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Abstract--The classical Ordinary linear Least Square 

approximation (OLS) model has been used as the best fit 

regression for linear trend data.  In data analysis, the accuracy of 

analysis depends on the model as well as the metric used to 

measure the error. Singular Value Decomposition (SVD) is also 

applied for Normal linear Least Square (NLS) approximation 

along the perpendicular to the approximating line. The OLS line 

is not sensitive to temporal variation in time variables whereas 

SVD is sensitive, it renders OLS less suitable for time sensitive 

data. Both OLS and SVD use quantitative metric for regression 

analysis, and SVD has inherent constraints. Propensity score 

analysis is an innovative class new technique for qualitative error 

analysis. Propensity score method is easier to communicate to 

non-expert audience. Moreover, propensity score estimates are 

often more robust than the percent error estimates of predicted 

values over the true values. Herein we present a hybrid algorithm 

that achieves a balance between quantitative and qualitative 

approximation accuracy of both OLS and NLS (SVD).  This 

metric has also proved useful for evaluating the effects of 

treatments in real patient data. This technique is also suitable for 

anomaly removal.  Visualization is a preferred way to ascertain 

the quality of a new algorithm and is used to demonstrate the 

hybrid algorithm. We have applied this criteria  for comparison 

with other existing methods. We have found that this technique is 

reliable and preferable to explain to the expert as well as non-

expert. The empirical tests show the accuracy improvements over 

conventional methods. 

Index Terms--least square regression, singular value 

decomposition, propensity, anomaly, accuracy, precision, 

learning management systems 

I. INTRODUCTION 

he regression analysis is used to determine the correlation 

between variables and predicting value of dependent 

variables.  The linear regression is a reliable model to predict 

the value of a dependent variable[1]. This assumes that only 

one of the variables has error. In empirical data, sometimes the 

error permeates both the variables [2]. There may be other ways 

also to establish relation between independent and dependent 

variables, then we have to distinguish between different 

universally accepted minimum-error algorithms [3]. For data 

analysis, most of the time raw data is not directly applicable to 

analysis algorithms directly. It is mandatary to cleanse data for 

reliable and accurate regression analysis.  Thus, it is expected 

that the data is accurate otherwise the prediction analysis will 

be unreliable. If the data is correlated and noisy, it is 

indispensable to transform the data into uncorrelated and noise 

free data to prevent overfitting. In such cases, anomaly 

reduction is mandatory.  Some smoothing operation is 

performed to bring data in line with the approximation concept 

before applying the learning algorithm. Cleansing is a natural 

phenomenon, e.g. the physicians use sharp blades to perform 

incisions, we wash edibles before eating to stay healthy.  Data 

smoothing may be performed via filtering with some kernel or 

via data noise reduction.  Furthermore, the numerical data may 

be standardized by mean-centering and unit standard deviation 

etc. Some related algorithms are not equivalent [4]. The 

approximation error measurement depends on the metric 

applied  to analyze approximation. Cognitive modelling is one 

of the representative research methods in cognitive sciences. 

For cognitive model to be viable, it must be verifiable by using 

well thought metric [5]. We leverage these techniques to devise 

a cognitively acceptable minimum-error scheme based on 

propensity metric in conjunction with Euclidean metric.  Data 

dimensionality reduction can be effectively done via SVD, 

SVD uses dimension reduction operation in the latent space.  

This step yields  noise reduction when the data is transformed 

back to original space. Such algorithms use relaxation 

technique to obtain improved hybrid approximation algorithm.  

For multivariable data, (x,y), x, y are vectors, most of the 

time y is scaler valued. The simplest case occurs in 2D when 

both x, y are scalar valued, it is easy to comprehend. In the 

simplest case,  linear least square regression is a straight line.  
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This linear representation model approximates the non-

parametric data points (xi,yi) with points  (xp,yp) on a parametric 

line. Since a line is uniquely defined by two points, it has two 

parameters, intercept, a, and slope or elevation, b.  The line is a 

parametric representation of data.  One of the models, measures 

error along the y-axis.   In other words, xi = xip, yip = a + b xip 

such that the sum of squares of errors is minimum, error E1 = 

∑k=1,n (xk - xkp)2 + (yk - ykp)2  = ∑k=1,n  (yk - a - b xk)2.  

