503

3.2.3 Problem

The execution of several objects is required in a concurrent
program. Each object is expecied to execute &l its own rate,
wsing an individual thread of control and communicating with
alher objects. As several theeads of control are executed
simultaneously, cach object has 1o guarantee a synchronised
execution of its methods, controlling the aceess o its state by
mielhods invoked in different threads of control { Lavender &
Schnmdi, 1906

4. L Drega A G Roberts: Pattern-Based Simulation: Simulating the Actor Mode! Using the Active Object Behavioural...

Forces

The active object design resolves the followmg forces
(Lavender & Schmidt, 1996);

* Thedesign and implementation of i concirment program
can be simplified. Concurrent programs cin often be
simplified by decoupling the thread of control of objects
that inveke a method from the thread of contral of the
object, which actually executes that method, Active
objects are based on a message queie Arichune that allows
operations to proceed concurrently. Chperations are
scheduled according with synchronisation consirninis
that puaraniee a serialised access to a duta resource, and
depend on the state of the resource.

Multiple threads of control reguire synchronized access
to a data resource, The Active Object pattern helps (o
avoid dealing explicitly with low-level synchronisation
mechanisms among multiple threads of control accessing
a data resource. As an active object has an individual
thread of conirol, it can block but messages can still be
inserted onto [is associated message gqueune, After
completing its current activity, the active abject degqueses
the next message from is meseaze guede, and continues,
The arder of methed execution may be different from the
order of method invocation. As mestage order is not
guprantecd and messages may not arrive in the grder tha
they were invoked, methads are usually schedisled and
executed based on a svnchronisation policy, and nod on
the order of invecaticn.

* Software programs based on active objects can take

advantage of the inherent concurrency of multiprocessor
platforms o improve performance.

3.2.4 Solution

A collection of ebjects is proposed to perform the activities
of the Active Object pattern. When o message 15 issued to an
active object, it is received throwgh its clicnr inferface, which
accepls messages 1o be processed by the active object. The
schedider, o scheduling mechanism, 15 in chorge (o queue
incoming messages in the active ohpect's associatled activalion
arerar Inthis quesie, messages are stored inothe Gorm of method
ohjects unlil they can be dispatched. A srethodd oljocr i3 a
representation of the method invoked by a message. In general,
mesges are dispalched based on an amrival eriteria, When a
message can be dispatched, the scheduler removes jis
associaled method object from the activation quewse and
invokes the real method in the ohpect resource representation.

This performs the expected behaviour i response to the
message, manipulating the instance variables that represent
the state of the petive object (Lavender & Schmidi, 198504),

Clavy diagram ol porticipoms
The class diagram of the Active Object pattern peoposed in

(Lavender & Schmidt, 1996 is ilhestrated in figure 2, using the
LML matation .

1 Lerids 1 : Sohodul o L 1| activae L
Intacfaoca l;run.un
ouauef)
methiod_11{) insaek) ancueus {)
e Camowa i | daquetis §)
mathod 11{) dispatchil
R —
! 1
'E-':i:mtlrlts.-tl-}}: cim@it @iy
L]
g
Ma thod | reRecu ey peasankation
Obhjact
:I'I-I‘I'.hl:ld_l{]
quacd() ninis
callfl method_I1{]

Figure 2: Class disgram ol the compenenis of a gencric aciive ohjeci

57

J L Orega &, G Roberis: Patfern-Based Simulatlon; Simuwlating the Actor Mode! Using the Active Qbject Behaviowral.,

The participants of the Active Object pattern are { Lavender

.!-.":'cllm idt, 1996}

Cilrent fnferfoce. The client interface is a method interface
presented 1o client applications. When a method defined
by the client interface is invoked, this triggers the
construction and queuing of & method object.

* Merthod obiecir, A method object is construcied by the
aclveduler for any Bnput message requiring o synchronised
method execution. Ench method object contains the
context information necessary to executle an invoked
method eperation and return any result of that execution
through the client interface.

* Aenvanion gieke. The activation queue is a prienty
queus, storing input messages as method mvocafions
represented by method objects. The activation queue 15
controlled and managed by the scheduler,

* Echeduler. The scheduler is an object that manages the
activation of methed objects requiring execution. It is in
charge of inserting and removing method ohjects from
the activation quene, and deciding which method ohject
is to be executed m certaim time, The execution of a methad
object is based on mutual exclusion and condition

synchronisation constramts,

* Resonrce representation. The resource representotion
object is the implementation of the methods defined in
the client mterface. It represents the resource modelled
as an active ohject. 1 may alse contain other methids
used by the scheduber to compute runtime syrchron isation
conditions that determine ihe execution order

When the Active Object pattemn is wsed to implement actors,
the actor's scheduling mechanism corresponds 1o the
scheduler, the methads or behaviours defined in the aclor
correspond te the methed ohjects, and the sef of mstance
varinbles that collestively represent the state of an actor is the
resource representafion. The aclor’s inpad qiseue correspon ds

10 the activaiion guewe, and the chent interface corresponds

o the message delivery mechanism, a3 a strongly typed

mechanism used 1o pass messages to the actor.

