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Abstract

Digenosis aud prediciion i some domaine, (e medicime,
reguire an adegrale representation it cembings
rrcendainty manayeme ard femporal reasoning, This paper
presents @ noved reprexentation coalled Temporal Nedes
Bayesionr Nerwork (TWNAN). A TVWAN ix o Bavexion metwork
b wlich eackh mode represents an event or state change of o
verrlable, and an are corrcsponds To g cousal-temporal
refationship. A temporal node Fepresents the Hme that o
varialle cfrarmes siode, including an aption of no-claape.
The semporal intervals can differ in aumber and size for eoch
femparal wode. so this affows multipie gromlarity. The
propaved approach i applied o medical dingnosis throei
o o sty wiveer @ cav acesdond oconrs, Tie reswles of this
shchy for different caves are presemted and comared o a
sitple Bavesion setwoerk and o dyvrceric Bayesiae senvork,

Kevwords: Bayesian nerworks, Temporal reasoning, medical
diagnosis, preciction, mielligent svstem,

Resumen

En este trafaio se presense of desarralle v o aplicacian de
rn e fermat i e combimr ef moanefo de incertidwmbre
con el mangfo de relociones femporales. B formalismo es
daernimerdn come Bed Bavesioma con Nodes Temporales
(RENTI Uma RENT prede verse como ung exiruciura
elfprchmnicor conmpancte qane inauveies combion oe extadox fevenios),
e ves ol exfaalon de Do werelahfes, aveciadon o un ervaln
de tlempe divsle ex focihle sw ocurrencla Exios infervaliog
ol Faewmper pracden ser deffaidog de mansry difeeinie en Rilmero
yen mrgieiiugd para cods node remproral o cuod hace g of
o torae e d il granloridod veon alta capaeiidong
expresing. B moadele oz gplieade of dicgedatico mddica de
derw fewiomey en wn paciente cuands ha ocirrida un aecidenie
antomavifisie o,

Palabras clave: Redes Bayesianas, mzonamiento temgporal,
dizpnostice médico, sistemas inteligentes,

1 Introduction

Representing and reasoning absout time 2 an essentnl part of
miedical problem solving, Many of the main medical tasks,
such as prevention, dia  gnosis, therapeutic planning’
intervention, prognoses, and medical discovery involve time
el mg and inference [Hanks et al,, 1995; A liferis and Cooper,
1994 ], Similasly, in Gelds such as industrial disgnosis | Armoyo
aid Sucar, 1999, planning [ Santos, 1996], scheduling [Brsan
ctal, 1994]. forecasting [Dagum et al., 1992, speech recognition
[Eweim and Rusell, 19E] among others, representing the dynamic
aspects of the domain is essential for the success of the model.
In particular, the evolutionary nature of these domains reguires
a represeniation that takes into account temporal aspects. The
exact timing inTormation for things like lab-test results,
vccumence of symploms, observations, measures, as well as
Fauks, can be crecial in this Kind of applications,

[ medicing, temiporal informtion can be very important iy
seftings like “blood test B was taken 5 hours after drug [ was
administered to the patient” [Santos, 1946 ); “what s the
patient’s state 10 mmutes after a collision had eccumed” [Hanks
et al., 1995]; or “the feedback between glecose and insalin
levels in the human body™ [Aliferis and Cooper, 1996]. [n spite
of the need of tiime madeling, there are a few mimber of medical
knowledge-based systems developed throaghout the years
ihat have incorporated explicitly temporal aspects. In general,
madeling and reasoning with time is considered o be one of
the greatest challenges in developing knowledge-based
systems [or mesdical dingnosis,

To model tiemporal relations is a complex task, Temporal
micidels are much more comples than atcinpoeal ones | Haddawy,
19906 ], Ina termporn] model each variable and its relationships
with other variables miust be examined over multiple points of
time. These tasks often entail an inordinate amount of
computation, due to the size and the complexity of the resuliing
miadel. In the context of intelligent systems, a temporal model
must be capabde of repsoning about the present, past and futune
aate ol the domaie. Moreover, an ideal ternparal knuwl:.'djun:
representation showld satisfy the eriteria ol femporal
eprreeyivereys [sound and flexible time model}; compatarioeal
reactabiliny (adequabe temporal inference that allows to examine
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the varables interactions over multiple paints of tmel; and
femporal knowledee aoguirition {(amenable 1o machine-
leaming metheds for temporl concepis acquisition ),