In statistical analysis, the accuracy of approximation depends 

on several parameters. One such parameter is the metric used 

to measure the approximation error.  Each metric has its own 

merits. For OLS, there are several issues. For least square 

approximation, it is in fact approximation in y direction, not 

min distance perpendicular to the approximation line [6], [7], 

[8]. In order to correct this, we devise a true line at min-distance 

from the input data, normal distance least square fit line, NLS 

[9]. We call it normal linear least square approximation (NLS) 

similar to ordinary linear least square approximation (OLS). 

NLS may become complicated for multiple dimensions, we 

also show that linear algebra SVD can be leveraged to achieve 

NLS more easily [10].  Finally, we see that OLS is not sensitive 

to data spread, NLS will also correct this deficiency of OLS.  

We also define a new metric, propensity scoring metric (PSM) 

for OLS, NLS and hybrid algorithms for pairwise comparison. 

Propensity score has been used in other areas for estimating the 

effect of a treatment, policy or other causal effects [11]. We 

will show the effect of new metric as compared to OLS and 

NLS metrics. We show that the hybrid algorithm achieves a 

balance between quantitative and qualitative approximation 

accuracy of both OLS and SVD.  Also, it will be shown that it 

can be used for noise and anomaly reduction. Thus, there are 

several approaches to approximate data linearly: ordinary 

linear least square regression (OLS), (new) normal linear least 

square regression (NLS), singular value decomposition linear 

least square regression (SVD), (new) hybrid linear least square 

regression (HLA).  To measure the accuracy of approximation, 

there are several measures: quantitative and qualitative. 

Knowing what technique and metric to use makes all the 

difference in analysis and makes most out of data.  That way 

one spends less time on justifying the conclusions. The 

challenge is the decision making on the metric used to 

approximate. The intent of this paper is the design a 

greedy(hybrid) algorithm that yields better approximation than 

the OLS and NLS/SVD approximation algorithms, also a way 

to detect and remove anomalies in the training data.  

The paper is organized as follows: Section II gives 

background and  justification for the work. It describes OLS, 

NLS in Rn and computation by mean-centering data, Section III 

derives new NLS formulation, Section IV describes SVD and 

it connection to NLS, Section V gives new hybrid greedy 

algorithm and its implementation, error analysis of OLS, 

NLS/SVD, and Hybrid algorithms is provided with respect to 

both metrics, it introduces propensity score metric (PSM) and 

anomaly reduction, Section VI is conclusion, Section VII is an 

appendix giving all the necessary details about linear algebra.  

II. BACKGROUND 

Here data is represented as a matrix of real values. It is easier 

to work with data if it is standardized. Simple example of 

standardization is mean-centering data with unit standard 

deviation. Ordinarily the reference point of data is the origin, 

mean-centering implies that the centroid of data is translated to 

the origin. We will soon see how mean-centering simplifies the 

computations. 

Let the data be represented by an m×n real matrix A, i.e., m 

rows of  n-vectors or n columns of m-vectors. If x is column of 

A, the mean of x is denoted by �̅�, where  �̅� =
∑ 𝑥𝑖𝑖=1,𝑚

𝑚
 .   To 

centralized x, it is translated to x - �̅� .  Similarly, if y is row of 

A, it is centralized as y - �̅�, where the mean of y is �̅� =
∑ 𝑦𝑖𝑖=1,𝑛

𝑛
.  

Further, if x and y are both rows (or both columns), the mean 

of dot product of x  and y is denoted by 𝐱𝐲̅̅ ̅ =  
𝐱•𝐲

𝑛
=

∑ 𝑥𝑖𝑦𝑖𝑖=1,𝑛

𝑛
,  

for x = y, it is denoted by  𝐱2̅̅ ̅ =
𝐱•𝐱

𝑛
=

∑ 𝑥𝑖
2

𝑖=1,𝑛

𝑛
 .  Most of the 

linear transformations are performed by means of matrix 

multiplication, for example, centralization is a linear 

transformation for mean-centering a matrix [12].  There is an 

immaculate transformation Tm to mean-center the columns of 

A as follows. Let Im be m𝑥m identity matrix, em be a column 

m-vector of ones, and Tm = Im - emem
T/m.  This Tm is called the 

column centralizer. For example, if x is a column vector then  

Tmx = Im x - emem
Tx/m = x - emem•x/m = x - �̅�em   

or in short x - �̅� where �̅�  is the mean of x.  This Tm applied 

on the left of A, it centralizes columns of the matrix.  Similarly, 

if Tn is multiplied on the right of A, the ATn mean-centers the 

rows of A. For example, for row vector y:  

yTn  = y In - y enen
T/n= y - y •en en

T /n = y - �̅�en
T  

Centralizing data simplifies computations by reducing the 

number of parameters to be computed. After preforming 

analysis on mean-centered data, data origin is translated back 

to the centroid. This is a standard technique used for 

computational simplification and for visualization in graphics 

[13], [14].  

