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Abstract

In  Pattern Recognition problems (feature selection, supervised
classification, unsupervised classification, etc.) data modifications are
very common. This due to many reasons, for example: data acquisition
error fixing; specialist changes sample classification; elimination of some
data; new data; etc. Then, many times it is necessary to repeat some
calculations in order to include this data modifications. This could be too
expensive, in the computational sense, depending on the complexity of the
recognition algorithm used. Because of this, it will be very useful if you
can adjust already obtained results to the modified data, without have to
apply the recognition algorithm again.

In this work, we study some logical combinatorial pattern recognition
problems (Martinez-Trinidad and Guzman-Arenas, 2001, Ruiz-Shulcloper
et al., 1999) to find how do results change, when data is modified. We call
this process Sensitivity Analysis. Sensitivity Analysis has as objective to
find methods to adjust results when data is modified, but with lower
complexity than original algorithm. We do this study for Zhuravlev typical
testors, typical &:testors, Goldman typical testors and crisp and fuzzy
connected sets.

Keywords: Logical combinatorial pattern recognition, dynamic data,
testor theory, unsupervised classification.

Resumen

En problemas de reconocimiento de patrones (seleccion de variables,
clasificacion ~ supervisada,  clasificacion no  supervisada, elc.,)
frecuentemente se presentan modificaciones en los datos. Esto debido a
diversas razones, por ejemplo: errores en la adquisicion de los datos;
reconsideracion por parte del especialista en cuanto a la clasificacion de
algunos objetos; eliminacion de algin dato; aparicion de nuevos datos:
etc. Por lo cual, en muchas ocasiones es necesario repetir los cdlculos
para incluir dichas modificaciones. Esto puede ser muy costoso
computacionalmente, dependiendo de la complejidad del algoritmo de
reconocimiento utilizado. Debido a esto. resultaria de gran utilidad poder
ajustar los resultados, ya obtenidos, a las nuevas condiciones (fruto de las
modificaciones) sin tener que aplicar el algoritmo original sobre los datos
modificados.

In este trabajo estudiamos algunos problemas dentro del reconocimiento
légico combinatorio de patrones (Martinez-Trinidad y Guzmdn-Arenas,
2001; Ruiz-Shulcloper et al., 1999) para encontrar como cambian los
resultados cuando los datos son modificados. Nosotros llamamos a este
proceso Andlisis de Sensibilidad. El proceso de Andlisis de Sensibilidad
tiene como objetivo encontrar métodos para ajusta los resultados cuando
los datos son modificados, pero con una complejidad menor que la del
algoritmo original. Este estudio lo realizamos para los testores tipicos de
Zhuravlev, g testores tipicos. testores tipicos de Goldman y componentes
conexas duras y difusas.

Palabras clave: Reconocimiento 16gico combinatorio de patrones, Datos
dinamicos, Teoria de testores, Clasificacién no supervisada.
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1 Introduction

A pattern recognition algorithm is an algorithm to solve a
problem of feature selection, supervised classification,
partially supervised classification or unsupervised
classification.

Suppose A({p;,...,p.}) is a pattern recognition algorithm
with parameters py,...,p,, where the parameter set could be
empty. Let M be a data set and let R be the result of
applying A({pi,...,p.}) to M. This will be denoted by
A({p1;---pu})(M)=R.

We say that the sensitivity of R is the way R changes
because of modifications to M, with fixed A({p,,...,p.}), or
fixing M and changing some of A's parameters.

We call Sensitivity Analysis to the process of searching
for methods to adjust R when M or some of the parameters
change.

We do sensitivity analysis in testor theory for Zhravlev's
typical testors, typical e:testors and Goldman’s typical
testors. In all cases, behavior of the set of all typical testors
was described by mean of a set of theorems. We propose
and prove a theorem for describing the behavior of the set
of all typical testors for each one of the different types of
modification. Based on this theorems we define a method to
adjust the set of all typical testors for each kind of
modification. Complexity is analyzed and some
experimental tests was done.

The solution of the sensitivity analysis for the case of data

addition, allows us to define an incremental algorithm. So,
also a new incremental algorithm for each kind of typical
testor is defined. We do some experimental tests with these
incremental algorithms.
Additionally, we do sensitivity analysis for the clustering
problem. We found some results for crisp and fuzzy
connected sets. A new method to deal with modifications is
described and some experimental tests are done.
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2 Sensitivity Analysis for
Zhuravlev’s Typical Testors

Let U be a universe of objects structured in classes.
Suppose that a sample of each class is available. Each
object in U is described in terms of R={xXy,...,Xq}, the
feature set used to study these objects. As a description of
an object O we understand the n-uple 1(0)=(x,(0),....x«(0))
where x;(0) is the value of the feature x; at the object O,
with i=1,..,n. Analogously, as a subdescription of O in
terms of features X; ,...X; We understand the s-uple

(xil (O)’---’Xis (0)). From here on, we shall use the terms

"object description" and "object” interchangeably.
Similarly, we shall denote 1(O) and O to refer to the
description of the object O.

