Computacién y Sistemas Vol. 5 No. 3 pp. 192 - 203
© 2002, CIC - IPN. ISSN 1405-5546 Impreso en México

File Decomposition, Replication and

Assignments Problems
Problemas de Decomposicion, Replicacion y Asignacion de Archivos

José Lisandro Aguilar Castro
CEMISID, Departamento de Computacién
Facultad de Ingenieria, Universidad de los Andes
Av. Tulio Febres 5101, Mérida, Estado Mérida-Venezuela
e-mail : aguilar@ing.ula.ve

Article received on July 19, 1999; accepted on December 25, 2001

Abstract

File decomposition, replication and assignment problems
have been three of the principal research topics in parallel
and distributed processing. In this paper, we present these
problems and propose a heuristic algorithm for determining
effective file decomposition, replication and assignment
solutions. At first, a model is developed for decomposing,
replicating and allocating files on distributed systems. The
model considers storage costs, communication costs, the
query rate, updating rates of files, the maximum expected
access times to files at each computer, the storage capacity
of each computer and the workload imbalance cost. The
criterion of optimality is minimal overall operating costs.
Because these problems are in general NP-hard, we
propose a heuristic algorithm based on genetic algorithm to
solve them. Several examples for different distributed
systems are given to illustrate our model.

Keywords: File Systems, Distributed
Performance Evaluation

Systems,

Resumen

Los problemas de descomposicion, replica y asignacion de
archivos, han sido tres de los principales tdpicos de
investigacion en sistemas paralelos y distribuidos. En este
trabajo nosotros presentamos estos problemas, y
proponemos algoritmos heuristicos para alcanzar una
efectiva descomposicion, replicacion y asignacion de
archivos. Al inicio es desarrollado un modelo para estos
problemas. ElI modelo considera los costos de
almacenamiento, de comunicacién, de consulta, de
actualizacion, asi como las capacidades de
almacenamiento de cada sitio y los costos por desequilibrio
de las cargas de trabajo. El criterio de optimizacién
consiste en minimizar los costos operativos. Al ser este
problema NP-Completo, nosotros proponemos algoritmos
heuristicos basados en los Algoritmos Genéticos para
resolverlos. Varios ejemplos de uso de nuestro modelo son
presentados para diferentes arquitecturas distribuidas
Palabras claves: Sistemas de Archivos, Sistemas
Distribuidos, Evaluacién de Rendimiento

192

1 Introduction

Distributed Computing Systems present many challenges,
some of which have been already encountered in
centralized computing systems, while others are new and
unique to a distributed environment. Technical issues
include systems integrity, concurrence control, addressing,
naming and security. Other issues involve managerial and
design problems, which include decisions on the allocation
of files and databases to sites (computers) [Chapman et al.,
1993; Chen and Sheu, 1994; Gifford, 1987; Kalns and Ni,
1995; Knobe and Natarajan, 1993; Mahniood et al., 1994;
Lee, 1997; Lee, 1995; Yu-Kwong et al., 1996], allocation
of tasks [Aguilar, 1998; Aguilar and Kloul, 1997; Aguilar
and Gelenbe; 1997; Aguilar and Jimenez, 1997], etc.

In distributed systems, files are accessed either for update
or retrieval activities by geographically dispersed users and
applications. An important issue in the design/management
of the distributed systems is designing the file system. The
file system ‘must solve problems such as files replication
level (optimal number of copies for each file), files
fragmentation level (optimal number of fragments for each
file) and the allocation of them to the participating sites to
achieve satisfactory systems performance. These problems
are quite important because using a naive file system on
shared distributed platforms may result in load imbalance,
performance degradation, excessive communication
overhead, etc.

These problems have been proven to be NP-Complete
[Kalns and Ni, 1995; Li and Chen, 1991]. Lee derived
efficient dynamic programming algorithms for determining
effective data allocation schema to execute a sequence of
Do-loops [Lee, 1997, Lee, 1997]. Other previous
paralleling compiler research has emphasized allowing
programmers to specify the data allocation/decomposition
using language extensions, such that compilers can then
generate all the communication instruction according to
these language extensions (for example, HPF) [Chen and
Sheu, 1994; Li and Chen, 1991]. That is, it is also possible
to use compiler techniques to automatically determine data
allocation/decomposition. [Mahmood et al., 1994], propose
an algorithm to solve the adaptive file allocation in
distributed systems to minimize the overall communication
and storage costs.

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

Their algorithm makes an one-period - look
incremental allocation. In [Gifford, 1987] is introduced an
algorithm for the maintenance of replicated files. The
reliability and performance characteristics of a replicated
file ‘are controlled by appropriately choosing r (read
quorum of votes to read a file) and w (write quorum of
votes to write a file). Other papers, which addressed the
problem of determining file allocations include [Chapmand
et al., 1993; Kalns and Ni, 1995; Knobe and Natarajan,
1993].