 

A.1 Linear Least Square Approximation 

There are two ways to compute linear least squares 

approximation. It depends on the concept of approximation. 

One way is to find line at shortest distance perpendicular to the 

desired line. Another way is to minimize the distance along a 

vertical coordinate axis, e.g, y -axis. Both methods accomplish 

specific tasks and the corresponding approximation errors are 

different. A hybrid approach is doubly robust estimator at 

increased cost and reduced error, propensity metric shows a 

remarkable improvement. The hybrid technique generalizes the  

line to polygonal line that effectively improves the pointwise 
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accuracy without the risk of overfitting data. This method is 

qualitative for measuring the accuracy of points are closer to 

the approximation rather than the quantitative distance error. 

We focus on more qualitative accuracy in data approximation 

rather than absolute error, that may be attributed to 

anomalies/outliers. 

 

A.2 Conventional Ordinary Linear Least Square 

Approximation (OLS) 

For n× (m+1) input data, the rows are of the matrix are 

composite  x (x is m-vector) and y coordinates of data points, 

that is, m-vector x elements are attributes, and scalar y is an 

associated value. For notation, xi  refers to the ith row, xij, refers 

to the element in the i-th row, j-th column. There is short-cut 

notation x*k  represents a column of the k-th element of all rows, 

and  𝑥𝑘̅̅ ̅ is the mean of the column of kth elements x*k of all row 

vectors.  For clarity, note that xk  refers to the kth row/ attribute 

vector of vectors, whereas  𝑥𝑘̅̅ ̅  represents mean of the k-th 

attribute.  We want to find a linear least square approximation 

hyperplane.  First, for hyperplane  

y = a + bT x  = a +∑k=1,m bk xk, we need to calculate  

parameters a and b that minimize the function   

f(a, b)=∑ (𝑦𝑖 − 𝑎 − 𝒃𝑇𝐱𝐢)
2

𝑖=1,𝑛 .   

That leads to two equations 
𝜕𝑓(𝑎,𝐛)

𝜕𝑎
 =  ∑ (𝑦𝑖 − 𝑎 − 𝒃𝑇𝐱𝑖)𝑖=1,𝑛 = 0    (1) 

and  
𝜕𝑓(𝑎,𝐛)

𝜕𝑏𝑘
 =   ∑ (𝑦𝑖 − 𝑎 − 𝒃𝑇𝐱𝑖)𝑥𝑖𝑘𝑖=1,𝑛 = 0    (2)  

 

Let 𝑥𝑘̅̅ ̅ =
∑ 𝑥𝑖𝑘𝑖=1,𝑛

𝑛
,  �̅� =

∑ 𝑦𝑖𝑖=1,𝑛

𝑛
,  𝑥𝑘𝑦̅̅ ̅̅ ̅ =

∑ 𝑥𝑖𝑘𝑦𝑖𝑖=1,𝑛

𝑛
,    

     𝑥𝑘
2̅̅ ̅̅̅ =

∑ 𝑥𝑖𝑘
2

𝑖=1,𝑛

𝑛
,   

the first equation (1) becomes  

  �̅� = 𝑎 + 𝒃𝑇  �̅� which implies that the regression plane 

passes through the centroid (�̅�, �̅�).  

The second equation (2) implies that for k=1,m these m 

equations  are 

    ∑ (𝑦𝑖 − 𝑎 − ∑ b𝑗𝑥𝑖𝑗𝑗=1,𝑚 )𝑥𝑖𝑘𝑖=1,𝑛  =0 

    ∑ (𝑥𝑖𝑘𝑦𝑖 − 𝑎𝐱𝑖𝑘 − ∑ b𝑗𝑥𝑖𝑗 𝑥𝑖𝑘𝑗=1,𝑚 )𝑖=1,𝑛  =0 

which means  

 𝑥𝑘𝑦̅̅ ̅̅ ̅ = 𝑎𝑥𝑘̅̅ ̅ + ∑ b𝑗𝑥𝑗𝑥𝑘̅̅ ̅̅ ̅̅  𝑗=1,𝑚  

   𝑥𝑘𝑦̅̅ ̅̅ ̅ = 𝑎𝑥𝑘̅̅ ̅ + 𝒃𝑇 𝐱 𝑥𝑘̅̅ ̅̅ ̅.    

