Computacion y Sistemas Vol. 6 No. | pp. 051 - 061
© 2002, CIC - IPN. ISSN 1405-5546 Impreso en México

Scheduling Fault Recovery Operations

in Real-Time Systems
Planificacion de Operaciones de Recuperacion de Fallas en Sistemas de Tiempo Real

Pedro Mejia Alvarez
Centro de Investigacion y Estudios Avanzados
Seccion de Computacion, Av. IPN 2508
Col. Zacatenco, 07300 México D.F.
E-mail: pmejia@cs.cinvestav.mx

Article received on July 06, 2001, accepted on July 02, 2002

Abstract

This paper introduces an integrated framework for the
scheduling of non-deterministic workloads, demanded on
time-critical recovery operations triggered by the detection of
errors in a real-time system. The framework will be devel-
oped within the context of fived-priority preemptive systems.
A dynamic analysis for recovery workloads is introduced by
developing a criterion for responsiveness of fault recovery op-
erations. This is motivated by the need to verify the timing
correctness of real-time workloads under transient recovery
workloads and provide graceful degradation to the real-time
workload during recovery.

We hypothesize that a scheduler suited to this environ-
ment should dispatch tasks using only response time and
slack as an admission control mechanism for recovery re-
quests, as long as all deadlines can be met, and that in the
presence of transient recovery overloads, the best the sched-
uler can do is criticality-driven load shedding. The perfor-
mance of the responsive algorithm is measured quantitatively
with simulations using synthetic task sets.

Keywords: Real-Time Scheduling, Fault-Tolerance

Resumen

En este articulo, se presenta un esquema para la planifi-
cacidn de tareas de tiempo real no deterministas, en las que
se producen operaciones de recuperacion de fallos de tiempo
critico debidas a la deteccién de errores. Este esquema se
desarrolla bajo el contexto de sistemas de tiempo real con
prioridades fijas y erpulsividad. Se desarrolla un andlisis
dindmico para cargas de trabajo de recuperacidn, mediante
la introduccién de un enfoque de responsividaed para opera-
ciones de recuperacion de fallos. Este enfoque es motivado
por la necesidad de verificar la ejecucidn a tiempo de las
tareas de tiempo real bajo condiciones de fallos, y por la
necesidad de proveer una degradacién controlada de las tar-
eas durante la recuperacion.

El comportamiento de los algoritmos de responsividad ha
sido medido en forma cuantitativa mediante extensas simu-
laciones sobre tareas de tiempo real sintéticas.

Palabras Clave: Planificacién de Sistemas de Tiempo

Real, Tolerancia a Fallos

1 Introduction

Modern real-time scheduling research has mostly con-
centrated on generating efficient algorithms for guaran-
teeing that tasks meet their deadlines without consider-
ing faults. Although this is interesting to enable study-
ing different aspects of scheduling theory, the ability to
tolerate faults is essential if deadlines are to be met.
Work on fault masking aclieves this goal by using spa-
tial redundancy, which is expensive. A less expensive
approach is that of using time redundancy, which typi-
cally does not require a large amount of extra resources
and is amenable to uniprocessors. Therefore, this pa-
per focuses on the problem of scheduling real-time tasks
along with transient recovery requests in a uniprocessor
environment, using time redundancy.

Scheduling recovery time in a real-time system to
enhance its fault tolerance is a problem which requires
the development of efficient scheduling policies, as well
as fault-tolerant mechanisms that resolve resource con-
tention conflicts among different tasks requesting access
to a shared resource (Ramos-Thuel, 1994). This is a
complex problem because real-time scheduling policies
and fault-tolerant mechanisms must allow the scheduler
to meet two competing objectives, namely, (a) to ensure
that the timing requirements of the real-time applica-
tion workload are met, and (b) ensure that the timing
requirements of any time-consuming recovery operation
are met and do not violate (a). While the scheduler
strives to meet both objectives (a) and (b), there may
be situations in which it may be unable to do so. These
situations encompass transient overloads, high utiliza-
tion of the real-time workload, higher than assumed rate
of faults, and temporal unpredictability of fault recov-
ery operations.

In this paper, a solution is presented for solving this
problem, striving, when possible, to meet the objec-
tives (a) and (b). Our solution comprises an algorithm
for scheduling recovery operations to meet the dynamic
and widely changing recovery requirements of a real-
time system. The amount of intrusiveness of the recov-
ery operations is controlled by the scheduler by servicing
the recovery operation at different levels of responsive-
ness (see Section 2), thus enabling run-time criticality-

051

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

based control of load shedding. The Responsiveness Al-
gorithm (RA) calculates a responsiveness level for han-
dling a recovery request, and provides a set of priorities
at which the recovery could be serviced.

1.1 Background and Motivation

In recent years, computing systems have been used in
several applications which have stringent timing con-
straints, such as embedded robotic industrial systems,
computerized intensive care units, autopilot systems,
air traffic control, mobile telephones, or communica-
tion satellites. Real-Time systems are systems whose
correctness depends not only on their logical and func-
tional behavior, but also on the temporal properties of
this behavior. They can be classified as hard real-time
systems, in which the consequences of missing a dead-
line may be catastrophic, and soft real-time systems in
which missing some deadlines may be allowed. In many
real-time applications, fault-tolerance is also an impor-
tant issue. A system is fault-tolerant if it produces cor-
rect results even in the presence of faults. Due to the
critical nature of tasks supported by by many real-time
systems, it is essential that tasks complete before their
deadlines even in the presence of failures.