This paper is concerned with modeling file
decomposition, replication and assignment problems on
distributed system, and with designing an efficient
algorithm based on Genetic Algorithm (GA) to solve them.
Optimal solutions to these problems are determined on the
basis of the query rate, updating rates of files, the workload
imbalance cost, storage costs, communication costs, and the
system's limitations (the storage capacity of each computer,
the maximum expected access times to files at each
computer, the interconnection topology, etc.). Our model
uses as input a listing of the files in the organization, a
listing of sites, the number of transactions (updates and
queries) originating from those sites, and the amount of
data to transfer for each transaction. Based on this
information and the cost structure for each criterion, we
formulate our optimization model. We develop an
algorithm based on GA to solve it. This algorithm is tested
on different distributed/parallel platforms. Our model will
allow deciding on: How many replicas of a given file
should the system have?, How fragments should be
decomposing a file in?, Which sites will be selected for
placement of files (fragments or replicas)?, From which file
location will the data be retrieved in each transaction?.

The rest of this paper is organized as follows. In section 2,
we illustrate file decomposition, allocation and replication
problems. In section 3, we analyze different criteria that
must be taken into consideration to solve these problems. In
section 4, we introduce GA and propose an efficient
algorithm for solving these problems based on GA. In
section 5, we present experimental studies on different
distributed/parallel systems. Finally, some concluding
remarks are given in section 6.

2 Problem Definition

In this section, we will present typical problems to solve
during the design and management of file system for
distributed system. These problems are: the file
decomposition problem, the file replication problem and the
allocation problem.

2.1 File Replication Problem

The problem is the following: for a given number of files,
what is the number of replicas/copies for each one and
where they must be assigned to maximize system
performance. This problem is typical in systems where
geographically dispersed users or applications access files
and the communication cost is very high. This problem
depends of several criteria: communication cost, storage
cost, update cost, number of updates request in the system,
etc. Therefore, the goal of file replication is to determine
the number of copies of a file to maximize system

ahead

performances by reducing the cost of managing and the
communication cost. These copies must be assigned in the
system in a way that optimizes performance. That is, this
problem includes a file replica allocation problem. In this
case, one of the main problems is the correct operation of
the system that requires that consistency be maintained
among copies of the same file in different sites [Gifford,
1987].

2.2 File Decomposition Problem

The problem is the following: for a given number of files,
what is the optimal number of fragments for each one and
where they must be assigned to maximize system
performance. This problem is typical in systems where
geographically dispersed users or applications access files,
but each user or application accesses a different file
fragment. The performance of different file decompositions
can be measured in terms of retrieval time for different type
of queries, the load distribution, and the storage utilization.
Therefore, the goal of file decomposition is to divide a file
in fragments to maximize system performance by balancing
the computational load among the sites and by minimizing
remote memory accesses (or communication messages).
These fragments must be assigned over the different sites
on the system in a way that optimizes performance. That is,
this problem includes a file fragment allocation problem.
An extension of this problem is the multidimensional
decomposition; that is, the attribute space is partitioned and
mapped to different physical locations. ‘

2.3 File Assignment Problem

The problem is the following: given a number of sites that
process common information files, how can one allocate the
files so that the assignment yields minimum overall
operating costs subject to constraints [Mahmood et al.,
1994; Yu-Kwong et al., 1996]. Therefore, the problem is
that of assigning »f files to # sites in a way that optimizes
performance. Typically, the problem is then characterized
by the following objectives:

- The communication between different sites of the system
must be kept to a minimum.

- The load of the different sites must be balanced.

- The total effective execution time of applications must be
minimized.

We can adapt this definition for the cases of file
fragmentation or file replication problems. For these cases,
we search an optimal assigning of the file fragments or file
replicas.

3 Definition of the Cost Function

In this section, cost functions are presented to solve these
problems. First, we will analyze different criteria, which
are used for solving these problems. Then, we present
general cost functions using these criteria. The cost
functions are based on these criteria, because they
correspond to different aspects that must be optimized into
a given parallel/distributed system to improve its
performance. This is one of the novel aspects presented by

193

" J. L. Aguilar: File Decomposition, Replication and Assignment Problems

this paper. The following assumptions are used in order to
formulate our model:

Assumption 1. Each transaction is routed to the more close
location with the file that transaction
requires.

Assumption 2. Each transaction can be processed in a single
location.

Assumption 3. Updates are made simultaneously on all
locations with file replica.

3.1 Files Replication and the Related
Cost Functions

For this problem, we define five costs: storage cost, update
cost, query cost, load imbalancing cost and cost for non-
optimal number of copies. They are defined as:

3.1.1 Storage Cost

This cost depends on the size of the files, and on the cost to
store a length unit of a file in a given site.

nf n

CS:ZZQkaka (D

f=1 k=l

where, nf, number of files.
n, number of sites.