Aside from temporsl conssderstions, real warld information
is usumlly imprecise, mcomplete and woisy. The wmporad model
miust be able w0 deal with uncerainy. Among the formalizsm
proposed for dealing with uncertainty, one of the most psed
techniques for the development of inelligent systems ore
RBavesian networks (BM). Bayesian networks [ Peard, 2005, also
know as probabilistic networks, cousal networks or influence
diagrams, are graphical structures used for representing exper
knowledge. A BM is a directed acyclic graph {DAG) whose
structure comresponds 1o the dependency relitions of varizbles
represented in the networks (nodes), and which 1s
parameterized by the conditional probabilities (links) reguired
to specify the underlying distribution. 1 this graphical
representation of dependencies and independencies, cach node
represents @ random varisbbe and each arc o probabilistic
dependency. Given a knowledge base represented as a
Bavesian network, it can be used o reason about the
conseguences of specific inpul data, by what is called
probabilistic reasonmg, This conaists of instantinting the input
variables, nnd propagating their effect through the network 1o
update the probability of the hypothesis variables. The
updating of the probabilities is consistent with probability
theory, based on the application of Bavesian calcubus and the
independencies represented in the network. Probability
propagation in a general network is a complex protlem, but
there are efficient algorthm for ceftain resiricted structures:
singly connected metworks {tree end polyirees stroctured § and
altermative approaches for more complex networks

Bayvesian networks usually represent a static causal model
of certain domain, That is, the nodes represent the values of
the variables at a specilic time point and temporal relations wre
not considered. Dingnosiz and prediction in some domains,
like medicine, require an adeguate represenintion that combines
unceriainty management and emporal reasoning. In some
medical apphications, there is typically enough time 1o gather
information about the patient’s siste and consider alternative
dingnoses and treatments, but the temporal interaction
hetween the timing of the tests, treatments, and the course of
the disease must also be considered, For sach domain a static
Bayesian network is not very wseflul! the estimation of
probability distributions of domains varinhles based on

iate prior knowledge and observation of other variables
1% reliable only for a limited period of time, Thus, to cope with
such dynamic systems using probabilistic networks we need
10 consider tempornl reasoning under uncerininty [Boyen and
Koller., 1999], The extension of Bayesian networks semants:s io
deal with temporal relationships can be complicated. The main
problem is to represent each node with its dependence
relationships over multiple points of time.

Significant research has been done exploring probabilistic

nebworks which are evalusted at sach padnt i time, For imadeling
dynamic svstems using probabilistic networks we nead
interconmect rultiple instances of static netwarks, Clviously,
s D evolvies, nes “alices” must be added to the medel and
ol oiies cut off. This intreduces the notion of dynamic
Biavesioan necworks [ KjaerullT, 1992]. A DEM may be defined
a5 4 sequence of submodels each representing the state of the
dynamic domain ot o partcular pomnt in tme. Hence, a DAER
consists of a series of, most afien structurally wentical,
subnetworks (ime slice ) mterconnested by temporal relations.
Time shces are duplicated over a predetermined time grid
representing the temporal range of mlerest. Temporal rebations
ire represenied with links between msdes of different tirme slices.
e comcditpemal probability tables for a DBM include o state
evolition model, which deseribes the trassition probabilities
betwesn states, and a sensor model. which describes the
ahservigliong tat can sesult from a given state. Tyvpically, one
pssuimes that the conditional probability tnbles in ench slice do
ot vary aver time. The exact belicl propagation mm DAN &5 a
complex problem. Clustering algorithms for DANS are too
expensive and impractical for realistic applications problems.
Recently; approximate simulation algorithms had been
proposed [Konazawn et al,, 1995] based on the wea that exact
probabilitizs ore nol needed, The justification is based on the
intuition that, il processes internct only weakly, the ermor can
ol be too large.

In this paper we present an aliemative representation called
Temporal Nusdes Bayesian Metwork ( TNEN], a probabilistc
network of events m discrete time, A TRBN is a Bayesian
network in whech each node represenis an event or state
change of 0 vierable, and an are corresponds 10 a causal-
termporal relation, A temporal nosde represents the time thot a
variable changes stale, including an option of ne-change.
Including more temporal nodes can represent maore than one
change for the same variable. The temporal intervals con differ
in number and size for cach temporal node, so this allows
muiltiple granularity. Tempora) information i relstive, that i,
there is not an absolute temporal reference. We developed a
mechanism for transforming the relative times 10 absolute,
based on the timing of the observations, With this
representution we con model complex real-world systems with
& simple network, and wse standard peobability propagation
technigues for dingnosis and prediction. The proposed
ppproach is applied 10 the dingnosis and prediction of events
thut ocour aller an auiomaobile pccident.