Due to the typical small amount of available re-
sources in embedded real-time systems (Koopman,
1996) and due to the large number of transient faults in
such systems (Siewiorek et.al, 1978), we focus our work
on the extra time that is required to support recovery
from faults. Redundant time can be scheduled prior
to execution, in order to achieve predictable timeliness
and guarantee that timing constraints are not violated.
Such static allocation methods require that a specific
characterization of the recovery workload be developed
before run-time. On the other hand, it is possible to al-
locate redundant time for recovery dynamically. In this
approach, there is no a-priori notion of pre-allocated
processing time for servicing recovery requests. Rather,
the scheduler allocates time dynamically when requests
for recovery arrive, which has the advantage of not de-
grading the system performance in case there are no
faults.

Recovering from errors in a real-time system is a two
step process requiring the allocation of time for recov-
ery operations and the subsequent management of the
allocated time to ensure that the timing constraints of
the recovery operations are met'(Ramos-Thuel, 1991).
Allocation mechanisms may be intrusive or transparent
depending on whether or not performance degradation
is imposed on the application workload during recov-
ery. Management of recovery time may be passive or
active depending on the ability of the scheduler to dis-
tribute recovery time for faulty tasks. A passive man-

052

agement approach allocates time when the resource is
idle, or whenever the application tasks execute less than
their estimated worst case computation times. An ac-
tive management approach is able to schedule recovery
operations upon arrival by determining the priority at
which recovery is serviced.

Recently, a few studies have begun to emerge in de-
veloping schedulability analysis for fault-tolerant real-
time task sets for fixed-priority preemptive systems.
Some of these studies have dealt with real-time fault-
tolerant scheduling (Ghosh et.al, 1995; Betatti et.al,
1993; Gonzalez et.al, 1997; Fohler, 1997; Kopetz, 1990);
since these studies do not relate to Rate Monotonic
Scheduling (RMS), they are not discussed further.

In (Ramos-Thuel, 1993), Ramos-Thuel presented
time reservation algorithms for the static and dynamic
scheduling of fixed priority recovery modules; it is one
of the first developments of the concept of slack schedul-
ing. Ramos-Thuel also studied dynamically schedul-
ing of recovery operations (Ramos-Thuel, 1991), where
a criticality-driven transient server is developed. The
transient server creates server tasks in response to tran-
sient recovery requests. Its implementation requires
the creation of a table before run-time to assist the
scheduler in performing on-line decisions during re-
covery. Punnekkat (Punnekkat, 1997) extended the
analysis in (Joseph et.al, 1986) to develop a worst-
case response time analysis for different fault-tolerant
mechanisms, and developed probabilistic guarantees for
fault-tolerant real-time tasks. In (Ghosh, 1996; Ghosh,
1998), a recovery scheme is proposed to extend the
RMS scheme for single and multiple transient faults
(FT-RMS). In that model, one fault is tolerated by
re-execution of the faulty task, if faults occur with a
certain minimum inter-arrival time. A technique called
overloading is used to share the time interval among
several tasks.

Previous studies providing fault tolerance in RMS-
based real-time systems have some shortcomings, some
of which are addressed in this paper. Toward that, we
develop a dynamic analysis for recovery operations by
introducing the concept of levels of responsiveness for
recovery operations. Previous definitions of responsive-
ness has been based on server policies (e.g., Deferrable
and Sporadic Servers) (Sprunt, 1989), where respon-
siveness is measured using worst-case/average response
time of aperiodic service requests.

The slack stealing scheduling approach developed in
(Ramos-Thuel, 1993; Ramos-Thuel, 1994) offers fur-
ther improvements in response time over the server ap-
proach. The amount of slack time “stolen” during a
time interval [¢;,%2] can be used to execute aperiodic
requests without causing any periodic request to miss
its deadlines. A probabilistic definition of responsive-

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

ness for fault-tolerant real-time systems was given by
Malek (Malek, 1993), within a consensus-based model.
This model included timeliness requirements for several
algorithms, such as synchronization, reliable communi-
cation, diagnosis, scheduling, checkpointing and recon-
figuration. However, the model in (Malek, 1993) does
not provided analytical arguments for its application.

Previous definitions of responsiveness have yielded
a boolean result (yes/no) to the question of whether
or not an aperiodic operation can be serviced. In this
paper, we extend this concept to define levels of re-
sponsiveness as the different priorities at which a recov-
ery request can be serviced. Therefore, the question of
whether or not a recovery request can be serviced, will
depend on the system characteristics and the level of re-
sponsiveness. Some levels indicate that recovery can be
serviced without harming any task deadline, while some
other levels indicate that recovery can only be serviced
in an intrusive manner, making some tasks miss their
deadlines. It is also possible that the responsiveness
level indicate that there is no time for recovery. Over-
all, our approach based on responsiveness levels focuses
in providing run-time flexibility to the scheduler for con-
trolling the amount of intrusiveness in the scheduling of
recovery requests.

The remainder of this paper is organized as follows.
In Section 2, a framework for integrating responsive-
ness levels into the scheduling of recovery requests is
developed by introducing a responsiveness algorithm,
RA. Section 3 provides an evaluation of the perfor-
mance of the responsiveness algorithm. Finally, Section
4 presents concluding remarks.

2 Dynamic Analysis of Fault Re-
covery

2.1 Framework and Assumptions

A fixed priority Rate Monotonic Scheduling model (Liu
et.al, 1973) is considered, with a set of n independent
periodic preemptive ! tasks. In this model, ¢; is the
initiation time (or phase), T; is the period and C; is
the worst case execution time of task 7;. It is assumed
that a task executes correctly if its results are produced
according to its specification, and delivered before its
deadline. A fault occurs when either of these conditions
does not hold.

The Rate Monotonic model assigns a higher priority
to a task with shorter period, and the priorities remains
fixed for the complete execution of the tasks. In this

1 Preemptiveness is a property of real-time tasks in which each
tasks can be interrupted from execution at any time by some
higher priority task. If tasks are non-preemptive, they will not be
interrupted until they finish their current execution.

model, tasks are periodic and preemptive, so they exe-
cute every T; units of time. Therefore, a periodic task
7; give rise to an infinite sequence of jobs. The k" job
is ready to execute at time ¢; + (k — 1)7T; and its C;
units of required execution must be completed by time
¢; + (k — 1)T; + D;, or else a timing fault will occur.