Xfk, is a binary variable whose value is 1 if fth
file is stored in-the kth site and is 0 Otherwise.

Lt, size of the file f.

Qk, unit storage cost per unit length and unit time

at site k.

3.1.2 Update Cost

This cost is often considered to be one of the most
important factors that need to be minimized. It depends on
the number of updates for each file from each processor
(and the quantity of information to update), on the cost to
update a length unit of a file in a site, and on the average
cost to transfer a length unit of a file from a site to other
site.

Cu = Zf: Z":(i(cjkATk'Xﬂ(Vuﬁ)+ ATl;Xﬂ(Vuﬂ(J

£=1\ k=1 _j.j=k
2

where, AT'y, unit update cost per unit length and unit time
at site k.

Vufj, quantity of information to update of the fth
file from the jth site per unit time.

Cjk, transmission cost from the jth site to the kth
site per unit length and unit time.

194

3.1.3 Query Cost

This cost depends on the number of requests for each file
from each site (and the quantity of information to query),
on the cost to query a length unit of a file in a site, and on
the average cost to transfer a length unit of a file from a site
to other site.

nf(n
@{(Z!MH&,&H,.(@# 2 fi-X,g, +A%V%)} G)

EI=

where, AT, unit query cost per unit length and unit time at
site k.

Vqﬁ, quantity of information to request of the fth file from
the jth site per unit time.

It, set of sites with a copy of the fth file.

3.1.4 Cost of load imbalance

An optimal file replication must assure an equitable
distribution of the workload between sites. A possible form -
for this cost term is

n n 2

; CLIj—(Z_]:(CLIi/n)) ‘

Cli = — - @
n

where, CLIj, workload in the site j:

n

of Z s(4 Xy fi- X)Vq_/k

CLI; = Z k=l)

= :
+ AT, X Va5 + Z AT} X Vu g
k=1

where, s = {1 if CkjATjXfj = MIN(CkmATmXfm)
for Vm=1, n & mels 0 otherwise

3.1.5 Cost for Non-Optimal Number of Copies

This cost penalizes if the system has not the optimal
number of copies for each file according to the Eq. 9. It
depends on the quantity of information to update and the
quantity of information to request.

Cno = i (Zn:kaj~rf
f=1 [\ k=1

where, rf, number of copies of the file f according to the
Eq. 7.

&)

Finally, we shall express the operating cost (objective
function) according to the next equation:

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

CF=Cs+Cu+Cq+Cli+Cno (6)
3.1.6 Constraints

The classical constraints are [Kalns et al. 1995; Lee, 1997;
Mahmood, 1994]:

a) To store rf redundant copies of the fth file:
n
rp=Y Xp)
k=1

b) To assure that the storage capacity of each site is not
exceeded:

> LiXg <8, ®)

f=1
where, Sk, storage capacity of the site k.

¢) To determine the optimal number of copies according to
the quantity of information to update and the quantity of
information to request

ZV%
<

h=w
2V
=1

®

To solve the file replication problem we must minimize the
next cost function:

MIN (CF)

Therefore, the objective for adding a copy of a file is to
minimize (6) subject to the constraints (7), (8) and (9).

3.2 File Decomposition and the Related
Cost Functions

For this problem, we define four costs: storage cost, update
cost, query cost, and load imbalancing cost. They are
defined as:

3.2.1 Storage Cost

This cost depends on the size of the fragment of each file,
and on the cost to store a length unit for a file in a given
site.

nf ¢ n

Cs= ZZZQiL‘kaﬁk

k=1 f=1 i=1

(10)

where, ck, number of fragments of the file k.

Yifk, is a binary variable whose value is 1 if fih fragment of

the kth file is stored in the ith site and is 0 Otherwise.
L'k, size of the fth fragment of the kth file.

3.2.2 Update Cost

It depends on the number of updates for each fragment of
each file from each processor (and the quantity of
information to update), on the cost to update a length unit
of a file in a site, and on the average cost to transfer a
length unit of a file from a site to other site.

e z’: Z*: Z[Z (o AT Y i)]

k1 121 g1 Uimg T AT Yop Vit g

(an

where, Vu'fkj, quantity of information to update of the fth
fragment of the kth file from the ith sites per unit time.

3.2.3 Query Cost

This cost depends on the number of requests for each
fragment of each file from each site (and the quantity of
information to query), on the cost to query a length unit of a
file in a site, and on the average cost to transfer a length
unit of a file from a site to other site.