The rest of this paper is orpanized as follows, Section 2
describes a medical case study of an acoident and is effects,
presents a simple Bayesian network and a dynamic Bayesian
network representation, and introduces our approach, which is
contrasted with both models. Section 3 presents a formal
definition of the proposed maodel and the section 4 describes
the inference mechanism for evialuation ofa TRNBM. Insection 5,
an empirical evaluation is presented Tor a medical example.
Section & presents a bref discussion of several extensions of
BNz for time modeling. Finally, section 7 presents the
conclusions and fufure research,
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2 A Medical Example

T illustrote the proposed twemporal probabilistic model, we
present the hypothetical exaomple of the consequences of an
midomebils accident based on [Hanks ¢tal., 1995], The example
expresses the necessity for representing temporal relations
for medical diagnoses,

Assume that at time t=0 an stomobile accident occurs. The
driver 15 o healthy 45 vears old man and contact with steering
wheel is noted, This kind of sccidents can be classified as
severe, moderate or mild, The immediste consequences in
this sort of accident are injurics o the Seod, abdoming cavily
and infernal orpany, chet and exfrestivies. For demonstration

purpose we only consider fead and chesd infuries. [Injury of

the head can bruise the brain, which will cause i 1o begin

swelling. Chest injuries can include o frachured stermum, one

or both punctured lungs, and bleeding in the chest cavity

These instontaneous sinfe changes can initiate a set of memal

changes that will generate subsequent changes, For example,

brain trouma will cause the brain 10 begin swelling. This
incrense of the bram volume lends 1o increase ntracranial
pressure, which m turn eventually cause difored prpily,
cexfahitized vited siges (pulse and blood pressure) and loss
of consciousness. Bleeding into the chest cavity decreases
blood volume over time, which also tends to destabilize vital
signs. Intemal bleeding will also eventually mcrease pressure
on the hearl, decreasing its efficiency, further destabilizing
vital signs, The collision itself can be madeled as an external
event, which can immediately cause certain changes in the
patient’s state; irauma o the brain, broken sternum, punciursed
lung, and bleeding in the chest cavity. These changes cause
internal changes, which are nod immediate: dilated pugils, vital
signs unstahle, and loss of consciousness, and depend on
the severity of the accident

Suppose that we gathered the following statistics about the
accidents that seourred in o specific zone of o city:

o 36 80% of the collisions (C) are severs, 39.20% pre
muoderate and 24% are mild.

#  [fthe accident 1s mikd, then the probability thiat head mjury
occurs is 0.1 and the probability of an injury resulting in
slight internal bleedimg (TB) i 0.6 and gross is .05,

o [Fiheacerdent is modeeate, then the probability that head
injury oceurs is 0.4 and the probability of on injury
reanliing i slight intemnal bleeding is 4,15 and pross is
a5

& [fthe pecident is severs, then the protabality that head
injury cccurs is 0.9 and the probability of an injury
resulting in slight interval bleeding is 0.4 and pross is 0.5

This information indicates that there is a strong causal
relationship between the sevenity of the accident and the
immesdiate cffect in the patient’s state, Additionally, there are
some important temporal infermation about the relation
between the mstanfanedus consequences (head mjury anmd
internal bleeding ) and the symptoms (pupils dilated and vitals
signs unstableh,

o 0P besad ingury {HT) occurs, the brain will start 1o swell,
anah i lelt unchecked, the swelling will couse the pupils 1o
chikate (P within 010 10 minutes

L] IT wtermial h[-l'.:Lﬂiﬂ_L; {IH'I l'u!],;m'b:. the hlaod voliome svill
start o foll, whisch will tend to destabilize vital signa (V&)
The time required 1o destabilize signs will depend on the
sevierity of hleeding:

Ifthe bleading is gross, i will take from 10 to 30 minutes.
If the bleeding is slight, i will take between 34 o 60
minutes.

# A head injury {HT) also tends to destabilize vital signs,
taking between (to 14 minwtes to mike them wnstable,

Figure | shows the temporal occurrence of the symploms in
relation with the time of the immediate effects

Pupils
(o-10)  dilated
Head
injury ., Vital signs
unstable
Gl 010
t-0 m‘emI:‘I-‘:Ie-Ellmg 0-30)
30-6
Internal hleedin f o

slight

Figure |. Temporal relations between immediate effects and
Y IMpLOmS

3  Probabilistic Models for the
Medical Example

3.1 Static Bayesian Network

i this example there s an extemal event: the collsion (C);
that genceates two immediate effects in the patient’s stafe:
head injury (HD) and intcrmal bleeding (IB). These internal
events produce certain posterior endopenows changes in the
patieni. These chonges are not immediate and are manifest
through two observations: pageils dilated (PD) and vital sipnes
irsfieiie (W51, The severity of the collision has a direct causal
relatien with the variables head injury and intemal bleeding.
Figure 2 shows a static Bayesion network for the collision
event, and table 1 shiows the required conditional probabilities,

A simple Bayesim network can nod represent the tempoml
information of the dynamic domam, That s, the iemporal
relationships between the ocourrence of the immedime effecs
and the symploms.
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C =Severe
C C.=Moderate
Cy=Mild