Suppose that a training sample has a matrix representation
M, that is, object descriptions are stored in a matrix with as
many columns as features and as many rows as objects in
the sample. These rows are the object descriptions and they
are grouped in r disjoint classes.

We use the next extended Zhuravlev's testor definition.
Let M be a training matrix with m rows, grouped in r
classes (not necessarily disjoint), Ki,..,K;, r=2, and n

> roe
columns. The set t={ X, e X 1cR is a testor of M if and

only if after eliminating from M all columns except the
ones in t, new equal subdescriptions in different classes do
not appear.

From the set of all testors of a matrix M, there are some
testors, which are irreducible. That is: if any feature is
eliminated from them, then they stop being testors. That
means, they confuse objects belonging to different classes.

These testors are called typical testors.

From here on we shall use x; to refer to both the column
with index "i" of M and the feature x;.
In order to speed up algorithms for calculating all typical
testors, we introduce some additional concepts and a new
testor characterization.
Let C; be a Boolean comparison criteria for the feature x;,
i=1,...,n. such that:

0 if xi(Op)and'xi(Oq)coincide
1 inother case

Ci(xi(op)vxi(oq))={

The term difference matrix of M, is applied to a Boolean
matrix MD composed by rows containing at least one 1,
which is constructed as follows:

S;=(all o all), i, 14,=1,am,
where !} =C,(x,(0), x(0)), p=1,....n, and if O;eK, then

0K, s=1,....1. The cardinal number of MD, denoted by
m’, is given as:

=1 T
m'=3 Y K[KY

i=lt=i+l

where Kj| is the number of objects of M belonging to K;,

i=1,...r.

Proposition 2.1.- Feature set 7={x; ,...,X;_} Is a testor

of M if and only if after eliminating from MD all
columns except those of 1, there is no row with only
Zeros.

The proof is immediate. Indeed, if there is no row with
only zeros, it means that there is no pair of objects
belonging to different classes that coincide on all features
from T, and this is the testor definition.

This proposition is a testor characterization based on the
difference matrix concept.
We denote by T(M) (TT(M)) the set of all (typical) testors
of M. Analogously, we denote by T(MD) (TT(MD)) the set
of all (typical) testors of MD.

Corollary 2.1.- T(M) = T(MD).
Corollary 2.2.- TT(M) = TT(MD).

It is clear that the search for all (typical) testors from MD
has some advantages:

1. The comparison between two

objects is made only once;

2. The search is made over a Boolean

Matrix;

3. This testor characterization (proposition 2.1)
could be programmed more efficiently than
Zhuravlev's definition (extended).

Nevertheless, there is a difficulty, the number of rows in
MD is quadratic whit respect to the number of rows in M.
So, even though the search on MD is more advantageous
than the search on M, m’ is a very large number. In order to
avoid this difficulty, we introduce a process that reduces
both m’ and the number of ones in MD.

If p and t are two rows of MD, then we say that p is a sub-
row of t if and only if:

a) Vj (a,=1 = a;=1) (thas I everywhere p has 1)
b) 3k (au=! A ay=0) (there
is at least a column such that t
has 1 and p has 0)
also we say that t is a super-row of p.

Let t be a row of MD. Then, t is called a basic row of MD
if and only if MD does not have any row t’ such that t’ is a
sub-row of't.

Given a difference matrix MD, the matrix MB that has
exclusively basic rows of MD (without repetition) is called
basic matrix.
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Obviously, MB is also a Boolean matrix. Although
reduction is not always the same (because it depends on
distribution of ones in the difference matrix) we have found
matrices with 32 and 125 rows, whose basic matrices have
4 and 15 rows respectively. This gives us an idea about how
many rows could be eliminated. Likewise the number of
ones in MB is smaller than in MD.

It is important to say that the process of calculating MD

and MB from M is very fast, and using MB is an actual
advantage for calculating all typical testors.
However, if we want to use MB to calculate all typical
testors, first we must prove that the elimination of not basic
rows of MD does not change the set of all testors, and as a
consequence, neither does it change the set of all typical
testors. This is shown in the next proposition and its
corollaries.

Proposition 2.2.- TIMD) = T(MB), where T(MB) is the
set of all testors of MB.

Proof--
Obviously, if MB=MD, then T(MD)=T(MB). Then,
suppose that MB=MD.

a) Let teT(MD) be a testor of MD, then after
eliminating all columns from MD except ones of t,
there is no row with only zeros. But MB’s rows are a
subset of MD’s, then neither does any row with only
zeros appear in MB, and so te T(MB).

b) Let teT(MB) be a testor of MB, then after
eliminating all columns from MB except ones of t,
there is no row with only zeros. Like MB#MD, there is
a row fe MD\MB, that is, a row of MD such that it is
not a basic row. Then there is a row f"e MB such that °
is a sub-row of f. It tells us that f has 1 wherever f* has
| and at least in one other position. Since f'eMB, f’
has not only zeros in all positions corresponding to the
features of t, and so neither has f. Note that it is for any
row fe MD\MB, from which we can deduce that in MD
no row with only zeros appears either, after eliminating
all columns except ones of't, that is, te T(MD).e

Corollary 2.3. - TT(MD) = TT(MB), where TT(MB) is
the set of all typical testors of MB.