Cq =§ii{i(ciqATqu/qu}kf)J

. (12)
k=1 f=1g=1 i,i¢q+ ATqu/k qukq

where, Vq'fki, quantity of information to request of the fth

fragment of the kth file from the ith site per unit time.
3.2.4 Cost of Load Imbalance

An optimal file decomposition must assure an equitable
distribution of the workload between the processors. A
possible form for this cost term is

‘Z CLI, —(i(cu, /n)}2

i=1

(13)

n

where, CLIq, workload in the site q:
’ nf Ck n , ,)
CLI, = kz(zz (AT, Vuj, + AT, Vay,)Yqﬂ(j
=1\ _f=1 i=l
3.2.5 Constraints

The classical constraints are [Kalns et al. 1995; Lee, 1997,
Mahmood, 1994]:

195

J. L. Aguilar: File Decomposition, Replicai‘ion and Assignment Problems

b) To assure that the storage capacity of each site is not
exceeded

nf ©C

> > Ly Yy <8,

k=1 f=I

(14)

d) To assure non-duplication fragments

n nf ¢

:E::E::E:Sﬂﬂ<::l

i=l k=1 f=l

(15)

e) To assure files unit

n Cy

ZZL'ﬂ(Yiﬂ(= Lk

i=1 f=i

(16)

To solve the file decomposition problem we must minimize
the next cost function:

CF=Cs+Cu+Cq+Ch an

Therefore, the objective for decomposing a file is to
minimize (17) subject to the constraints (14), (15) and (16).

4 Resolution Method: Genetic
Algorithms

GA is an optimization algorithm based on the principles of
evolution in biology. A GA follows an "intelligent
evolution" process for individuals based on the utilization
of evolution operators such as mutation, inversion, selection
and crossover [Aguilar and Kloul,1997; Aguilar and
Gelenbe, 1997; Goldberg, 1989]. The idea is to find a good
local optimum, starting from a set of initial solutions, by
applying the evolution operators to successive solutions.
The procedure evolves until it remains trapped in a local
minimum.

The GA applied in our problem follows the next procedure:
we define a space of research of nf vectors where everyone
represents an individual, and every individual represents a

possible solution. Each vector has nf elements and the ith
element is a vector with the number of copies (or

fragments) of the ith file, and each element of the ith vector
(file) has a value among /... n, according to the site to

which the copy of the ith file (or fragment of the ith file) is
assigned. Furthermore, we use the cost function (6) (or
(17)) to determine the cost of every individual. We begin
with an initial population of individuals randomly defined
and we choose the individuals with minimal cost for
generating new individuals using the genetic operators.
Since the population is constant, we substitute the worst
individuals of initial solution by the best individuals
generated. The procedure stops if we exceed a given
number of generations without finding a better solution.

In this method two parameters we studied: the maximum
number of generations (NUMGEN), the number of
individuals (NUMIND) and the probability (PM) to use the

196

mutation operator after the crossover operator. The first
parameters allow to optimize the speed-up of the algorithm
to reach an optimal solution. We remark than the quality of
the solutions improves more rapidly in the first generations
that in the following. Thus, a satisfactory quality is obtained
rapidly without to wait that the algorithm converges. In this
work, we used the crossover operator and then the mutation
operator according to the PM probability. The mutation
operator can change the number of copies (or fragments) of
a given file, or the site where the copies (or fragments) of a
given file are assigned. For the PM parameter, if the
probability is large we obtain good results, but a large PM
implies an execution time large. The general genetic
algorithm is defined as:

Generation of individuals which represent potential
solutions:
Repeat until system convergence
Evaluation of every individual
Selection of the best individual for reproduction
Reproduction of the individual using evolutive operators
Replace the worst old individuals by the new individuals

For the file replication problem, our approach not only
generates the near optimal replicas allocation, also
generates the optimal number of copies for each file. For
the file decomposition problem, our approach not only
generates the near optimal fragments allocation, also
generates the optimal number of fragments for each file.

S Results Analysis

We gathered statistic in the following manner: the number
of simulations per a given set of parameters (total number
of files, total number of processors, quantity information to
query, etc.) was either (depending of which occurs first):

- 30 simulations
- The number of simulations required for obtaining a given
standard deviation of the cost functions (6) or (17).