1B, =gross
‘{{_ I,EI/‘)IEJ slight
/ 7= TG
,—trun:: "-“E. =unstabl
l’D—.“I"Hls
- ".-’F-‘. =normal

Figure 2. Static Bayesian network for the accident example

3.2 Dynamic Bayesian Network

The mast common representation of dynamic relations are
dynismic Bayesian networks [KjacrllT, 1992, Figure 3 showsa
simple DN for the “accident” example, with a time slice each 10
mimues, the maximusn common divisor of the time intervals,

This is o simple DBM for the example, which considers the
following assumptions: (1} stwte depends only an the previous
one { Markovian assumption), (11} there are links only between
the same variable at different slices. Even with these
simplifications, it is a complex model i terms of sorage
requirements and computatien time for probability
propagation, 1T we conssder n more comples model, relaxing
the previous assumplions, it could becoma prohibitive for
realistic applications, Also, the n:-iulimmn of the model
{structure and paremeters) could become a problem,

"!.
",

el

-
e i

Figwre 3. Dynamic Bayesian network for the “accident™
eximphe
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Table 1. Conditional probabilities for the static Bayesian
network model.

Unforunately DBN's present the following problems for
realistic applications [Alifers and Cooper, |996; Santes, 1996):
(11 DN is 2 model of high complexity, hundreds or even
thousands of nodes and conditional probability distributions
may have to be defined: (2) DBN's handle a predelined
temporad range of inlerest, the DENs do not allow 1o vary the
tempornl range a5 o model paramieter; and (37 DENs dis not
have an integrated temporal’cousal semantics, the ko ledye
about time can net be exploited easily to prevent serios
|ﬂLﬁI|':¢L‘-1:|'II.'IGE

3.3 Temporal Nodes Bayesian Network

W propose an altermative representation of temponl aspects
in Bayesinn networks. In many coses, there are few siates
changes {events) in the temporal interval of merest in the
damain. The timing of these events is usually important for
dingnosis and prediction, For instance, in the medical example,
thie lime: when “vital signs unstable” and “pupils dilated” oecur
& crucial for the accideni diagnosis.

To model these changes, we require a representation of
evenis. We proposs o lemporal representation based on evenis
and #s Hime interval of occwrence, called Temperad Meode
feryewicn Netwarks (TNBN) [ Armmoyvo and Sucar, [999]. A THHEN
is a Bayesinn network in which each node represents an evei
or stale change of a variable, and an arc corresponds 1o a
causil-temporal relation. A femporal node represents a
possible stale change of a variable and the time when it
happens. Each value of o temporal node is defined by an
ordered pair; the value of the variogble i which is changes and
the time interval of its occusrence. Time intervals represent
relative times between the pasent events and the corresponding
shide change. A temporal node has an mitial or defau i ste,
a0 a value 15 associaled 1o this staie with & maximum Hme
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imerval {rempaval ravge) and it mdicates the condition of no
change. Figure 4 shows a THNAN model for the “accident”
example, and fable 2 shows the conditional probability
distributson for each temporal node.

C | =severe
f‘ C2=minderate
Cl=mild
HET=1fue
3~ filse
Lot HI NI} IB | ~gross
1B2=slight
IRi=false
PDI= l.‘|l|-i‘|li..l.‘| [1-3] | =unstabile, [0-10]

VEI=unstable, [10-30]
VEI—umstable, [30-60]
V&d=normal, [0-60]

P1x2=dilated, |3-5]
POE=normal, [0-5]

Figure 4. THEM For the accident example
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Table 2. Table of condiiional probabilities for the temporal
nodes

I the accident example, there are 3 instanfaneous evenls:
colfiston, head dnfvry and deterral blevding, and two events
thiat can be represenied by nades with temporal intervals: prpifly
difarteed anad witad sigees aesialile, PIF has normal 6s initial
state, and can change o difaed in 2 temporal intervals
40313500 while EX has sovmat as initinl stade, and cian changpe
o anasieninle in 3 different time intervads ([0=10],] 10=30],] 3060
Both variables have the default state associaed w the overall
time inberyal, ([0=5] and [0-640]) which correspond 1o the no
chamge condition. The time intervals were defined hased on
the temporal information of the accident example,

The THBN model can be used, for example, 1o predict the

conseguences of an accident or to diagnose its severity. The
resultma nerwork is less complex than the cormesponding DM,
The main difference with a DBN is that the repressntation 15
hased on state changes af different times represent by lemiporal
nodes instead of state vialues at dilfferent times, represent by
nefwaorks, A THMEM can be seen as natural extension of o
Bavesan network and its propertics are parallel. The temporal
milervials can differ in number and size for each tempom| node,
so this aliows multiple granukarity. Temporal imfommation is
relative. that is. there is not an absolute temporal reference.
We nlso developed o mechanism for transforming the relative
fimes o absolute, based op the tining of the observations, A
ol detinition of a TMBEM is presented in the next section