Liu and Layland (Liu et.al, 1973) proved that a task
7; is guaranteed to be schedulable (meets its deadline)
if the deadline of its first job is met when it is initi-
ated at the same time as all higher priority tasks, i.e.,
¢r = 0,fork = 1,...4. This is because the time be-
tween the arrival of a task’s job and the completion of
its execution, referred to as its response time, is maxi-
mized when it arrives at the same instant at which all
tasks of equal and higher priority arrive. The phasing
scenario in which the initiation times for all tasks are
equal is know as the critical instant, which is the worst-
case phasing. It follows that a set of tasks (workload)
is schedulable under Rate Monotonic if the deadline of
the first job of every task starting at a critical instant
is met.

Liu and Layland also developed a sufficient test for
the schedulability of a task set in which task deadlines
are equal to the periods, D; = T;. They proved that if
the utilization of the tasks set (U = > U; = Ci/F)
is less than 69%, the no task will miss its deadline.

Lehoczky, et.al. 1989, extended these results by de-
riving a necessary and sufficient schedulability condition
for fixed-priority workloads under critical instant phas-
ing. This condition dictates that task 7; is schedulable
if the following condition is met,

mingo<i<n}{Wi(t)/t} < 1 (1)

where W;(t) is the cumulative work that has arrived
from priority levels 1 to ¢ in the time interval [0,] under
critical instant phasing and is computed as,

1
Wi(t) =Y Cj- [t/T5] (2)
j=1

The condition W;(t)/t < 1 is condition is true if for
some t in the range 0 < t < D; the supply of processing
time is more than or equal to the demand for processing
time for 7;.

It follows that the entire task set is schedulable if the
maximum value of W;(t)/t over the minima computed
for each task 7;,7 = 1,...,n, is also less or equal to one,
as indicated by,

maz{i<i<n}Mino<t<p;} {Wi(t)/t} <1 (3)

This analytical framework allows us to evaluate the
schedulability of a task set assuming that no processing
time is reserved for the recovery of faults.

053

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

In this paper we will extend this framework to eval-
uate the timing impact caused by the the occurrence of
faults in the real-time system.

Our fault model considers the following assumptions.
There exists a fault detection mechanism to detect tran-
sient faults; only one task is affected by each fault. We
assume that the sequence of recovery arrivals is not
known in advance and that a recovery request is ini-
tiated when a fault is detected during the execution of
task 7. The computation requirement of the recovery
request is known at the instant of its arrival and its
deadline is the same of the faulty task. The recovery
operations can be preempted by either high priority or
recovery tasks.

2.2 Problem Formulation

In this paper, we address the problem of dynamically
scheduling recovery requests under RMS (Liu, 1973),
using the responsiveness approach. As all systems have
finite resources, their ability to service recovery requests
while meeting the temporal requirements is limited.
Clearly, transient, overload conditions may arise if more
tasks and recovery requests have to be scheduled than
the available processor resources can handle. Under
such conditions, the decision of whether or not a recov-
ery request can be serviced, will depend on the system
characteristics and a level of responsiveness.

In our approach, when recovery requests arrive, the
scheduler dynamically performs a feasibility test to de-
termine whether or not a recovery request can be ac-
cepted. A recovery request is accepted if it can meet its
deadline, while being serviced at an assigned respon-
siweness level. Otherwise, it is rejected. The levels
of responsiveness are based on the slack available in
the schedule and on the criticality of the recovery re-
quest. Moreover, the recovery request can be serviced
in a transparent or intrusive manner (based on the crit-
icality of the recovery request), that is, without affect-
ing other tasks or by shedding some of the application
workload. Hence, the main advantages of our approach
are that it: (1) allows the scheduler to assign priorities
to service recovery requests dynamically, (2) provides
an approach for criticality-driven recovery service and
load shedding, (3) causes no performance degradation
to the application workload in the absence of recovery
requests.

Solution Approach

First, it is necessary to compute the slack needed for ser-
vicing the recovery request at all levels of priority (see
Section 2.3). Once an error is detected, the computed
slack available in the schedule is used to determine the

054

feasibility of the recovery request. Second, the respon-
siveness level for the recovery request should be com-
puted (see section 2.5). The responsiveness level will
indicate a set of priorities at which the recovery request
can be serviced.

In order to control the level of intrusiveness needed
by the recovery workload, the scheduler needs to know
(a) the amount of slack time available at different pri-
ority levels, (b) the criticality of the faulty task and
of the other real-time tasks, and (c) the computation
time needed by the recovery operation. Once (a), (b)
and (c) are known, the scheduler has enough informa-
tion for determining different levels of responsiveness
for recovery. After a responsiveness level is determined,
an algorithm for handling recovery requests is invoked
dynamically (see section 2.8).

2.3 Slack for Recovery

In order to compute the level of responsiveness of a
recovery request, we need to compute the slack avail-
able for each task 7;. Slack can be computed either
statically (Ramos-Thuel, 1993) or dynamically (Davis,
1995). These methods schedule a ready aperiodic re-
quest at the highest priority whenever the value of the
slack is not zero, while (Tia, 1996) uses the value of the
slack to determine the priority of the aperiodic request.

The function of our slack stealer is augmented by
a slack reclaimer. A slack reclaimer cooperates with
the slack stealer by making available for recovery any
processing time unused by the periodic tasks when a
fault occurs. In case the task executes for its worst case
execution time, the reclaimed time is zero.