The standard values considered are the following: '

Number of files (nf): 5, 15, 30, 50, 100
Number of sites (n): 5, 10, 15, 20
Maximal number of fragments per file (cf): 3, 10, 15

Maximal size of the files (Lf): between 1 and 10

Quantity of information to update from a file/fragment
(Vufj/Vu'ﬂj): between 3 and 7

Quantity of information to query from a file/fragment
(Vafy/va'): 7 *((Vufj or Vu'syy)

Unit Transmission cost (Ckj): 1 if k and j are connected

directly, between 2 and 5 otherwise
Unit Storage cost (Qk): between 5 and 7

Maximal storage capacity per site (Sk): between 30 and 100
Unit Query cost (ATk): between 10 and 50
Unit Update cost (AT'k): ATk*5

Vv f=1,nf; Vkj=Il,n; VI=1,cf

For the case of the file replication problem, the cost
functions studied here are the following:

F1=C5+Cu+Cq+cli

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

F2=Cu+Cq
F3:CS+Cu+Cq+ C1i+Cno
F4:Cu+Cq+Cli

For the case of the file decomposition problem, the cost
functions studied here are the following:

Fl=Cs+Cy+Cq+Cii
F2=Cs+Cy +Cq
F3=Cu+Cq
F4=Cy+Cj
F5=Cu+Cq+Ci|

In the next part, the value of these cost functions and the
execution time to obtain a near optimal solution using our
approach are presented for different distributed systems.
Due to space limitations, the figures presented in this
section were chosen because they are representative of the
phenomenon studied.

The GA parameter values are the following:

NUMGEN: 20, 50, 100.
PM:0.2,0.5,0.8, 1.
NUMIND: 10, 20, 50.

c 25000
0
S 20000]
T
F 15000 |
U
N 10000 §
C
T
I 5000 J
0
N WL
5 15 30 50 100
NUMBER OF FILES
g 350
é 300 A
— Fl1
C 250
Y — R
[200
e F3
{3 150
— F4
T 100
I
M 50
E
0 . 3 M 1
5 15 30 50 100
NUMBER OF FILES

Figure 1. Results of the simulation for n= 10

For each case, we have tested the different parameter
combinations of the GA and selected the best one according
to the best individual given for each combination (see
[Aguilar, 2001] for more details). The crossover operator is
used all time, and the mutation operator according to the
PM probability.

5.1 Homogeneous Systems with Full
Connection

In this case, we consider a distributed system architecture
which consisting of a collection of » homogeneous sites
with distributed memory. The sites are fully interconnected
connected with a reliable high-speed network. For this

architecture, ATk = ATk =Qk = Ckj=1, V. kj=Ln.
5.1.1 File Replication

In the figure 1, F2 and F4 give the best results for systems
with more than 15 files, and their execution times are
similar. F1 and F3 have large execution times because they
evaluate more criteria. F4 explicitly minimizes total
communication with a load balancing. This is the reason of
the best results with it. In the figure 2, F2 gives the best
results. That is, the main objective to minimize is the load
balancing because this platform is homogenous.

c 15000]

0

g 12000

T

F 9000 |

U

N 6000 |

C

T

T 3000 f

0

N 0 e
3 5 100 15 20

NUMBER OF SITES

c 15000]

0

g 12000]

T

F 9000]

U .

N 6000 |

C

T]

I 3000 J

0

N 0)
5 6 7

Quantity of information to update

Figure 2. Results of the simulation for nf= 100

197

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

5.1.2 File Decomposition

For this type case, (Figures 3, 4, 5), the cost function and
execution times are very large because we evaluate more
criteria. F1 and F5, need a very large time to reach
suboptimal solutions. For systems of little size, the
difference between the functions is not important for
different numbers of files. Otherwise, F2 and F3 are more
interesting, because they give the best results in a
reasonable execution time. These cost functions minimize
the communication cost. Load balancing introduces a large
value in the cost functions. Figure 5 shows the influence of
the quantity of information to update in the communication
cost. For F1, F4 and F5, this criterion has a large influence
on the results. The rate of increase of the cost functions and
of the execution times seems to be exponential. According
to that, for a system with more than 100 files (100+k, for a
small value of k), the cost functions F1, F4 and F5 will be
very high and the execution times impossible. In general,
F2 and F3 could have the same problem but for a large
value of k.

c 35000
0
S 28000
T
F 2100 |
§] .
N 1400 |
C
T
1 700 |
0
N 0 -] .)
5 15 30 50 100
NUMBER OF FILES
g 3500 ;
X 3000 -
E — Fl1
C 2500 - ,
y — F2
[2000 -
w F3
S 1500 A
— F4
T 1000 .
I — FS
M 500 -
E
o J 1 : ’ 1
5 15 30 50 100
NUMBER OF FILES ‘

Figure 3. Results of the simulation for n=3, ¢f=3

198

c 35000]
0
S 28000
T
F 2100 |
U
N 1400 |
C
T
I 700 |
0
N 0 : .
3 10 15
NUMBER OF FRAGMENTS
B 500 -
X 300
E
C 250 |
U
¥ 200 4
151) 150 A
T 100 J
I
M 50 1 '
E
0 - 2 '
3 10 15
NUMBER OF FRAGMENTS

Figure 4. Results of the simulation for nf= 15, n= 10

c 15000]

0

g 12000] /

T

U

N 6000 |

C

T

I 3000]

0

N 0 . ,
5 6 7

Quantity of information to update

Figure 5. Results of the simulation for nf= 15, n= 10, cg= 3

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

5.2 Homogeneous System without Full
Connection

In this case, we consider a distributed system architecture
which consisting of a collection of » homogeneous sites
with distributed memory, but the sites are not fully
interconnected. For this architecture, ATk = ATk =Qkx =1,

¥ k=1,n.