Chvraniios
Frgure 3 ilhustrates the behaviour of the Active Ohject pattern.

described in terms of interzctons among 18 components
{Lavender & Schmidt, 1996)

[om] (]] b] BT 7
E vy B
i |- L_,

| men

j peiin :
.EE _Epechi] o J
i | =
i o it |

T T4 |

Figure 3. Internctions among the imlermol companents of an netive objec

I. Merhod ablect construciion, In this siage, the client
application invokes a method defined by the chent
interface. This triggers the construction o method ohpect,
which maintains context information about the method as
well as any other required to execute the methaod and
return a result. After its creation, the method objec
requests the scheduler 1o be quesed on the active object’s
activation queue, waiting for its eventeal execution, The
scheduler inserts it and a result handle, or future, is
returned to the clieni

x &'ﬁi‘ﬂufr'r:g.’r::m:uh'ﬂn In this ph::ﬁr:._ the scheduler
consuls the activation queue 1o determing which method
object matches established synchronisation constrainis.

58

The scheduler removes the method object from the
activition quese, and calls the resource representation
to dispatch it An invocation 5 produced to the actual
method of the resoerce representation with the information
contained i the method obpect The method s executed,
accessing and wpdating the state of the resource
represenlalon T creale a resull,

I Rorweer rexanli, '|":|:|.|.||'_|.'- the result value is returned when
the micthod finishes executing. Using again the information
contained in the method object, the result s pasced to
the fitere that retums it 1o the client. The future and
method abject invelved will be garkbage-collected when
tlsey are no lnger needed.

J L Ortega & G Robers: Patfern-Based Simufation: Simulafing the Actor Model Usimg the Acthve Object Behawvioural..

4 Introducing Time Parameters

In order 1o develop a valid simulation madel for the Active
Object, it is necessary o precisely define the atinbute of
interest that the simulation model is supposed o reflect. In
this case, the following definition of performance i conssdered:
“Performance refers to the respowsivimess of the yestem - the

Hme reguired io respond o stimuli feventsi or e mmeber of

everrs processed in some imervad fime” (Bass et al., 1995,
Smith & Williams, 19937, A suitable simulatson model for the
performance of an active object, then, shoubd reflect the active
object's behaviour when responding to messages through
time. Thiss, thie behaviour depends on the Kinds of messages
received by the active object, and by the messages exchanged
among the participant objects of active object. For the
slmulation model, the message reception and exchanpe are
simulated wsing stochastic models,

4.1 Stochastic Models

When trying 1o describe the time behaviour of an active object
exceeds the simple porameters of structire (represenied by
the Active Object pamern), 1 is possible 1o address the
underlying stochastic nature of message passing as part of an
initizl description. Regquests for service ariving an the active
object’s message guede often can be modelled as a random
process, The amount of computation required by a process
{or job) can alse be commonly modelled as a random variable.

Ougubing Theoey is an anea ol mathematics that encompasses
the sei of analvtical models that most adeguately describe
this kind of svslems {Law & Belton, 199]1; Lazowska et al..
Fe&d) The Queuwing Theory analyses queuing structures in
imany arcas where real systems are very complex mechanisms
and tractable mathematical maodels must often be simplified
approximations to the real sysiem.

This sectien analyses 8 fundamental gueving model that
has application to the analysis of software systems, and may
form the basis for & more advanced active object simulation
model. Therefore, from the Actor Model and the Active Clajec
pattern descriptions, it is clenr thal a quening model used for
simulating active abjects should present the following elements
I;L.nw& Kelton, 1991; Sione etal., 1975}

An areival mechanism, In general, this is a stochastic
process that generates requests (o be serviced by the
active object, representing the time between the arrival of
different reguests, or inter-arrival time. The moedel
disgcussed here assumes that the interarrival times are
ramdboin variables, draswn from an armival-time protability
distribution function.

* Bervice mecharisaey, After a request armives, the primary
objective of the active object is 1o service it This service
requires some time. and like mterarrival times, the time 1o
service o request or service fime can also be modelled as

random wvariables with a service-time probability
distribution functicn.

* Oweaerg dizcydline. When requests for service arrives at
an active ohject faster that they can be serviced. a line or
quene forms, and a policy is needed 1o determine the order
in which outstanding requests will be processed.

In the following section, we present the modelling of each
anee of these elements, morder to later develop a simple encugh
madel that represents the active object’s behoviour

4.1.1 Interarrival - Time Disiribution. The
Poisson Arrival Process

[he simplest arrival mechanism to mathematically model
sterarrival times is the Poisson (completely random) armival
process, The most important property of this process is that
evedits are taken from a very large population, where each
member is independent of the others, This means that, for our
purposes, the armival at a present instant does not depend on
the armival or non-arrtvil st past or future instants, This lsck of
dependence on the past and future is commonly called
Warkovian or .urmrm'_n!r:'.'.'.'.' [rraperty LLH.W & Belisn, 1991,
Larzowska e al., 19847 The simplicity of the mathematical
analysis of the Peisson arrival process relics precisely on this

property.