Let d;; and ¢r denote the deadline and the instant of
time in which the fault occurred in job 7;;, respectively.
Job 7;; denotes the jt* request of task 7;. At time tp,
we need to compute SL;(tr), the slack available within
[tF,d;;] for servicing the recovery request.

According to the analysis provided by Lehoczky
(Lehoczky, 1990), it is possible to compute the total cu-
mulative processing made by all jobs of 7q,...,7;—1 and
the first job of 7; during [0,t], under critical instant
phasing by

Wit) = sz (e [5])+e0 @

where ¢;(t) denotes the computation time of the com-
pleted portion of ;.

From Equation (4) we can compute the amount of
computation time in the interval [t,, #] required by pe-
riodic requests in the set of tasks with higher priority
than 7;. The cumulative workload CW; in [t,,t] can
be computed by

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

CWi(ta,tp) < Z Cr - ([ts/Tk] — [ta/Tk]) — ck(ta) — cTi,y,
k=1
(5)

where cg(t,) is the completed execution time of task 7y
at time ¢, and crg 4, is the remaining computation time
of task 1 at time ¢, (i.e., Crk,t, = Cr — ci(ts))-

Hence, letting dp denote the next deadline of the
faulty task after time tg, the slack SL; for 7;; at time
tr can be computed as below.

SL;(tr) =d; — tr — CWi(tr,d;) +crig, (6)

where cr; ¢, is the remaining computation time of the
faulty task.

Equation (6) implies that at time ¢{r the scheduler
must be able to extract the remaining execution time
criy, from task 7; in order to allocate it to the recovery
operation. We assume that during [tr,dr] only one
recovery request can be serviced for 7;.

To schedule recovery requests dynamically, our ap-
proach is to run a feasibility test using the information
given by the slack. This test dictates that if a fault oc-
curs during execution of task 7; at time ¢, it is schedu-
lable if the following condition holds

SLi(tr) > Cf (7

where Cf is the timing requirement of the recovery
request. Equation (7) forms the basis for the develop-
ment of the levels of responsiveness (see section 2.5),
and it does not consider lower priority tasks.

Fault-Free Re-execution
Workload
T; C: D; [
o 20 7 20 5
2 40 10 40 8
T3 75 20 75 11

Table 1: Timing Characteristics of the Real-Time
Workload and its Recovery

Example of Slack Calculations

For the real-time workload given in Table 1, a given
set independent fault arrivals and their associated slack
values is shown in Table 2. These values of fault arrivals
have been chosen for illustration purposes only.

With the information calculated in Table 2, it is pos-
sible to observe that only if a fault occurs at tp = 5
or tp = 67, it could happen that task 73 misses its

deadline. This situation occurs because Cf is equal
to 11 when re-execution is used for recovery. There-
fore, Cf = 11 > SLs(tF), for tp = 5 or tr = 67.
On the other hand, if the fault occurs at one of tp =
12,18, 22,35,42,52 during execution of task 73, there
will be enough slack time for recovery using re-execution
without missing any deadline.

I tr ” Faulty Job ’ SLi(tr) I SLy(tr) ‘ SLg(tF)J

5 T1,1 15 18 9

12 || 72,1 21 21 12
18 || 73,1 15 31 26
22 || 11,2 18 34 12
35 || 73,1 18 21 16
42 || 11,3 18 21 12
52 || 72,2 21 21 12
67 || 731 26 29 8

Table 2: Slack Calculations for Different Values of tg

2.4 Levels of Responsiveness

In this section we will describe how to compute the levels
of responsiveness, that is, the set of priorities at which
a recovery request should be serviced. Computing sev-
eral levels of responsiveness gives the scheduler the flex-
ibility needed for servicing recovery requests with dy-
namic timing constraints. At each level of responsive-
ness, slack information is computed from the schedule
to verify whether or not a recovery request can be ser-
viced. If slack time is not available, it may be neces-
sary to extract time at the expense of some other tasks.
This gives the scheduler the flexibility to schedule crit-
ical recovery requests at a specific priority, even if this
jeopardizes the timely execution of other tasks.

In the following classification, we introduce different
levels of responsiveness. We assume that SL;(tr) is the
amount of slack available for servicing recovery requests
for task 7; at time tr, as computed above.

e Too late Recovery. Indicates that recovery is not
possible, even scheduling the recovery operation at
the highest priority. This level of responsiveness
arises when (dr — tp) < 0.

¢ Non-intrusive Recovery

Fair. At this level, slack is computed to verify if
it is possible to schedule recovery operations at the
lowest possible priority, such that the faulty task,
and other tasks do not miss their deadlines.

minj., SL;(tr)
FA.’(tF) =

0 otherwise

if SL;(tr) >CF(i=1,..,n)

055

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

At this level, recovery operations can be scheduled
at priorities 1, ..., n.

Greedy early. At this level, slack is computed to
verify if recovery can be scheduled at higher prior-
ities without making any task miss its deadline.

mini_,SLi(tr) if SLi(tr) > CF(i=1,.,n)

GE;(tr) = {

0 otherwise

At this level, recovery operations can be scheduled
at priorities 1, ..., 1.

¢ Intrusive Recovery

Gracefully late. Indicates that scheduling recov-
ery operations is only possible at higher priorities.
At this responsiveness level, lower priority tasks
possibly miss their deadlines.

minj_,SLi(tr) if SLi(tr) 2CF(i=1,..,1)

GL;i(tp) = {

0 otherwise

At this level, recovery operations can be scheduled
only at priorities 1, ...,1.

Critically late indicates that scheduling recovery
operations is only possible at the highest priority.
This could make higher priority tasks miss their
deadlines.

{ (dr —tr) if ((dr —tr) > CF)
CL;(tp):
0

otherwise

At this level, recovery operations can be scheduled
only at priority 1.