 

Now     �̅� = 𝑎 + 𝒃𝑇  �̅� and    

  𝑥𝑘𝑦̅̅ ̅̅ ̅ = 𝑎𝑥𝑘̅̅ ̅ + ∑ 𝐛𝑗𝑥𝑗𝐱𝑘̅̅ ̅̅ ̅̅  𝑗=1,𝑚   for k=1,m 

That is  

   ∑ b𝑗xjxk̅̅ ̅̅ ̅ 𝑗=1,𝑚  = 𝑥𝑘𝑦̅̅ ̅̅ ̅ − 𝑎𝑥𝑘̅̅ ̅  (1) 

Also              �̅� = 𝑎 + 𝒃𝑇  �̅� can be expanded as 

                             �̅� = 𝑎 + ∑ b𝑗𝑥�̅� 𝑗=1,𝑚  

 Multiply by 𝑥𝑘̅̅ ̅ 

                           𝑥𝑘̅̅ ̅  �̅� = 𝑎𝑥𝑘̅̅ ̅ + ∑ 𝑥𝑘̅̅ ̅b𝑗𝑥�̅� 𝑗=1,𝑚  

Or  

                           ∑ 𝑥𝑘̅̅ ̅b𝑗𝑥�̅� 𝑗=1,𝑚     =  𝑥𝑘̅̅ ̅  �̅� − 𝑎𝑥𝑘̅̅ ̅  (2) 

Subtracting (2) from (1) 

We get  ∑ b𝑗𝑥𝑗x𝑘̅̅ ̅̅ ̅̅ − b𝑗𝑥�̅� 𝑗=1,𝑚 𝑥𝑘̅̅ ̅  =  𝑥𝑘𝑦̅̅ ̅̅ ̅ −  𝑥𝑘̅̅ ̅  �̅� 

or      ∑ (𝑥𝑘𝒙j̅̅ ̅̅ ̅̅  −  𝑥𝑘̅̅ ̅ 𝑗=1,𝑚 𝑥�̅�)b𝑗 =  𝑥𝑘𝑦̅̅ ̅̅ ̅ −  𝑥𝑘̅̅ ̅ �̅�  

in m unknowns b𝑗.      

These equations can be rewritten in terms of symmetric 

coefficient matrix is  

 [ 𝑥𝑖𝒙j̅̅ ̅̅ ̅ − 𝑥�̅� 𝑥�̅�  ] b = [ 𝑥𝑖𝑦̅̅ ̅̅ −  𝑥�̅� �̅� ] 

This gives b.  However since �̅� = 𝑎 + 𝒃𝑇  �̅�, once b is known, 

the offset/bias term a can be efficiently computed from  

a = �̅� − 𝒃𝑇  �̅�  

In the special case, m=1, then k=1, x has only one component 

say x1 = x 

We can solve for a and b to yield [15] 

b = 
𝑥𝑦̅̅ ̅̅ − �̅��̅�

𝑥2̅̅ ̅̅ − �̅� 2
    and   a = 

𝑥2̅̅ ̅̅ �̅� − �̅� 𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅ − �̅� 2
     

It may be noted that for mean-centered data, �̅� = 0, �̅� = 0, it 

results in a=0. 

Briefly, for input data n×2 matrix, columns are x, y coordinates 

of data points, we find a linear least square approximation line. 

Before exploiting any approximation, it is assumed that data is 

accurate, else prediction will also be inaccurate.  For linear 

approximation line y = a + bx, we need to calculate two 

parameters, also called regression coefficients, a and b for 

minimizing of   

f(a, b)=∑ (𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)
2

𝑖=1,𝑛 .   

Using calculus criteria based on derivatives, it leads to two 

equations 
𝜕𝑓(𝑎,𝑏)

𝜕𝑎
 =  ∑ (𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)𝑖=1,𝑛 = 0     

�̅� − 𝑎 − 𝑏 �̅� = 0   (1) 

and  
𝜕𝑓(𝑎,𝑏)

𝜕𝑏
 =   ∑ (𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)𝑥𝑖𝑖=1,𝑛 = 0       

𝑥𝑦̅̅ ̅ − 𝑎�̅� − 𝑏 𝑥2̅̅ ̅ = 0  (2) 