4 Formal TNBN Definition

A THBM is a Bayesian network in which each node represents
an event or state chanpe of a variable, and an arc corresponds
io 0 cousal-temporal relation. This representation is based on
the definition of a temporal node. A temporal node is defined
by st of states. Each state is defined by an ordered pair; the
value of the variable {to which it changeshand & time interval
associated 1o the change of value of the variable. A temporal
node is defined s follows;

Drefinition 1. A wmporal node (T s defined by o sel of
staies, each defined by an ordered pair (o7}, where o is a
value of a randoem variable and £ i% the time interval associate
i the chamge of varfable value. There i a default state of not
change that corresponds to the initial value (generaliv the
“normal” value), assecinted (o the temporal range of the node,

Tse values of each TM can be seen as the “cross product™
between the set of values (Z) and the set of tme imtervals (T,
except for the defavlt stale. which is associated only o the
permporal of interest {TRY. The definion of the THs for the
accident example was presented m table 2,

TMs are connected by edges, Each edge represents a causal-
temporal refationship between THs. The conditional
probability distribution for each node is defined as the
prothability of ench ordered pnlr{r:r,ﬂ given the ordered pairs
of its parents I_ﬂ'-.'l.':l

Asa TH is defined by asel of time mervals, we can relae
thesea timee eilervils baged on Allen's temporal algebea [Allen,
1963 ], A temporal rekationship between the time intervals ofa
™ is defined as:

Definition 2. In a TN the definition of the default state is
assochated 1w wemposal range of interest, TR, The possibie
ternponil relationships between TR svith the time intervals, Ti,
of @ node are: st {si), dheing (dilend froh (i) The temporal
relationship between each palr of time inlervals i anees (mj:
Tijm} T}
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For example, for the temporal node vitals signs e
relationships betwesn its time intervals are represented in the

fipure 5.
TR{)T, TRE}T,TRMAIT,

[0-10] Tefm} Ty T, (mj
T
T 1o
|
! Ty ' [30-60]
| —
| [-60]
| TR I

Figure 5. Temporal relationships between the tima
infervals of node vitals signs

Finally, a Temporal Node Bayesian Metwork ( THEN is
defined as:

Definitlon 3. A TNBN is defined as TNBEN={V, E), where V is
the sot of temporal nodes and E is the set of edges. Each
temporal node i defined by an ordered pair (4, ©) and the

conditional probability matrix that specifies the probability of

eich ordered pair given its parents.

In each temporal node, the temporal intervals are relative to
the parent nodes, that is. there is not an absolite lemporal
reference. This makes the representation more general; but,
for its application, we need to associate these relative times 1o
the acteal or absolute times of the observed events. We
developed a mechanism for transforming the relative times to
ahsolute, based on the riming of the observations. In the next
section, we present the definition of the inference mechaniam

5 Inference Mechanism

As we mentioned before, the temporal intervals in each node
are relative to fts parents, thal is, there is not absolute timing
of the events until one is observed, When an initial event is
detected, its time of occumrence “fixes” temporally the network.
The timing of the observation is used as temporal reference
for the ather events. This means that the sctual timing of the
evenis represented in ihe network is dvnamie, For definition
of the inference mechanism, we need to deline some sdditional
PTATELErE:

Teireal fimie of necwrrence); 15 the actual time when an event
is detected. As the net does not have any temporal reference,
the time of occurrence of the initial event fixes temporally the
metwark,

a {real time occurrence furction): 15 the absolute value of

e —
4

the difference between the time of occurrence of a pair of
events, o ={ic « f¢ |, where fe s the ime of occurrence of the
first event and #¢° is the tinle of occurrence of the second
event. )

These parnmieters ane used by the inference mechanism for
determining the setual time intervals of occurrence of cach
event. The mechanism consests of 3 basic steps., which are as
follows,

Step 1, Event detection and time interval definition

When ao event inftial is detected, its time of oecurrence,
“te ", 15 utilized as temporal reference for all the network
Theff#are two possible cases, depending on the pozition ol
the friticel node in the network: (1) the inilial event corresponds
to @ root node, and (b) the initial event corresponds to an
intermedinte or leal node.

I-{a). In the first case, the actual value of the node can be
determined {ropt nodes ore always instanianesus evenls),

I-{i). For the second case, it is not possible 1o determine the
value of the variable, becanse the event could be nssociated
to any time interval for the state, [t is necessary to wait fora
second ohservation to determine the interval, When te nexi
event is delected, its time of occurrence, fe , s whilwed
for definition of the time interval assochated with the real time

occurrence function, = |ke  —ie |. The value of @ is
ki

tsed to set the time interval of the child node considering the

parent node as the initial event, This step is applied recursively

to subsequent events,

Step L. Propagation of the evidences

Once the value of a node 14 obtained (time intersal and
associated state), the next step is to propagate the effect of
this value through the network 1w update the probability of
other pemporal nodes. It cun be use any standard algerithm for
prodability propagation.