Note that the levels above are ordered such that if
there is enough slack at one level, there is always enough
slack at a level below. For example, if there is enough
slack to schedule a recovery request at the Fair Level, it
can also be scheduled at lower levels of responsiveness.
But, if there is not enough slack, it will be necessary to
check in the lower levels to verify the next level at which
the recovery request can be scheduled. We assume that
the intrusive responsiveness levels are not used when
there is enough slack at higher levels to schedule the
recovery operations.

When computing the levels of responsiveness, the al-
gorithm gathers information that includes the time of
the fault (¢z), the computation time of the recovery op-
eration (CF'), and the slack computed for every level of
responsiveness. We introduce this computation via an
example, as below.

056

Example of Levels of Responsiveness

Consider the workload described in Table 1. Assume
that the following sequence of faults occur: (1) the first
fault occurs at time tp = 5, (2) the second at time
tr = 22, and (3) the third at time tz = 52.

The resulting execution sequence from this example
(Gantt charts are shown in Figure 1) can be explained
as follows. After a fault is detected, the levels of re-
sponsiveness are computed dynamically? (each line of
Table 3). In the first fault, recovery of task 71 produces
a delay of 3 units of time for tasks 75 and 5. This is
because the recovery operation adds 3 units of time to
the response time of task 7. Job 71,2 suffers the second
fault and its recovery operation is serviced also at some
non-intrusive level. In this case, job 71,2 does not in-
crease its response time because the scheduler reclaims
the unused computation time. Therefore, it does not
delay lower priority tasks. In the third fault, slack time
is computed to verify that job 755 does not harm any
task deadline, at any level of responsiveness.

The example above illustrates that the our approach
may be followed for guaranteeing the schedulability of
a recovery request. For every level of responsiveness
the scheduler is able to determine a set of priorities for
which the recovery can be serviced. The information
we gather provides run-time support for the real-time
scheduler which allows it to reason about the servic-
ing of recovery operations and introduces a criterion for
handling different fault semantics. The order at which
the responsiveness levels are calculated is given by the
algorithm for scheduling recovery requests developed in
Section 2.6.

| tr, Cf | CL [GL [GE [FA |
tr=5C{ =515 15 9 9
trp=22,C{ =5 | 18 | 18 | 12 | 12
tr=52,C;y =8 | 23 | 21 | 12 | 12

Table 3: Levels of responsiveness for different faults.

2.5 Ciriticality

Task criticality defines how important each task is when
compared with the rest of the workload. We assume
that this parameter is fixed and given by the appli-
cation (see Burns et.al 2000, for a method to derive
this value), and we use it in our approach to per-
form scheduling decisions about what task must suf-
fer graceful degradation under overload. The criticality
set M = {m(n),m(r2),...,m(r,)} defines the relative

2Note that, since in our approach the recovery request is ser-
viced at the least intrusive level, it may not be necessary to com-
pute all levels of responsiveness.

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

g =5 tg =22

' Greedy early | Greedy early

=52

o 5 10 15 20 30 35 40 45 50 55 60 65 70 75 80
Y AN | rair
| [T | [T —— !
I T I 1 1 T [T | T 1 T 0 T T T
o 5 10 15 20 25 30 35 40 a5 50 §5 60 65 70 75 80
| R3 3333333 23 2] kz333]
I T T T i T T T I 1 T T T T T 1 L
o 5 10 15 20 25 30 35 40 a5 50 55 60 65 70 75 80
E:l Recovery m Reclaimed execution time ‘ Fault
Figure 1: Illustrating Slack Calculations for Multiple Fault Arrivals
criticality of tasks. Let us consider the set of tasks de-
fined in Table 1 ith criticality values gi o vents
ned in lable 1, 7, 72,73, With criticality values given A recovery request for task 7; arrives at time tr with computation
by M = {2,1, 3}, which are listed in decreasing order. time Cf .
. aLs . SL; i=1,...,
Thus, 73 is the most critical task in the system. compute ort=Tean
Criticality is used in our approach only when recov- Algorithm:

ery is intrusive. If there is enough slack to service a re-
covery operation without violating any deadlines, there
is no need to include this parameter. However, if not
enough slack is available, criticality will provide infor-
mation to aid the decision of whether to shed the recov-
ery request or other tasks in the system. Therefore, this
parameter is used as a decision mechanism for comput-
ing the GL and the CL responsiveness levels (the GE
and FA levels do not take into consideration the crit-
icality of the tasks). This issue will be described in
more detail when the algorithm for scheduling recovery -
requests is introduced in next section.

2.6 Responsiveness Algorithm

When a recovery request arrives, the scheduler checks
first if it is too late for recovery. This is done to ex-
pedite the algorithm, because this step only requires to
verify if (dp — tr) < CF. If the request is not imme-
diately denied, the algorithm computes only the levels
of responsiveness needed, to determine if the deadline
of the recovery request can be met, starting at the FA
level®. If the responsiveness level indicates that there
is enough slack to service a recovery request, it means
that it can be serviced at a priority within a range of
priorities given at that level, and the algorithm stops.
If there is not enough slack at that level, the subsequent
level must be calculated. Note that criticality of a task
is checked only on intrusive levels (GL,CL), in which
the less critical task is always degraded (delayed).

The pseudo-code of the Responsiveness Algorithm
(RA) is given in Figure 2.