5.2.1 File Replication

Figure 6 shows the cost function reached and their
execution times. F2 gives the best results, because F2
minimize the communication cost, the more important
criterion in this platform. The cost function and execution
times are similar between F3, F1 and F4. In general, F4
does not give better results because load balancing cost
increase cost value.

10000000]
1000000 |

100000 pmm————r—"

10000 J

1000]

Zo—-azcm J»voQ

0 : 3 3 3

5 10 30 50 100
NUMBER OF FILES

350
300

250

200

150
100

50

MZ— - Zo——SCOmxm

0 L : .
5 15 30 50 100
NUMBER OF FILES

Figure 6. Results of the simulation for n=20

5.2.2 File Decomposition

The results clearly show that F2 and F3 give the best results
in all cases, with a littler execution time. This performance
improvement is particularly substantial when the system is
large. For large systems, load balancing cost is large.

C 240000 |
0
S
T 180000 T
F
U 120000 1
N
C
TI 600000 -
0
N 0 1 1 i i
3 5 10 15 20
NUMBER OF SITES
0
B 7000 1
é 6000 4
— Fl
8 5000 - .
[4000 1 :
- F3
19 3000 o
— F4
T 2000 {
I - FS
M 1000 '/__/
E ‘
0 - L L i 1
5 10 15 20 25

NUMBER OF SITES

Figure 7. Results of the simulation for nf= 100, cf= 3

5.3 Heterogeneous System with Full
Connection

In this case, we consider a distributed system architecture
which consisting of a collection of » heterogeneous sites
with distributed memory. The sites are fully interconnected
connected with a reliable high-speed network. For this

architecture, Ckj = 1, V kj=1,n

5.3.1 File Replication

In this case, F2 gives the best results. There is a large
difference between this cost'and F1, F3 and F4. That is due
to the large value of the load balancing cost.

199

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

1000000

100000

100000

10000

Zzo~=azcm 3200

350 -
E
1 X 300 -
E
C 250 -
U
? 200 -
1 18 150 -
T 100 .
] I
M 50 -
E
} 4 3 4 0 - 1 " 1 1
3 5 10 15 20 3 5 10 15
NUMBER OF SITES NUMBER OF SITES

5.3.2 File Decomposition

Figure 8. Results of the simulation for nf= 100

In this case, F2 and F3 give the best results. The
combination Cy + Cq + Cjj gives a large cost function.

Storage cost is little.

100000 |

Zo—"QZcTm SO0

200

80000 |
60000 |
40000 J
20000 -
5 15 30 50 100

NUMBER OF FILES

E 1400 -

X 1200 -

E

C 1000 -

U

? 800 -

18 600 -

T 400 J

I

M 200 -

E /
0 = I 3 1

5 15 30 50 100

NUMBER OF FILES

Figure 9. Results of the simulation for n= 20, ¢f=3

F1

F2

F3

F4

FI
F2
F3

F4

- F5

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

5.4 Heterogeneous System without
Full Connection

In this case, we consider a distributed system architecture
which consisting of a collection of n heterogeneous sites
with distributed memory, but the sites are not fully
interconnected.

5.4.1 File Replication

In this case, we obtain the same results than the previous
platforms. F2 gives the best results: Cpg is not large and Cjj

gives the largest values.

c 1000000 |

0

S

T 100000 T

F

U 100000 1

N

C

TI 10000 -

0

N 0

5 15 30 50 100
NUMBER OF FILES

g 350
X 300 -
E
C 250 | — Fl1
U .
T 200 - — F2
0 _—
N 150 F3
T 100 . — F4
I
M 50 -
E

0 - : ' . .

5 15 30 50 100
NUMBER OF FILES

Figure 10. Results of the simulation for n= 20

5.4.2 File Decomposition

In this case, F2 and F3 give the best results again.

c 600000 | ,
0
S
T 450000 T
F
U 300000 1
N
C
TI 150000 ,
0
N 0 L L i i
3 5 10 15 20
NUMBER OF SITES
B 3500 1
i;(3000 4
— F1
8 2500
T — F2
[2000 A
o~ F3
{3 1500 -
— F4
T 1000 A
I — FS
M 500 4
E
O = L 2 L 1
3 5 10 15 20

NUMBER OF SITES

Figure 11. Results of the simulation for nf= 100, c/=3

5.5 Comparison with Other Works

We have tested our approach on the same architecture
where [Liskov et al., 1998; Bartal 1998] tested their
heuristics. To evaluate our algorithm we use the same
criteria as them. These results are shown in the next
sections.