Ta analyse a Poisson precess, we begin by letting 2 be the

average arrival rate of the Poisson process. The fundamental

assumption that during & gap of time & an amival is imdependent

of all gther arrivals can be stated with the following two

piostulates { Lazowska et al, 1984; Stone et al, 1975

* The probability of an arrival between the epochs tand t+61
is A6L+ o6tk where o d64) denotes a quantity of smaller
order of magnitude than 81

* The probability of more tan one arival between epochs t
and i+ 8105 08

From these postelates_ it is possible to mathematically derive

a Function For P (£} the probability of sarrivals during an mereal

of duration L The procedure to obtaim this expression s detailed

by Stone ef al (1975)

P_I::]=M-e :
!

Fraan this expression, it can be ohserved that the exponential
function is the only function that can be used to model the
required Markovian property of the Poisson arrival process.

4.1.2 Service-Time Distributions. The
Exponential Service-Time Distribution

The same consideration, about the memoryless or Markovian
property that the Poisson process enpoys, 15 present in Service-

J L Orbega A G Hoberts: Patfern-Based Simolation: Simefating fhe Actor Mode! Using the Acfive Object Behaviowral .

Time distnbations. Let jp be the average rate of sefvice
completions by an active object, Making a similar assumption
1o the one used in the Poisson arrival process, consider fc) as
the protability of the completion of service between epochs o
and i+6 be pét+ o (6} (Lazowska et al., 1984; Stone et al.,
1975y Therefore, an expression representing such service
probability presents the following form:

flt)=pe™ 1=0

The procedure to obtain this expression is also presented
by Sfone et al. {1975). Again, it can be observed that using the
cxponential function as the Service-Time distribution of an
active object maintains the required Markovian property,

4.1.3 Simple Queuing Structure: a Single Active
Object with Exponential Interarrival and
Service Times

The gueue structure proposed to simply model the time
behaviour of an active object is simple: a Poisson armival
process, and a single active object with exponential service
tirme. Figure 4 represents this case,

| ACTIVE CRIECT :
e ; b a
H .] Ogataris
s [T | f o N\ T[T |50
a3 sk ; =l | |
i e |

Figure 4: Simple Crueiing Struscture: p Singhe Active COhject
with Expomentinl Interarrival and Service Times

The Tact thai the miodel is simple does not imply it is of litle
usie, On the contrary, this model should be considered as a
pood initial appeoximation to the modelling of an active object.

The basic assumptions are: the arrival of messages forms a
Poisson process with and average armival rate of & messages
per second; the processing time per message is an
exponentially disributed random variable with a service time
avernge pmessages per second; and for simplicity, a first-in,
first-cait (FIFOY) quewse discipline is considered. Using this
information, the model must answer a number of questions
when describing an active object time behaviour, for instance:

* How much time can the active object spend processing a
number of messages?

* What fraction of tiime will the pctor be dleT

What is the average response time seen that requests are

handled by the active object?

&0

T analyse this simple queving struciure, end answer the
preyiows guestions, it is necessary o develog an expression
(i teems of & and pi) for the probability of an active object to
be in cenain state. This expressien should be based on the
basic considerations of the Poisson process and the
exponential service-time distribution. Let p b the probability
of the active object being in state E- ot epach 1, that is, having
0 Messages in service or waiting for service, Considering the
long-term or steady-state behavicur of the active object and
normalising 0 obtain the probability mterms exclusively of &
and ., the following expression foe p is obained, The detailed
procedure 1o obiain this expression 1s developed by Stone et
al. (1975}

p=a"{1-p) n=123..

It is possible to make some observations about this resull.
For instance, shserve that this equation is undefined when
p=1. Furthermore, as the analysis of this quening structure is
performed for the steady state behaviour, this equation is
meaning ful only for p<l:as p i defined as the relation &/,
when Ao requests arive at a faster rate than the active
object can service them. This means that there is no sieady
state solution for p=1, because the arrival process Is
conslidered 10 saturate the active object. and iz message queas
grows without bound.

The ratie p has an imporant rele in general Cuewing Theory,
andl il 5 commonly referred as the waffic intensity of the
iseaiing Systein.

Applying this result to the questions about the active
ohject’s performance, it can be observed thal the expression
for p is considered to directly answer the [irst question about
the probable time required (o process a nember of messages.
The second question can be answered considering thi the
active object is idle when = 0, Since p_indicates the active
object has no outstanding messages (0 process it is idle
probably for (L-p) of the time, The third guestion can be
answered by the important fact thit the acter is ROT idle with
probability p. Thus, in any single active ohject gqueuing
structure, the IVErARE response or ulilizatkon of the active
object equals to the ratie of the arrival rate to the service rate.