3Note that in the algorithm, the GE level has been skipped,
for simplicity.

compute CL;(tr)
/*check if it is too late for recovery */
if CL; = 0 then reject the recovery request; exit;
compute FA;(tr)
if FA;(tr) > CF then
service the recovery request at some priority given by
the FA level
else /* check the criticality of tasks */
if criticality of faulty task 7; is not greater than criticality of
task 7; (for j =i+ 1,...,n) then
reject the recovery request; exit;
compute GL;(tr)
if GL;(tr) > CF then
service the recovery request at some priority given by
the GL level
else /* check the criticality of tasks */
if criticality of faulty task ; is not greater than criticality of
task 7; (for j =1,...,4i — 1) then
reject the recovery request; exit;
if CLi(tr) > Cf then
service the recovery request at some priority given by
the CL level

Figure 2: Responsiveness Algorithm (RA) for Servicing
Recovery Requests

Note that a responsiveness level does not indicate
the exact priority at which the recovery request can be
serviced, instead it gives a set of priorities at which a
recovery request can be serviced.

The responsiveness algorithm is based on the follow-
ing assumptions,

e recovery requests can be preempted by other recov-
ery requests or by periodic tasks.

¢ calculation of the responsiveness levels will be made
progressively, according to the order given by the
RA.

e recovery requests have the same deadline of its cor-
responding faulty task.

057

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

3 Performance Evaluation

In this section, several simulations have been conducted
to measure the performance of the Responsiveness Al-
gorithm (RA), when using re-execution as the recovery
technique.: The scheduler dispatches tasks using only
the RMS algorithm as long as all deadlines can be met,
and that in the presence of fault recovery workloads the
scheduler must search for slack available in the schedule
for the recovery operation. If there is not enough slack
in the schedule the Responsiveness Algorithm performs
a criticality-driven load shedding mechanism. The per-
formance of the Responsiveness Algorithm described
above is tested through simulations using a synthetic
workload, and compared against the performance of:

¢ RMS without Faults (RMS-NoF). No faults occur,
so all admitted tasks run to completion. This is
an upper-bound of the performance of the schedul-
ing algorithm. We use the schedulability analysis
developed by Lehoczky (Lehoczky, 1989) to verify
whether tasks will meet their deadlines.

e RMS with Faults (RMS-F). Within RMS, the oc-
currence of a fault flags a missed deadline but the
task continues to execute. No slack or recovery cal-
culations are performed in this case.

e RMS with Recovery (RMS-Rec). Within RMS,
when a fault occurs, the recovery operation is exe-
cuted at the same priority as the faulty task. The

recovery operation (re-execution) is executed with-

out considering if there is enough slack for its suc-
cessful execution. Therefore, the scheduler does
not anticipate a missed deadline due to recovery.

¢ RMS with Slack (RMS-Slack). Within RMS, when
a fault occurs, the slack of the faulty task is com-
pared against the computation time of the recovery
operation. If slack is greater, the recovery opera-
tion is executed. Otherwise, a deadline is missed,
but the unused computation time is reclaimed (in
case the fault occurred before the end of the task).
This case is important for the comparison because
it is the closest to the RA, but it does not consider
the criticality of the tasks, as in the RA. Hence it
provides a measure for evaluating the importance
of the criticality factor. RMS-Slack is equivalent
to running RA with the FA level, but without a
criticality-driven load shedding mechanism.

Each data point on the graphs represents the aver-
age of a set of 50 independent simulations, the duration
of each simulation is chosen to be 50,000 time units.
The algorithms are executed on tasks sets consisting of
10 periodic tasks, whose parameters are generated as

058

follows. The worst-case execution time C; is chosen as
a random variable with uniform distribution between 5
and 20 time units. The period T} is computed as a value
equal to T; = NC;/U, where N is the total number of
tasks and U =) Uj is the load of the task set (recall
that U; = C;/T;). U is a parameter that varies between
75% and 110%. The task set is sorted based on its com-
putation time, in a way that the lowest priority task has
also the lowest computation time.

For each simulation run, we added a recovery work-
load to the load of the system. The recovery workload
is periodic and varied in our experiments between 1%
and 10% of the CPU load. We only show the results for
10% for presentation purposes. For the other values,
the curves get closer as the recovery workload decreases
(i-e., the performance of all algorithms is approximately
the same when the recovery workload is 1%). We chose
10% as the upper-bound on the recovery workload fol-
lowing (Siewiorek et.al, 1978). When an instance of
task ¢ is chosen as faulty, the exact time for the fault is
chosen as a random variable with uniform distribution
between 1 and C; time units (the execution time of the
faulty task).

The recovery operation considered is re-execution,
which is always carried out at the same priority as the
faulty task®.

The performance of RA was measured by computing
the Deadline Ratio and the Value Ratio. In the Deadline
Ratio, criticality is not considered; instead every task in
the system has a criticality value equal to one.

Therefore, it is defined as

TnD — NmD
Deadli 0= ————
eadlineRatio) (8)

The Value Ratio is computed including the criticality
value for every task, m(7;).

ValueRatio =
YN {m(r;) * (TnD of 7; — NmD of ;) }
S, {m(r) * (TaD of 3) }

(9)

where: TnD = Total Number of Deadlines and NmD =
Number of Missed Deadlines.

The following sections will describe the performance
studies carried out to evaluate RA with respect to the
RMS Algorithm and its variants. We will show how
the use of criticality can affect the performance of the
algorithms, and how much the reclaiming mechanism
and the behavior of RA can adaptively compensate for

4A search for the best possible priority for recovery might give
better performance to the algorithm, but it may introduce a large
amount of overhead because of the search procedure. For this
reason, in the RA algorithm we allow the recovery at the same
priority of the faulty task, serving as a lower-bound of its perfor-
mance.

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

the performance degradation due to faults, even under
overload conditions. In the first study, performance of
RA is measured without considering criticality. In the
second study, criticality is added to the workload, in
which higher priority tasks always have higher critical-
ity values, m(rp) > m(r,). Finally, in the third study,
criticality is also included into the workload, but higher
priority tasks will have lower criticality values, m(r5) >
m(7o)-

3.1 RA without Criticality

The first performance study (shown in Figure 3), mea-
sures the behavior of the RA algorithm without con-
sidering criticality. That is, every task in the system
has the same criticality value. In this study, it can be
noticed that RA achieves better performance® (misses
less deadlines) than RMS-F and RMS-Rec.