Step X Determination of the past and futare ovents

With the posterior probabilithes, we can estimate the potentially
past and futere events based on the probability distribution
of the eacl temporal node,

If there is not enough information, Tor instance there s
only one observed event which corresponds to an intermediate
node, the mechanism handles different scenarios. The node ts
instantizted to all the intervals correspending to the observed
state, and the posterior probabilities of the other nodes are
obtained for each scenario. These scenarios could be used as
a set of possible alternatives, which will be reduced when
another event occurs

The THBN representation and inference mechimism were
ppplied for diagnosis and prediction of events in a medical
example, the next section presents these experiments.
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6  Experimental Results

Suppose thal at Hme =10 minuies the patient is observed
by paramedics. They observe a probable broken ernum, the
patien: is complaining of shortness of breath and dizziness,
wilal signs are unstable, bul pupils are not diled, From this
sympioans the probable chest injury and unsfable vital signs
suggest mfernal bleeding, which will soon cawse serious
problems i left unattended. Intravenous fluids should
profably b administered immediately to incrsase the hlood
volume, and if the ransporiation 1o the hespital i expected to
take moee than 20 minutes it might be best to insert a chest
tube to drain blood from the chest cavidy and reduce pressure
on the heart. Finally, the collision and shoriness of breatl
supest g oollapsed lung and decreased oxygen wansier, which
should be treated immediately by administering oxveen.

6.1 First Experiment: Static Bayesian
Network and TNBN

Wi contrast the results of a stafic Bavesian network with the
results of & THEM. According to the accident event example
|Hanks et al., 1995], the paramedics armived ten minuies afier
that the collision occurmed. The paramedics rexlize a clinical
analy=is of the patient’s stale, They determing that the vifals
signs are unstable but the pupils are nor dilated, With this
intformation of the domain, we can update the probabilities of
the events of the network using standard probability
propagation lechnigues. Applying this evidence w the static
Bayvesion model, table 3 shows the updote of the posterior
marginal probabilities given the evidence.

Table 3, Marginal posterior probabilities for the static
Bavesian network

Giiven the previous information, we can conclude the
following: (i) the symproms “vital signs unstable”™ and “pupils
normeal” afe independent of the hour in which they were
observed and (if) it seems that the information is not sufficient
for an adequate diagnosis. This shows that the information
ienerated by a static Bayesion model 15 limited and that we

require addifional information of the domain to determine the
probable effects i the patient’s state. The static Bayesian
model does not take it sceoumt the armival time of the
paramedics to the collision scene.

Mo, we use the same example for demonstration of the
importance of modeling the temporal aspects. [n this case, itis
very imporant the arriving timing of the pasamedics and the
time of occurrence of the events and the observations. We
consider only two temporal nodes papls dilated and vitals
signs wrestabies. Giiven the time of arnival of the paremedics,
the time interval of occurrence of both temporal nodes is 10 to
My mmates, Tubde 4 shows the results of probability propagation
wilh the THEM maodel,
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Table 4. Marginal posterior probabilities with the THWEM
model

The results show the potential benefits of the use of the
termpral nformation of the domain. The termporal cousal model
reduces the uncertaimty and gencrates a diagnosis task of
better quality, The conclusions generated by temporal causal
model are consistent with the dipgnosis genermed by the
paramedics (see section medical example). Additionally, the
temporal causal model provides the severity of the internal
bleeding and the aceident event, these conclusions wre difficul:
to edtain by the paramedics wihen they armive to the collision
SEETE,

Another comparison between the stathe and THEN models
is given by the entropy of the marginal postenor probabilises
given by thse following expression:

]

W= E— Pilog ()
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Where & is the number of variable values and * 15 the masginal
posterior probability of each value. Mnima]’-nn:rfrpy hEins
equnl probakilities, i this case the information & not sufficient
for an adequate dingnosis. Table 3 shows the entropy for the
static and temporml modeks,
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Table 5. Entropy of margingl posterior probalilities

6.2 Second Experiment: Diagnosis with
Scenarios

In this section we present an example of application of the
dizgnosis mechanism. Figure & shows a THBN that represents
knowledge about the injuries that occur in o patient coused by
a“severe blow" and an “accident”, The model 15 an extension
of the accident example presented in the previous section. In
this case it is considered that “head injuries” can be caused
by o "severs blow™ of a heawvy object or by an “aceident™

Agciden
L2 =tiug
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Internnl bleeding
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Figure & THNBM for the diagnosis example