Thiz completes out an introduction 1o the siechastical
miadels for o simiple active ohject modelling, However, many of
the assumptions made here seem to be quite restrictive, and
there is the guestion of whether they can be considered
approsimations to the behaviour of real nchive objecl syslems.
Other possible assumptions that can be (aken into
consideration are defails about the platform (hardwane and
sofiware] on which the model is executed, the number and
complexity of the operations that the active object s supposed
to execute, and the programming language used for coding
Meventheless, as our objective is o test the ability of the Active

JoL Ortega A, G Roberts: Pattern-Based Simulation; Simulatimg the Actor Mode! Using the Active Object Bahaviowral.,

Diject patiern to simulate the Actor Model, for our sciual
purposes these other assumptions are considered fixed,

5 Simulation Model

The wse of simulation technigues 10 analvse a system is
certainly sdvantageous, especially when the system 15 not
simple enough to be analysed exclusively with quening
models. Simulation technigues are wsed (o study phenomena,
ranging from flight dynamics of aircrafis to thearies of
cognitive processes.

The type of sirnulation considered 1o be appropriate for the
study and madelling of software systems is the discrele-event
simatlation { Law & Kelton, 1991, lts most important feature is
precizely that time is not considered a continuous variable
incremented by uniform intervals. The execution of an event
in the model is represenied by only updating the state of the
simulation te reflect the occurrence of the event. After the
event 15 oocurred, the simulation is advanced to the time of
the next event, and the process i5 repeated. Usuaally, when
simulating a quewe structure, its parameters (inter-armival time
of jobs, length of processing timé reguired by jobs, and so
on are considered as rondom variables. Therefore, on
important point for a discrete-event simulation of a queue
structure is 1o generate a random variate from an arbiteary
disgtribution, For our purposes, dise to the nature of interarrival
and service times, I8 s impostant to generite exponentilly
drstributed mndom vasiables, Let [e] be a sequence of member
random iy distributed with the distribution function Fis:

F{x)=1—-¢*"

If [} s a sequence of uniformly distributed random
variahiés obtained from a random generator, then it is possible
1o generale {e} as a sequence of exponentially distributed
random voriahles with distribution function F(x} with the
Foallow ing relation:

e=—A "In(v)
5.1 Implementation

In general, o discrete-event simulation used 1o model a queuing
structure ks composed of the following steps (Sone ef al,
1975%
* Generofe mndom vanabes
Create, modify and generally describe processes (jobs)
that move through the simulation
* Delimit and sequence the phases of a process
Facilitate the quening of processes
Collect, penerate and displyy summary statistics

In order to illustrate these points, and based on the
description provided by the Actor Model and 1he Active

Ohject pattern, let us consider a simple nctive object. and model
it & an Active Object Simulation Model,

The Active ['_'Ih|-r_u.:|: Simulation Model should allow 1o
represent at most M jobs o be serviced simultaneously and if
jobs arrive for service and there are alreidy ¥ jobs being
serviced, the arriving jobs enter a FIFC quese. Once a job is
br.*ing prl:lt‘\-EHﬁE\-IL it shoaild pefidrate i “hiirsl™ of PTOCESSINE
time and communication time. The simulation model should
also reflect that a job receives “service™ from the active object
or, iFhe active object is busy, it is put to idle. Upen generating
it fofal amaamt of processing. communicating and sdling time,
it should leave the active object, friggering another job o be
serviced if the job queue is not empty.

Ir order to further specify the simulation moded, the following
assumplions, which will allow us to discuss the details of s
structure, are used:

e arvivang jobs Form a Podsson process with mean arrival

il L ambda,

|'|'u.' X pifininm |.‘||.':|.;,n.'|.' |.'|fn'l|J|I|F|r|:rgr.un||1|.irlﬂ ix 1.

* The comp iation time required by a job is a random
expEmientilly distributed varable with mean =,

* The communication channel is able to ransfer a result to
pther active ohject describing a Foisson process with an
average tihe transfascima.

Al guewing in model is FIFC,

Fromn the previous modelling considerations described
above, a class Aot ivedbhiectSimulator is used for the
sem lstion madel in C++, based on the behaviowr of the Active
Cibject patiern. Only the interface of this class is presented in
figure 3. The most important daia structures that define the
atiributes or current status of the model are described as
folbomws:

+ plock isa oeal that indicates the current epoch in time
being simulated.

* actorbusyand channelbas=y are boolean variables that
are true if the actor and channel, respectively, are busy
servicing a job,

* arriwval isanamay of reals representing the times when

cach job arrived to the active object for service

activeshjecitime is an array of reals thit stores the total
amount of processing time required to complete ssrvicing
cach job.

* gventtime isanamay of reals representing times m which
the evenl associated with the job is scheduled 1o occur,
Some jobs will not have an event time if they are queued
waiting to begin service on the active object.

* typo is an array which specifies the state for jobs thal
lawve an event pending.

* linkof isanarray used to link the stivve of esch job with
the next stafe.