However, RA achieves the same performance than
RMS-Slack. This is because RMS-Slack is equivalent to
running RA with the FA level, but without a criticality-
driven load shedding mechanism.

Notice that RA achieves a deadline ratio close to that
of the RMS-NoF. This means that extracting the un-
used computation time while recovering introduces an
improvement on the Deadline Ratio, despite the extra
functionality of recovery from faults.

RMS-F has the lowest performance among the algo-
rithms tested (much lower Deadline Ratio), reflecting
the recovery workload (10%). Such situation does not

occur with RMS-Rec, RMS-Slack or RA, because they '

can execute recovery operations.

3.2 RA with Decreasing Criticality

In the second performance study (shown in Figure 4),
criticality of the tasks is included. In this case, higher
priority tasks have higher criticality: m(ro) > m(mn).
Criticality of task 7; is equal to the computation time
of task 1,,_; considering (Cp < C1 < ... < Cy).

Notice from Figures 3 and 4 that the performance
of RA with Decreasing Criticality is better than that of
RA without criticality, since the addition of criticality
allows the algorithm to search for more possible ways
to recover a faulty task. More critical tasks (which also
have higher priority) will be allowed to recover instead
of low-criticality tasks.

In this study RA perform better than RMS-F be-
cause RA has the ability to perform recovery and a re-
claiming mechanism for handling the unused computa-
tion time from faulty tasks.

5Note that, when criticality values are the same for all tasks,
deadline ratio is the same as value ratio.

1
0.95
o9 *
2
o
o
@
=
X
0.85
—e— IRMS without Faults
—w— RMS with Faults
0.8 + —a— RMS with Recovery
—e— FIMS with Slack
..... RA
0.75 4 + J
75 80 85 20 95 100 105 110

Load

Figure 3: Performance Evaluation without Criticality,
10% Fault Rate.

It is interesting to compare the performance of RA
with those of RMS-Rec and RMS-Slack. Good perfor-
mance can be observed from RMS-Rec because it always
executes recovery, even when it may cause a deadline to
be missed. This behavior allows RMS-Rec better per-
formance than RMS-F, even under overload conditions.
RMS-Slack achieves better performance than RMS-Rec
because RMS-Slack can reclaim the unused computa-
tion time from faulty tasks, and because it can compute
the slack of the faulty tasks, which allows it to decide
whether or not a recovery request can be serviced, with-
out harming any task deadline.

However, RA achieves better performance than
RMS-Slack, since the reclaiming mechanism of RA and
its criticality-driven load shedding properties allows it
to perform a fine-tuned search of the time available for
recovery and consider the most important tasks.

Further, it is important to note that the responsive-
ness algorithm is aware of overloads, because it detects
when there is no slack in the system at any of the re-
sponsiveness levels. In this case, the unused execution
time of the faulty task is reclaimed by the scheduler and
re-distributed to other tasks in the system.

3.3 RA with Increasing Criticality

In the third performance study (shown in Figure 5),
criticality of the tasks is also considered. In this case,
higher priority tasks have lower criticality: m(r,) >
m(7o). Criticality of task 7; is equal to the computation
time of task 7; considering (Co < C1 < ... < Cp).

The difference between this study and the study with
Decreasing Criticality, is that here we observed worse

059

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

1

0.95 +

09 &

2
©
[t
@
=1
Kl
=
0.85
—e— RMS without Faults
—=— RMS with Faulis
0.8 1 —— RMS with Recovery
—s— RMS with Slack
,,,,, RA
0.75 + + + —
75 80 85 90 95 100 105 110

Load

Figure 4: Performance Evaluation with Decreasing
Criticality, 10% Fault Rate.

performance (Value Ratio decreases more rapidly).

The reason for this behavior is because if a high prior-
ity task suffers a fault and there isn’t enough slack, the
task will not recover because the criticality of the lower
priority tasks is always greater. Since higher priority
tasks execute more frequently and faults are injected
periodically, there will be more chances that they may
miss their deadlines.

However, it is important to note that this study

is similar to RA with Decreasing Criticality, showing
that every algorithm follow the same pattern of behav-
ior (i.e., RA has better performance than RMS-Slack,
RMS-Rec, and RMS-F, in that order).

4 Conclusions

The dependability of real-time software can be improved
by enhancing the robustness of the scheduler in pre-
dicting and controlling the occurrence of timing failures
during recovery. This may be achieved by developing
strategies which allow the scheduler to dynamically con-
trol the manner in which real-time tasks and its time-
critical recovery operations are handled in a timely fash-
ion.

In this paper, a scheme was presented to pro-
vide scheduling guarantees for fault recovery techniques
based on the primary/backup paradigm. A criterion
for providing responsiveness to a fault-tolerant sched-
uler was discussed and some approaches were developed.
An algorithm for supporting dynamic scheduling of re-
covery requests has been developed. Some of the issues
involved in supporting run-time scheduling decisions for

060

0.95 +

o9 r—mw———— o

Value Ratio

0.85 +

—e— RMS without Faults
—=— RMS with Faults

0.8 -+ —a— RMS with Recovery
—»— RMS with Slack
----- RA
0.75 |
75 80 85 90 95 100 105 110

Load

Figure 5: Performance Evaluation with Increasing Crit-
icality, 10% Fault Rate.

recovery were illustrated by simulation studies with syn-
thetic workloads. The studies illustrate the effective-
ness of the Responsiveness Algorithm with respect to
the Rate Monotonic Scheduling Algorithm and its vari-
ants. It shows how the use of criticality can affect the
performance of the algorithms, and how much reclaim-
ing mechanisms and the behavior of RA can adaptively
compensate the performance degradation due to faults,
even under overload conditions.