1. We suppose that “vital signs unstable” (node C&) was
detected ab 104500, This time is defined as the real time of
oecurrence t - Since the initial node s a leaf node, it s not
feasible to delermine the interval of ocourrence. Therefore,
the evidence i3 propagated in the possible scenarios, in this
case for two time intervals. Table & shows the marginal
probabilities for both scenarios; ©6 chamges in the time interval
[I-1010C6 }and C6 changes n the time ivterval | 10-60](C6 1

It is required to check the previous events i determine
which were presented before C and in this way 1o defermine
the actual time inferred. The table 7 shows the rarginal
prodabilitics for the 1wo scenarios,
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Table &, Marginal probabilities for the scenarios Ch - and U

2. We find that the event Ca, “internal bleeding™ ocenrred
al 1023400 Therefore we define the real time of oceumrence as
1'nl =10 34404, The detenmination of the associited tinse milerval
will be given by the difference between the real time ol
occurrence for the events C4 and C6: 1 -t = 104500 -
16:34-00 = | 1:00. This difference is compared with the time
imervils defined for the node ©6&. The dilference =i =
t_"'nm.wpunds to the time interval [ 10000 o G000 wnd the
evidence s associnted with state 6 Junstable, [10-60]) . This
evidence C6 s propagted and I:hr‘m:lrgjnul profabilinies are
updated, Now, table 7 shows the marginal probubilitics of the
riodes for the two possible scenanos: ©4 and C4 since that
thie time interval of accurrence Tor the ||-|,':4I||.: 4 i1.1|,|r|l.;:1-;|n.'|.'n_
Takle & shows the marginal probabilities for the two scemrios,
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Fable T, Marginal probabilites for the scenurios C4 and 4
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[t is reguired to check the prl:l.-'inqr.:l. events to defermine

which event occurred before the evem C4, and in this way
obtain the time interval for Cd

1. Checking the event history, we find that the event
Saccident” (C2 ) was detocted ot 1003000, Therefore, we defined
the accurrence time as b = 103000, The determination of the
associnted time interval Will be given by the difference of the
events Cd nnd{'.“:: te -te = 10:R4:00 - 13008 = 04:00. This

4 1
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dilference is compared with the time intervals defined for C6
The difference te -te cormesponds to the fime interval | 3:00 to
5:00) and the evidence is associnted with state C4 {true, [3-
5]}. So the value C4 is propagated and the m arginal
probabilities are updated.

As C2 is a root node and by definition a ool node does
have temporal intervals, it is not necessary to-obaam its lemparad
interval and the mechanism stops. Table 8 shows a summary
of the events and their associated imes,
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Tabke 8. Summary of the evenis

7  Related Work

In this section, we review relited work in temporal Bayesian
networks and contrast it with our sppeoach. Significant research
has been done exploring probabilistic networks which are
eviluated at each peant in time. The network is armanged into
“time slices™ representing the system’s comphete state ot a single
point in time. Time slices are duplicated over a predetermined
tieme prid representing the temporal ange of interest. The “time
net” of Kanazawa |Konmenwa, 1991] i a kind of Bayesian
network with o formal declamative language of random varinbies
for makmg inferences. The events are considered to ocourat an
instant of time while facts are considered to occur over a series
of time points. The *Dynamic Belief Metworks” (DBN) [Boyen
and Baoller, 1999] considers a dynamic Bayesman network whene
the network has certain structure at time & and a different
structure at time o+ /. The DBN is buil dynamically, reflecting
the dymamic changes in the environment, The “Network of
exogenous cvents and endogenous changes™ [Hanks ef al,
[992] is o probabilistic model for reasoning aboul the system as
it changes over Lime, both due 1o exogenous events and
endogenous changes, An exogenous event genemlly refers to
an instantanenus change in the process stofe, Endogenoes
changes are modebed using a bocal inference model, a simple
arbitrary linear model, All the previows approaches are hased
on point models of time, and as such reguire that events ocour
instantancously. It is difficult to consider that events take place
Al time poinis, ofien it is more ntural o consider events mking
place over time intervals.

Others authors propose the use of time intervals as the
primitive temporal notion. Santos [1996] proposed o model
based on the Temporal Abduction Problem (TAPL [n TAP,
egach event has an associated interval during which the event
occurs. Relotionships hetween evenls are expressed as
directed edges from couse to effect within a weighted directed

acyclic graph structure, The TAP has strong interval-based
temparal semantics, but lacks strong probabilistic semantics.