* The job queue 5obQ, active obhject queue
activeobiectd, und channel quese channe LG ane the
three FIFO queucs. Internally in the class there are

1

J. L, Orega A, G. Roberts: Pattern-Based Simulation: Simulating the Actor Mode! Using the Acthve Object Boehaviowral...

pomters o their head as well as their @il o faciliaie
respectively the addition and deletion of jobs, from thess
quenes.

The free quewe freeg is simply a list of unused job
descriptions. Jobs are taken from this queue when they
are scheduled to arrive at the computer systemn and are
added to the free queve vpon departure from the system.
For simplicity, this queue is implemented here as a stack,
or lasi-in, first-oul queue

The class Markovian represents the stochastical and
memoryless behaviour of message passing in an active
ohrject, and its members are presented os follows (Figure
63 The methods MegExponential ¢ and Legnoomal i)
generate random variates with the indicated distributions.
The kemnel of each of these proceduses 15 a uniform randam
number generator Randomi). The random number
generiator is not defined since it s generlly mochine
dependent. In the case that an event-driven simulation is
required. this class can be simply replaced by another
with a set of procedures that allow to read the duragion of
compule intervals, locate the input'outpul requests, pnd
so o, from @ trace information.

Other remaimmg variables declared are needed to define
several useful constants and parameters for the simubation
and collect statistics and resulls.

During execution, these data structures are affected by the
I'D]ln'#mu methods of the class:

The method Simulate () constitules the main loop of
the simulation madel, initialising the state of the simulaton
and beginning the simulation by scheduling the arrival of
the first jub, The major operations of the simulation are
called from this method, For each event, the simulation
updates the state of the model, schedules a fulure event
or queues a reguest when the unit s busv, and collects
SUIMTAFY SIATALICS.

The following methods are used do control the execution
of the simulation, reflecting the different events when the
active ehject is processing. communicating or idling. and
considering how time is spent on each event. There dre
six types of events: HewJob 1) represents the arrival ofa
mew joby 1o the active ohpecl; JobComplate | | expresses
that the job has completed all is processug time, and the
active object searches for mote quesed jobs or it remains
idle waiting for new jobs; Request Communicat Lon (|

represents the event when the ebject has reguested to
send an ouiput communication; Start Commeni cation]

considers the time spent when sending an output resuly;
and CommunicationCompletead| represcils that the
current message being sent has completed its wansier

The special method 1dle () can be invoked in any
situation in which the active ohject is not found in a
ProOcessing of communicating state.

A set of procedures to facilitate the maintenance of ihe
quedes in the moel. The Seheduls 1) method adds a
Job o the queve of pending events; the Jueue | § method

adds a job to one of the three FIFO queues 4obo.,

62

activeabjectdand channel(The tispatch | method
simulates the processing of a job on the processor,

clhps ActiveDbiectdinulat e |
pubbiic:
Azl [velbect aimulatori)y F St ruck o
Aot ivetbieot Hulatef (dauble.dodbia, doubla) 3
FF ConmLraclor scoopling waluoes Joar

Lamndag
Ff mo and Teanalert pmn
AL i velt taimalatercky o Daat ruckor
wiold Simplatafiy FF Main Aok ive Chqeck

¢ SlRliatian Boblhed

prilvab oy

f4 Bimalatlen of Mobhod Obhdects aotiwiby

Wiold Nawlobihs

Wil lalell;

vold JopComplato (]

Yol HagquesbGormunlontian|])

vold StartCompunloat Lom ()

Wold LommenlcationComp lelie]]]

jeat Fobedulsrc)

f4 Objocts usad doaring snlmul ac Lo
Harkowvian maelovl an;
Dafine st Loy plUrEmat ara
frsbiles iy
doubla muy
doubld Tranaiolt imeg
Miyit sLatd varLlablad farf alamelation
doablan oiock, st iveEnbjectrars, chanmolmarkd
Pl iy arrlwal |maeN),; actlveabjecct Lo |[maxh]

WYL Iia] maxh+ 1] ¢
int typs naak], linkol (moxs]|
int FeraaQd] . (ekgiz2], acbiveslYectd[2]
CRIEOAELW | &
int activaobiectmisy, ot
Lot ack iva, Sureont; M

anneElou=y
I MGKL; DeSC@yaEnt

Fignre 3 Closs interthee fisr tlse Active Object Simulalor

CLAdSE Marbpwl ar]

puklic
Harkouwlani(l; /F Constructor
-MarEprian iy # DROLC PUEE &
doup e ll"1 Eponent Llal [AGubLlay ¢
Aokl dt jMarmi] |dodole, dooble] |
i
Prlvaiad
dopbile Auandan|ly f ESTUINE § pakudsd—iandon
dd WalUE baledwieon O amd 1
CEREL double pl J.1481532)

IFigure b Class ivlerlee Toe tlse Markovian

J. L Ortega &, G Robarts: Pattern-Based Simulation: Simolating the Actor Mooe! Using the Active Object Behawioural_..

6 Experimentation

The obfective of experimeniation is to actually confiemn that
the simulation model described previously vields a possible
behaviour close to the real behaviour of the simulated active
ofyject, when the right time parameters are considered, This as
tested as follows: first, the parameters lambda, ma and
transfertime are obtained from a real active object
application progeam: second, using these parameters, a
discrete-event simulation is produced varving the number of
processes or jobs to be execuwied by the sctive object; and
third, a comparison s made between the resulis of the
simulation with the behaviour of the real program when the
number of processes or jobs vary. These activities are
performed using a simple active object program, as the
expefimental sulbject.