5.5.1 File Replication

We have compared the performance of our approach with
that of a replicated NFS server (called Harp System) that
uses UNIX files directly [Liskov et al., 1998]. All our
experiments were run in a system containing four servers.
We have used the Andrew benchmark. Andrew benchmark
runs a fixed set of operations intended to be a
representative sample of the kind of actions an average user
of the Andrew file system might performance. The table 1
shows the performance results (cost function value). As can
be seen, Harp system has a worse performance than our
approach when the load. query is more than 20 seconds
because the interference at the servers degraded its
performance. *For the other case, the Harp System has a

201

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

lower cost because it has a good performance over systems with a light load.

Load Liskov et al. 1998 Our approach
Query/second (Harp System)
20 22 24
60 36 35
100 64 61

Table 1. Comparison of the results

5.5.2 File Decomposition

In this part, we compare our approach with [Bartal et al., 1998]. Their paper deals with the file allocation concerning the
optimization of communication costs to access data in a distributed environment. They develop two distributed file
allocation algorithms assuming existence of global information about the state of the network. A first algorithm is the
BFS/BSP algorithm, and the other one is an agglomeration clustering algorithm. We have used a Nhfsstone benchmark to
compare them. Nhfsstone benchmark is a standard synthetic benchmark designed to measure the performance of NFS file
servers. It simulates multi-clients NFS file servers workload in terms of the mix of NFS operations and the rate at which the
NFS clients make request to the servers. The table 2 shows the results. In this table, the first number is the value of the cost
function and the second number is the average CPU time in seconds of each approach.

Number of sites Number of query BFS/BSP Agglomeration Our approach
Clustering
60 (128) 66 (12) 64 (30)
7 7 56 (256) 62 (28) 60 (112)
10 10 50 (923) 59 (45) 56 (213)
12 10 44 (2312) 57 (T12) 5T (5323)
I5 10 40 (4121) 35 (231) 45 (1443)

Table 2. Comparison of the results

In this case, our approach obtains good results with a low
execution time. We have proposed an algorithm that is
between BFS/BSP (which produce the lowest costs) and the
agglomeration clustering approach (which produces the
lowest CPU times). A tradeoff between the different criteria
is necessary to improve our results.

Conclusion

The file decomposition and replication problems can be
formulated using a cost function and solved using
intelligent techniques. These problems include a
fragments/copies assignment problem. In this work, we
propose different cost functions for these problems and a
heuristic algorithm based on Genetic Algorithms. We test
the performance of our algorithm on different distributed
architectures according to these cost functions.

The model introduced in this paper provides a common
denominator for analysis and comparison on various
proposed distributed system configurations, a tool to study
the sensitivity of various parameters and constraints, and a
method for evaluating and designing the growth potential of
distributed systems. However, some related problems still
requires further studies, such as file reliability, privacy, etc.
All these problems are important consideration for optimal
file management in distributed systems. Next work must
consider these aspects. For the file replication problem, our

202

approach not only generates the near optimal replicas
allocation, also generates the optimal number of copies for
each file. For the file decomposition problem, our approach
not only generates the near optimal fragments allocation,
also generates the optimal number of fragments for each
file.

Experiments show that the quality of the solutions
obtained by each cost function is similar independent of the
characteristics of the platform or applications considered.
In our study, F2 for the file replication problem and F3 for
the file decomposition problem appear to give the best
results, with a substantially shorter execution time. The cost
value and execution time for F1 for the file replication
problem, and F1 and FS5 for the file decomposition problem
are very large. The reason is that these cost functions use a
large number of criteria. Normally, C;; has a large value and
C,, has a little value in all cases. In general, it is necessary
to determine the better combination of criteria to reach a
suboptimal solution that improves the performance of the
system and applications. In addition, we have shown our
approach can be used in real system with a good
performance because our approach considers several
criteria at the same time. We can define the set of criteria to
be used in a given situation. Next work will study the
fragments replication problem and a new equation to
calculate the optimal number of copies for each file based
on predictions about the quantity of information to update
or request. According to our models (see Eq. (6) and (17)),
we consider different criteria, which can be conflictive

J. L. Aguilar: File Decomposition, Replication and Assignment Problems

between them. A tradeoff between the different criteria is
necessary to improve our results. Other works will consider
the use of evolutionary multiobjective approaches to deal
this problem [Aguilar et al., 1999].

Acknowledgments

This work was partially supported by CONICIT grant S1-
95000884, CDCHT-ULA grant 1-620-98-02-AA and
CeCalCULA (High Performance Computing Center of
Venezuela).