Later, Santes and Young [ 1994 ] proposed o new model, the
probabilistic iemporal netwoerk (PTH) Bayesian networks
provide the probabilistic basis for the management of
uncertainty. Alken’s interval algebra and its thirteen relations
provide the temporal basis [Allen, 1983]. The nodes of the
metwork are temporal aggregates and the edges are the causal!
terporal relationships between aggregates. Each aggregnte
represents a process changing over time, The temporal
aggregates are temporal random variables, defined by an
ordered pair (random variable phes Allen's intervals). These
gppreaches are based on time-intervals and consider the
temporal relationships that occur between the events. The time-
constramed models provide a rade off between both strong
unceriabily and tempoeal semantics,

Aliferis and Cooper [1996] proposed an extension of
Bayesian networks called “Modificoble Temporal Bayesian
Metworks with Single-granularity (MTBEN-50). A MTBN-3G
is an extended Hme-sliced Bavesian necwork defined over a
range of tme paints. The temporal graph is a directed graph
{possibly cvelic) composed of nodes and arcs cormesponding
o 3 types of variables; ordinary, mechanism and time-lag
quantifier variable. As indicated i the name, the MTBN-50
model onby supports o single granularity for the size of the
time step in any given network. The resulting graph can have
cyches to allow expresaions of recurrence and feedback, This
miadel las great representation capacity of temporal and
atemporal information, The problems with this model are that
joint probability distribution 5wt compatible with the Bavesian
madel and that it only suppors a single granularicy for the
size of the time step. Extending the model to support multiple
granularity appears problematic, it is difficalt to combine two
events with different time ranges. Also, the acquisition of
guantitative information appears o big problem because the
excessive number of probabilities required,

In summary, previous probabilistic iemporal models are, in
general, based on variable states that are repeated at different
times, A stutic probabilistic model of the system s built and
repeated at varipus me points, and directed temporal links
are drawn between nodes of the different “static™ slives. The
resulting models are quite complex for realistic applications,
so they do pot satisfy the knowledpe acquisition and
computational tractsbility criteria (see section 1), These models
support a single granularity and it is difficult to extend them
for mmultiple granularity. In contrast, the THEN model s based
ot representing changes of state i each node. 1 the number
of possible state changes for each varsable in the temporal
range is small, as i s in many practical problems, the resulting
mosdel is much simpler. This faciiitates temporal knowledgs
acquisition and allows efficient inference using standard
probahility propagation techniques. Also, the model supports
i & reatural way multiple granalarity, with different member of
temporal intervals for each node, and different duration for
cach ingerval within a node,
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8 Conclusions and Future Work

This paper presented the definition and application of an
approach fior dealing with uncertainty and time calbed Temporal
Nodes Bayvesian Metwork {THBN). A THEN generates a formial
and systematic structure used 1o model the temporal evolstion
of dynamie process. TNBN model is an extension of Bayesian
nerworks For dealimiz with temporal information. Each event or
state change of a varlable is associnted with a rime interval

The definition of the number of time intervals and their duration
fior each node is free (multiple granularity ) and can be see asa
trade off between the complexity and the accuracy needed for

_depicting the knowledge of the temparal domain.

Although many BN variants have been introduced fior

temporal modeling, we believe that the THAN is a good

.candidate for diagnosis and prediction of events in real

~complex environments, such as medieal diagnosis. The
formalism satisfies the requirements of temporal knowledge
acquisition, low computational cost and ftemporal
pxpressiveness, The main difference with previons
probabilistic temporal models is that the represeniation is
based on stae changes at different times instead of state
values at different times. This makes the model much simpler
in many applications in which there are few changes for cach
variable in the temporal range of interesd

The ternpora] information ina TNBMN is refative, that is. there
is mot ahsolute temporal refenence. 'We developed a mechanism
for transforming the relative times to absolute. The temporal
ressoning mechanism is based on the propagation of
probabilities and gives the time of occummence of events or
state changes with some probability value. The mechanism
has three main steps: (1) event detection and time interval
definithon; (2) evidence propagation through the net: and (3}
determination of past and future events. 17 there is nol encugh
information, the mechanism handles scenarios. These
spenariod could be use as o set ol possible allematives, which
will be reduced when another event ocours,

Ini arder to demonstrate the ideas present in the articke, the
formalism was applied to the diagnosis and prediction of the
comsequences of the patient's state afler an accident occurs,
a case study presented by Hanks in 1995 The resalts are
consistent with the medical diagnosis generated by the
paramedics that arrive to the colliskon scene and they show
the necessity o model temporal concepts in dynomic domains.
The THNBN madel is also simpler than chain state nerwork of
Hanks [Hanks et al,, 1995].

The THEN model can be used for the diagnosis of a cascade
of anomales arising with certain delays; this sitation is typécal
in medicing or in the diagnosis of industrial processes. In
contrast, dynamic bayesian networks, using time slices, seem
more adequate for monitoring the evolution of o system that
Fuctuates around its nonmal state, specially if there is a cyclic
pRILEFTL,
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O future work will focus on developmg and validating our
approach with additional experiments on prediction and
dimgnosts of events in other real-world domains, such as
industrinl process disgnosis. Also, we will iy incorporate
qualitative temporal constraints for know ledge acquisition and
walidution,
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