6.1 A Simple Active Object Example

I order o obtain input parameters o the experiment, ket us
consider the behaviour of a very simple active objed! program
to be simulated. A counter sctive object program, originally
deweloped in UC+H (Winder e1al., 1995) and executed usmg
WM (Geisterall, 199:4), is used for exarmple. The behnyemer of
this counter active object is guite simple: o congurrently
accepts requesis to increment and display o valoe. For
illusirative purposes, the measurement takes advaniage ol the
simplicity of this program and its execution in the PV
environment to obtain the parameters for the simulagion

However, this not exclusive for this example, but the
procedure can be used as well for actor programs with a
complex or larger number of actors and function members.

6.2 Obtaining the Parameters for the
Simulation

The parameters 1ambda, mu, and cransferoime, required 1o
validete our a pattern-based simu lation, are obtained from the
pctive counter example program. The arrival, service and result
communication fimes are directly measured, generating a
sample set for each one of them, The distribution of each
parameter is chosen through ohserving a graphical
representation of the distinbution of measured times. The
parameters ore actually calculsed by statistically obtaining
the mean and standard deviation from the sample set of each
parameter {Law & Kelton, 1991), Tahbe 1 shows the observed
distribution, mean, standard deviation and confidence interval
used for ench measured time parameter. The measurements
pre taken and adjusted wsing the f-fesd statistical technigue
for small samples, and considering sample sets of 10
measurements, considering an accuracy of $3%.

Disiribution Mean (Standard |Confdence
Devintion |Interval
lanbda LaogMoamul DO1ET |0,0247 (1, (WM
mLs Meg | Ee |l LIS
I Exponentinl
L ransfer 1,[1ﬂ”|'|[|'||;|.| 0,00E (001727 'HI (FCEE]
1mda "

Tahbe | Dipann parameters for the Acnve CObpect Simulabion
6.3 Simulation results

Uaing the measured parameters as input for the developed
simulatbon model, the estimation times for the active object’s
execution are obtained by simply munning the model. The
estimites for processing, communicating and idling times are
produced directly by the model, and collecied using variables
as simulntion resulis. Since each execution yields each time
different valwes for processing, communicating and sdbing
times, the f-fes statistical technigque 15 used agam, now for
comparing the samulated and measured times, The experiment
considers somples from 10 simulations and an accuracy of
B5%a, The averyee simulated processing, communicating and
idling times ane obtained againat the number of request to the
counter active objects, Figure 7 shows comparitsons belwean
simulated and mensured processmg, communicating and idling
times for the counter active objects example, Simulated times
are obtained considering the simulation execution cases
outside and inside the PVM environment

Some observations con be made from the comparisons in
Figure 7. Consider the estimated processing and
communicating times ohtained from simulateon {Figure Ta and
Thi. Bodh estimutsons inside and outside the PY & envirommaent
present a similar tendency, as relatively good approximations
1o the real measwred value of processing and communicating
times. Furthermore, the simulation performed mside the P
environment seems closer o the renl measured values, In
contrast, the idling times tendency exposes an erratic
behaviour, which seems to have little 10 do with the real
meeasured idling fime valuse [I"i:gllrr,.- Tk However, this doses nog
meeam that the stmulation model s fu.nh}' L.¢ct s remember that
the simulation model was made based on parameters related
to processing and communicating times,

nl

J. L. Onega A, G. Roberts: Pattern-Based Simulation: Simulating the Actor Model Using the Active Object Bahavieural...

F oe
1.8 og
_1E : L .s'f
rE 4 gos — I .
12 _,.—725{ 0t P Eus _*-"‘ f—{ =i
=il i |= i —a—In P i F .3 .'ll__ i by F
E[IEI ‘,." - —i— Mg ured £ | - ! —— MR
R 03— .
05 pod p” K,." 27 4 B = _d
ﬂl-%‘-ﬂmv J1i—m. b - = _.“'-1'#-
L A = — —
[N A—— 0 30 3 & 5 & T H W Wi
0D XN H W E W W e
b
i
fi) Procesiug {C TR AT
¥
e]
16 y
na r
1 . f —— i1
! oE Jl,f' ':___'__. a- Meazaed
nE .
P O
[EX] '-\.H\-:____.::: = "
A o e e it
0 30 A 40 5 B M H WO
Jabie
fod detling