Currently, this scheduling approach is being ex-
tended to consider dynamic-priority real-time systems
and more in-depth studies of overloaded systems.

References

Betatti R., Bowen N.S., Chung J.Y. “On-Line
Scheduling for Checkpointing Imprecise Computation”,
Proceedings of the Fifth Euromicro Workshop on Real-
Time Systems, pp. 238-243”, 1993.

Burns A., Prasad D., Bondavalli A., Gian-
domenico F, Ramamritham K, Stankovic J . St-
rigini L. “ The Meaning and Role of Value in Schedul-
ing Flexible Real-Time Systems”, Journal of Systems
Architecture, Vol. 46, pp. 46-77, 2000

Davis R.I. “On Exploiting Spare Capacity in Real
Time Systems”, PhD. Thesis, Dept. CS. U. of York,
U.K, 1995.

Fohler G. “Adaptive Fault Tolerance with Statically
Scheduled Real-Time Systems”, Proceedings EuroMicro
Workshop on Real-Time Systems, Toledo, Spain 1997.

P. Mejia Alvarez: Scheduling Fault Recovery Operations in Real-Time Systems

Ghosh S. “Guaranteeing Fault-Tolerant Through
Scheduling in Real-Time Systems”, PhD. Thesis, Dept.
Computer Science. University of Pittsburgh, , 1996.

Kopetz H., Kantz H., Grunsteidl G., Push-
ner P., Reisinger J. “Tolerating Transient Faults in
MARS?”, Proceedings Symp. on Fault Tolerant Comput-
ing (FTCS-20), pp. 446-473. IEEE 1990.

Koopman P. “Embedded System Design”, Proceedings
of the International Conference on Computer Design
(ICCD 96), October 7-9, 1996 - Austin, TX. IEEE.

Ghosh S., Melhem R., Mossé D. “Fault Tolerant
Rate Monotonic Scheduling”, J. of Real-Time Systems,
October 1998.

Ghosh S., Melhem R., Mossé D. “Enhancing Real-
Time Schedules to Tolerate Transient Faults”, Proceed-
ings of the IEEE Real Time Systems Symposium, 1995.
pp. 120-129.

Gonzalez O., Shrikumar H., Stankovic J., Ra-
mamritham K. “Adaptive Fault Tolerance and Grace-
ful Degradation under Dynamic Hard Real-Time Sys-
tems”, Proceedings of the IEEE Real Time Systems
Symposium, 1997.

Joseph M., Pandya P. “Finding Response Times in
a Real-Time System”, Computer Journal, pp-390-395,
October 1986.

Lehoczky J. “Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines”, Proceedings of
the IEEE Real Time Systems Symposium, pp. 201-209,
1990.

Lehoczky J., Sha L., Ding Y. “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Av-
erage Case Behavior”, Proceedings of the IEEE Real
Time Systems Symposium, pp. 166-171, 1989.

Liu C.L., Layland J. “Scheduling Algorithms for
Multiprogramming in Hard Real-Time Environments”,
Journal of the ACM 20(1):46-61, January 1973.
Malek M. “A Consensus-Based Model for Responsive
Computing”, IEICE Transactions on Information and
Systems., Vol. E76-D, No.11, Nov. 1993.

Punnekkat S. “Schedulability Analysis for Fault Tol-
erant Real Time Systems”, PhD. Thesis, Dept. Com-
puter Science, University of York, June 1997.

Ramos-Thuel S., Strosnider J. “The Transient
Server Approach to Scheduling Time-Critical Recovery
Operations”, Proceedings of the IEEE Real Time Sys-
tems Symposium, 1991.

Ramos-Thuel S., Lehoczky J.P. “Algorithms for
Scheduling Hard Aperiodic Tasks in Fixed Priority Sys-
tems using Slack Stealing”, Proceedings of the IEEE
Real Time Systems Symposium, 1994.

Ramos-Thuel S. “Enhancing Fault Tolerance of Real-
Time Systems Through Time Redundancy”, PhD. The-
sis. Department of Electrical and Computer Engineer-
ing, Carnegie Mellon, University, May 1993.

Sprunt B., Sha L., Lehoczky J.P. “Aperiodic Task
Scheduling for Hard Real-Time Systems”, Journal of
Real-Time Systems, 1989.

Siewiorek D.P., Kini V., Mashburn H., Mec-
connel S., Tsao M. “A Case Study of C.mmp, Cm*,
and C.vmp: Part 1 - Experiences with Fault Tolerance

‘in Multiprocessor Systems”, Proceedings of the IEEE,

66(10):1178-1199, Oct. 1978.

Tia T.S., Liu J., Shankar M. “Algorithms and Opti-
mality of Scheduling Soft Aperiodic Requests in Fixed-
priority Preemptive Systems”, Journal of Real-Time
Systems, January 1996.

Pedro Mejia Alvarez was born in Morelia, México in 1963. He received his BS degree in computer systems

engineering from ITESM, Queretaro, Mexico, in 1985, and a PhD degree in informatics from the Universidad
Politécnica de Madrid, Spain, in 1995. He has been an assistant profesor in Seccion de Computacion CINVESTAV-
IPN Mexico since 1997. In 1999, he held a research faculty position it the Department of Computer Science at
the University of Pittsburgh and, in 2000, a visiting assistant professor position in the Department of Information
Sciences and Telecommunications at the University of Pittsburgh. Previously, he held a researcher position at
the Electrical Research Institute in Cuernavaca, Mexico, where he was involved in the design and implementation
of a multiprocessor real-time operating system for a SCADA system for electrical substations. He is a fellow of
the National System of Researchers of Mexico (SNI). His main research interests are real-time systems scheduling

adaptive fault tolerance, and software engineering.