References

Aguilar, J. and Miranda, P., "Approaches based on
Genetic Algorithms for Multiobjetive Optimization
Problems", Proceeding of the Genetic and Evolutionary
Computation Conference, IEEE Press, pp. 3-10, 1999.

Aguilar, J., "Optimizing the speed-up of Parallel Programs
and Load Balancing in Distributed Systems", International
Journal of Computers and Applications, Vol. 8, N. 8, pp.
117-122, 1998.

Aguilar, J. and L Kloul, "Estudio del Problema de
Asignacion de Tareas en los Sistemas Distribuidos:
funciones de costo y métodos de resolucion", Revista
Técnica de Ingenieria de la Universidad del Zulia, Vol. 20,
No. 3, pp. 203-213, 1997.

Aguilar, J. and E. Gelenbe, "Task Assignment and
Transaction Clustering Heuristics for Distributed Systems",
Information Sciences: Informatics and Computer Science,
Vol. 97, No. 1, pp. 199-219, 1997.

Aguilar, J. and T. Jimenez, "A Processor Management
System for PVM", Lecture Notes in Computer Science,
Springer-Verlag, Vol. 1300, pp. 158-161, 1997.

Aguilar, J., "Un Estudio Exhaustivo del problema de
Descomposicion, Replicacién y Asignacion de Archivos,
en los Sistemas Distribuidos usando Algoritmos
Genéticos", Jornadas Nacionales de Computacion Paralela
yDzstrzbuzda pp- 21-43,2001.

Bartal Y., A. Fiat and Y. Rabani, "Competitive
Algorithms for Distributed Data Management", ACM
Symposium on Theory of Computing, pp. 34-39, 1998.

Chapman, B., P. Mehrotra, H. Moritsch and H. Zima,
"Dynamic Data Distribution in Vienna Fortran", In Proc.
Supercomputing 1993, pp. 284-293.

Chen, T. and J. Sheu, "Communication-Free Data
Allocartion Techniques for parallelizing Compilers on
Multicomputers", JEEE Transaction on Parallel and
Distributed Systems, Vol. 5, N. 9, pp 924-938, 1994.

Gifford, D., "Weighted Voting for Replicated Data",
Journal of ACM, Vol. 6, pp. 150-162, 1987.

Goldberg, D., "Genetics Algorithms in Search,
Optimization and Machine Learning", Addison-Wesley,
Reading, Massachusetts, 1989.

Kalns, E. and L. Ni, "Processor Mapping Techniques
Toward Efficient Data Redistribution", /EEE Transaction
on Parallel and Distributed Systems, Vol. 6, N. 12, pp.
1214-1222, 1995.

Knobe, M. and V. Natarajan, "Automatic Data Allocation
to Minimize Communication on SIMD Machines", Journal
Supercomputing, Vol. 7, pp. 387-415, 1993.

Yu-Kwong K., K. Kamalakar, I. Ahmad and N. Moon
Pun, "Design and Evaluation of Data Allocation
Algorithms for Distributed Multimedia Database Systems",
IEEE Journal of Selected Areas in Communications, pp.
342-351, 1996.

Mahmood, A., H. Khan and H. Fatmi, "Adaptive File
Allocation in Distributed Information Systems",
Informatica, Vol. 18, pp. 37-46, 1994.

Lee, P., "Techniques for Compiling Programs on
Distributed Memory Multicomputers", Parallel Computing,
Vol. 21, N 12, pp. 1895-1923, 1995.

Lee, P., "Efficient Algorithms for Data Distribution on
Distributed Memory Parallel Computers", [EEE
Transaction on Parallel and Distributed Systems, Vol. 8, N.
8, pp 825-839, 1997.

Li, J. and M. Chen, "The Data Alignment Phase in
Compiling Programs for Distributed-Memory Machines",

Journal Parallel and Distributed Computing, Vol. 13, pp.
213-221, 1991.

Liskov B., S. Ghemawat, R. Gruber, P. Johnson and M.
Williams, "Replication in the Harp File System", Proc.
Thirteenth ACM Symposium on Operating System
Principles, pp. 226-238, 1998.

Jose Lisandro Aguilar Castro received the B. S. degree in System
Engineering in 1987 from the Universidad de los Andes-Merida-
Venezuela, the M. Sc. degree in Computer
Sciences in 1991 from the Universite Paul
Sabatier-Toulouse-France, and the Ph. D
degree in Computer Sciences in 1995 from the
Universite Rene Descartes-Paris-France. He
was a Postdoctoral Research Fellow in the
Department of Computer Sciences at the
University of Houston among 1999-2000. He
is an Associate Professor in the Department of
Computer Science at the Universidad de los
her of the High Performance Computing Center
of Venezuela (CeCalCULA) and of the Distributed System and
Microelectronic Center (CEMISID). Currently, he is the head of
the Science and Technology Bureau of the Merida State,
Venezuela.

203