Figure 7; Einmp.l'rimm beetwoeen simulated and measured (imes for (o} precessing, (b
communicaling, and [c) wlling ol the counter active ohjects ase example. Simulmed values are
oiinined consbdering ke simalsion execution cases caiside and inside ithe PYA cowirommeni

Jdebs | Renl Sirmulation | Percemdnge | Stemilation | Percontape
Program, Model, off Exrror, Alndel, of Errar,
Precisely. the main objective of dividing the total execution fwoondsl) Cut PYM | OwPYM | InPYM | InPYM
time into processing, communicating and iling times is that, i Lemiraiie
during execution, the influence of processing and LU TP L | 1 % . Lk,
communication estimations are balanced in the average case LT MRS s i il
by the idling estimation, aiming 1o compensate errors and M [(KE74 HEs 13.96% 0.956 it s
providing the simulation model with certain degree of flexibiliey, [*2_[10Z8 D235 1Akl LN IR
Table 2 shows the real and estimated total execution times L L6Th 19.66% 1.68% 20,6
cbtained for boeth inside and outside PVM cases, and a oL R LEAA 2142 24 %
calculation of the error for cach case, M 1955 578 L 2527 Ll]
B0 (2158 1.9 [9.0% 21RN 3 4%
90 [2533 [2197 [13.26% [2.03 19.63%
I (3151|3867 snT2% [A3E] T3

Fahbe 20 Tosnl execution thnes ohtalned from measurisg the reol
FOEram and simelatinn estimations

J. L Ortega A G FAoberls: Pattern-Based Simulation: Simulating the Actor Model Using the Active Object Behavioural...

Finally, Figure 8 shows the comparison between the
eatirmated iotal fmes (again, execwuting inside and outside Y&
and the real total average execution time obiained from
measuring the real program execution. These comparison wre
wsed 1o validate the output of the simulation program

45

1

15
%]: !;_::;:;jj -t—:lp::ﬂ
li—— T

:

o — T T T r———
i A W £ % 5 0 @M @ s
Jehg

Figuse &: Active Obpect simulaied and real times for difTerent
worklnads

Even though a simulation does not produce an exact
prediction on how a system will act, 1 does prodice an outcome
related with how the system will perform on aversge. This is,
o some degree, predictable. In Figure B, a cormespondence
between what the simulator estimates based on stochastic
operations and the form n which the counter active object
actully performs can be observed, The fact of executing inside
and oansade the PYM environment provides different average
errors depending on the case. When considenng the resuli of
the simulntion executing without using the PYM environment,
the average error obtained 15 27.57%. An improvement of the
simulation output can be observed when executing the
simulation inside a PVYM environment, showing o more marked
tendency to emulate the shape of the real counter active object
execution, and obfaining a smaller averape ermor for this cass,
equal to 24.35%. We consider that this error con be further
decreased by considering other statistic details 10 imprave its
precision, like the standard deviation, and by using other
distributions that may well provide better approximations to
the temporal behaviour of the sctor, for instance, the Weilbull
distribsution (Law & Kelton, 19911 Avthis level, as the simelator
and the real active object share the same structure, the
simulator can be considered perhaps as a good initial
prototype, useful fior an initinl concurrent program.

7 Summary and Conclusion

This paper proposes that a software pattern can be used not
only to aid the design of a software sysiem, bat also as a base
to simulate, with certain accurcy, is resulting behaviour. More
concretely, it is proposed that the performance of an actor can
be estimated through a patern-based simulation, which

combines the information contained in the Active Ohject
pattern with stochastic and simulation technigues,

In summary, the Actor model, the Active Object pattern and
the Active Object Simulation Model are presented and
described, explaining their structural and behavioural
characteristics and relations among them. It is particularly
imiporiant the structural relations betwesn the abstract elements
of the Actor Model and their expression as design elements of
the Active Object pattern, and betwesn the design elements
of the Active Object pattern and their implemented
representation as code constructions in the Active Chject
Smmulation Mode|. Finally, an example of & simple actor program
i% developed in order to validate the simulation model, From
this example, measurements and experimentation show that
the performance behaviowr of an active object can be precisely
modelled using a pattern-based model

Two main conclusions can be drawn from the present
expericnce. Fiest, it iz possible to say that the performance
behaviour of an actor can be modellad with a certain precision,
bazzd on the information from the Active Object patern in
combination with stochastic and simulation techniques.
Second, it is demonstrated that i general the strecture and
behaviour description of a softwane pattern can be used as a
viahle source of mformation about the valoe of a possible
attribute of interest of a software based on such pattern,
Depending on the attribute, different approaches or models
can be constructed 1o abserve with certain degree of acouracy,
the effect of using the patiern on the expected attributes of
the saltware system

As a pext step in this research work, it is proposed to
experiment with more complex and larger concurrent systems,
composed of a number of active objects, totest if a prediction
can be made based on simulation using the Active Object
pattern, time parameters, and the pamern of structure of
coperation between active components.