Based on the basic matrix concept, many algorithms to
calculate the set of all typical testors have been developed,
but all of them has exponential complexity in the worst
case. Then, it is very expensive to apply any of these
algorithms each time that a modification occurs. So, we do
Sensitivity Analysis. First we analyze which kind of
modifications can appear.

All possible alterations to a training matrix M can be
summarized in 4 cases: delete a column; add a column;
delete a row; add a row, or in successive compositions of
them. For this reason, we only study how does the set of all
typical testors change because of each of this 4 types of
alterations. Figure 1 shows these cases and their effect over
the basic matrix MB.
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Alteration on M Effect on MB

Delete a feature | The corresponding column is
eliminated. If some row quits being
basic, it is eliminated.

Add a feature The corresponding column is added. If

new basic rows appear, they are added.

Delete an object | Rows that come from the comparisons
with the deleted object are eliminated. If

new basic rows appear, they are added.

Add an object | Rows that quit being basic, when new

rows appear in MD, are eliminated. [f

new basic rows appear, they are added.

Fig. 1. Possible alterations on M and their effects on MB

An immediate consequence of the typical testor concept is
the following:

Let t={X; ,...x; } be a testor of MB. t is a typical testor of

MB if and only if there is in MB a set of s rows (associated
to t) F={f; ,...f; } such that the submatrix constructed

only with these rows and columns is a diagonal matrix save
for permutations. That is, each row and each column have
only one 1. So if any column is eliminated then appears a
row with only zeros. Given a t, F, could not be unique. The
set of the entire possible F, is denoted by F,.

Without loss of generality, we are going to consider to the
basic matrix as a set of rows, and each row as a set of those
features, which there is a 1 in the corresponding column.

Behavior of the set of all typical testors when there is a
change on the basic matrix is shown in the following
theorems.

Theorem 2.1.- Let MB’ be the resultant basic matrix after
eliminating the column x; from MB, then T’=T\T, where:
T is the set of all typical testors of MB’
T is the set of all typical testors of MB
T; is the set of all typical testors of MB,
which contain to x;.
Theorem 2.2.- Let MB’ be the resultant basic matrix after
adding the column x,,, to MB, then T’=TUT’,,, where:
T is the set of all typical testors of MB’
T is the set of all typical testors of MB
T 01 is the set of all typical testors of
MB which contain to x,,;.

Let MR be the resultant matrix after eliminating a row f;
from a basic matrix MB and all columns that have 1 in f;.
MR is not necessarily a basic matrix, but MR contains a
basic matrix, we denote this basic matrix as MB’’.

Theorem 2.3.- Let MB’ be the resultant basic matrix
after eliminating the row f; from MB, then T’=T\T,u T,
where:

T is the set of all typical testors of MB’

T is the set of all typical testors of MB

Ty = {teT| there is a set F,e F, with fieF, and

there is not a row f=fi such that
(FMEDO{f er}
T, is the set of all typical testors of MB”’
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Theorem 2.4.- Let MB’ be the resultant basic matrix
after adding the row fi4, to MB, then T'=T\T,u T,

where:
T is the set of all typical testors of MB’
T is the set of all typical testors of MB
To = {tGT | tmfk+1:®}

T, = { | v=tu{x}, teTy, xi€fi,
there is no toe T\T, with toct’}

Proofs for these theorems can be found in (Carrasco-Ochoa,
2001)

Based on theorem 3.4 we define a new incremental
algorithm, adding all of the rows of MB, one at each time.

2.1 Experimental Tests

In order to show the performance of the proposed methods
(Incremental Algorithm and Sensitivity method) its
runtimes were compared with CC and CT runtimes. CC and
CT was algorithms with the best performance (Sanchez-
Diaz, 1997). Tests was done with matrices from 15 to 30
features. Figure 2 shows results for the case of row
addition.

1400
1200
1000 4

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 2. Graph for runtimes of CC, CT, new Incremental algorithm
and Sensitivity method for row addition

3 Sensitivity Analysis for Other
Problems

We do Sensitivity Analysis for typical e:itestors and
Goldman typical testors (Lazo-Cotés er al.). In both case we
describe behavior using theorems for each kind of
modification. Also we define a new incremental algorithm
based on the row addition theorem. Again, experimental
tests was done with excellent results.

Additionally, Sensitivity analysis was done for fuzzy and
crisp connected sets (Carrasco-Ochoa, 2001). In this case
we propose sensitivity methods based on depth-first
spanning trees and graph theory.

4 Conclusions

The main result of this work is the fact that the new
sensitivity methods reduce the needed work to calculate the
new set of all typical testors, when there are modifications
on the basic matrix. This, for'Zhuravlev’s typical testors,
typical e:testors and Goldman typical testors. Also it is
possible to adjust connected sets after modifications.

Now we are working on Sensitivity Analysis for compact
sets and strong compact sets.
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