References

Aphn, G, Frolund, 5., Kim, WY, Panwar, R, Patterson, A,
and Sturman, D0 (1993a), “Abstraction and Modolarity
Mechanizsims for Concurrent Computing”™, In Gul Agha, Peter
Wegner and Akinoei Yonezawa, (eds.) Research Direcrions in
Concurrent (hjecr-Cirienred Programming. The MIT Press

Agha, G., Mason, LA, Smith, 5.F., and Talcott, C.L. { 1953h)
“A Foundation for Actor Computation”, Jowrsal of Fusctioeal!
Programming, Vol. 1, Mo, | Cambridge University Pres.

Bass, L., Clements, P., ond Kaeman, B, { 1998). Softwaee
Architecture in Practice, Addison-Wesley.

65

4. L Ortega A, G. Roberts: Pattern-Based Simulation: Simufating the Actor Mode/ Using the Active Objoct Behavioural...

Fowler, A, (199%6) Anulysiy Pasierm. Rewsihie Chiecr Models
Addison-Weslev Object Technology Series.

Frolund, 5, {1995). Coordimating Distributed Chhiects, An
Actor-based Approach te Syachronization. The MIT Press.

Gabriel, R. {196, “Pattam definfions”. In htip:hillside ney
patterna’definition kml,

Gamma, E., Helm, B, Johason, IR, Viissides, J. (1995}, Dosipn
Patterns. Elements of Rewsable Object-Oviented Software.

Law, AM. pnd Kelton, WD, { 1991, Sisdction A fogdeling &
Analysis, Second edition. MeGravw-Hill Intesnationa] Editions.

Lazowska, E.D. Zahorjan, L, Graham, G.S. and Seveik, K.C.
[1984, Creamtiseitive Syxten Porformonee. Coumpranter Sysrems
Aviclysis weing Queneing Netwark Models, Prentice-Hall, Ine

Smith, C.U. and Williams, L.G. (1995 “Software Perfonmance
Engincering: A Case Study Including Performance Comparison
with Design Alernatives™, [EEE Tramsactions on Software
Enpimeering., Vol 19 Mo, 7, hely 1995,

Addison-Wesley

Ston, LS, (editork, Chen, T.OC, Flynn, ML, Fuller, 5,H., Lanc,
WG, Lasemis Jr, HoH., MeKeeman, WM., Maglehy, K.B.,
Matick, R.E., and Whitmey, T.M. {1975). Fteodiction fo
Compiter Architectire. Science Research Associates, Inc

Geist, A, Beguelin, A., Dongarra, 1., Jiang, W., Mancheck,
R., and Sunderam, V., (1994). PVM: Parallel Viemal Machine
A User's Guide and Tutorial for Networked Parallel
Computing, The MIT Press.

Winder, R., Roberts, G, and Poole, 1, (1995 “The LIC -+
Project”™, In ingp:/wswwdes kel ek /U4,

Lavender, LG, and Schmide, DoC. { 1996). “Active Object: An
Object Behavioral Pattern for Concurrent Programming™. In
Viissides, J.M., Kerth, ML, and Coplien, 1.0 (eds.) Patfern
Languages of Program Design 2. Reading, MA: Addison-
Wesley,

-'-IH?!' Luis Oriega Arjang wag bara i Wéxica, DF My obusieed o Bachels s in Selence qulQnﬂ- i Eleciromicy
Emgineering from the Umiversidad Nactonal Auntdnoma de Mitico (UNAM), a Master s in Setenre degree fn Campuier
Sedenpe fean the DINAM aoo o P from the Limivernity College Lamdon (UL Coipier Scimace depatmienr, He was
@ cuztamer servics representative of TRV, Weaico frow 19900 fod 192 He yar a frcineer in the Engincering Facnlny ar
the DNAM from {093 ra M3 He war a reteavel aseiefars a1 Hhe Farailel! Processing I.:.u':u_'.qr.l.-_u_-.-;.u' thee DA TIWAS,

INAM from {994 1o 1996, e held @ postgraduare feaching assisiont pesition af the UCL from FO07 10 [0, His
resparch Inlerests are in soffware archiféecivre and desigr, saffware garern, object-orieried propramming and
praraliel processing.

Graham Roberts v a feciurer in the Department of Computer Scieace at University Collepe Londan He priducied
wirh @ BSe. forns HIE.E'I'T'I:' (ishl in '!_l':'lﬂ.l':llll'i"-"..'lli'u't'.lln' (W) a M in |'.l¢'.l".-|.l.l||_'|_'u|'|:"|:|rl'|'|'||'|l]|:|r erfence arda PRI sl ke

Swraillype - A Type Declaration and Type Checking Sytem for Smalitalk-50) feom Oueen Mary College. Lintversiy of
Lomdon. Currerly, e teacher coureer an favg, 4= gigd whyject-priented saffware engineering, while doing resegech
info chiect-arieried siafems, ey mod paratlel O+

=