The first equation (1) becomes �̅� = 𝑎 + 𝑏 �̅�, which implies 

that the regression line, y = a + bx,  passes through the centroid 

(�̅�, �̅�). The two equations are 

         �̅� = 𝑎 + 𝑏 �̅� and  𝑥𝑦̅̅ ̅ = 𝑎�̅� + 𝑏 𝑥2̅̅ ̅     

can be solved for a and b to yield 

b = 
𝑥𝑦̅̅ ̅̅ − �̅��̅�

𝑥2̅̅ ̅̅ − �̅� 2
    and   a = 

𝑥2̅̅ ̅̅  �̅� −  𝑥𝑦̅̅ ̅̅  �̅�

𝑥2̅̅ ̅̅ − �̅� 2
     

However since �̅� = 𝑎 + 𝑏 �̅� , once b is known, the offset/bias 

term a can be efficiently computed from a = �̅� − 𝑏 �̅�.  

 

A.3   Mean-Centered data formulation 

Continuing in R2, mean-centering allows us to consider 

regression line through the origin because centroid is translated 

to the origin. The bias term a becomes zero automatically and 

the data becomes unbiased.  To take advantage of 

standardization, The OLS can be simplified for mean-centered 

data, we need to compute only one regression coefficient b for 

minimizing  f(b)=1/n∑i=1,n(yi-bxi)2  
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or  

  f(b) = 1/n ∑i=1,n(yi-bxi)2  

= 1/n ∑i=1,n (yi
2 -2byixi+ b2 xi

2) 
  = 𝑦2̅̅ ̅ − 2𝑏𝑥𝑦̅̅ ̅ + 𝑏2 𝑥2̅̅ ̅ 

That is  

f(b) = 𝑦2̅̅ ̅ − 2𝑥𝑦̅̅ ̅ 𝑏 + 𝑥2̅̅ ̅ 𝑏2 

For calculus based critical values, see [16]. Calculus based 

critical value criteria requires that f’(b) = 0. This leads to 

−2𝑥𝑦̅̅ ̅ + 𝑥2̅̅ ̅ 2𝑏 = 0 or  

b =  
𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅  

So, for mean-centered data, OLS line is  

y = bx, with b =  
𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅  

which is a simpler expression than the raw data computations. 

Since f’’(b) = 2 𝑥2̅̅ ̅ is positive, the critical value is minimum. 

However, if we want to go to the original frame, original 

reference point, we may translate the origin back to the 

centroid, then line translate into original coordinates  

y - �̅� = b(x-�̅�) or y = �̅� - b�̅� + b x  

that is  

  y = a+ b x where a = �̅� - b �̅� 

In this case, only b is to be computed, a is an automatic 

byproduct. 

This gives a line through (0,a) and along the direction 
(1,𝑏)

√ (1+𝑏2)  
 

 

Non-Calculus (algebraic) approach proceeds as follows. 

f(b) = 𝑦2̅̅ ̅ − 2𝑥𝑦̅̅ ̅ 𝑏 + 𝑥2̅̅ ̅ 𝑏2 

Since it is a quadratic (convex) function and 𝑥2̅̅ ̅  ≥ 0, Figure 

1, there is only one minima.  This expression simplifies to  

              f(b)  = 𝑦2̅̅ ̅ − 2𝑥𝑦̅̅ ̅ 𝑏 + 𝑥2̅̅ ̅ 𝑏2 

  =  𝑥2̅̅ ̅( 𝑏   −  
𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅  
)2   +

 𝑥2̅̅ ̅̅  𝑦2̅̅ ̅̅  −  𝑥𝑦̅̅ ̅̅ 2

𝑥2̅̅ ̅̅  

Since  𝑥2̅̅ ̅ 𝑦2̅̅ ̅  −  𝑥𝑦̅̅ ̅2 ≥ 0, f(b) is min when b =  
𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅ .  This is 

what we got above using calculus. 

 

 
Figure 1. The convex function f(b) has only one global minima giving the 

slope b for OLS line. 

 

In essence, this is a common sense three step approach to find 

the OLS line. The three steps are, (1) mean-center the data, 

translate the centroid (�̅�, �̅�) to the origin (0,0), (2) calculate the 

direction of least square error approximating line through the 

origin, (3) translate data origin back to centroid (�̅�, �̅� ) for 

original frame of reference.  The computations using mean-

centered data are simpler. In, Figure 2, Cyan dots are the raw 

training data, solid red line is the approximation line, and red 

dotted lines are errors between the training data and 

corresponding predicted approximations.  In Figure 3, there the 

black dotted lines are normal(perpendicular, orthogonal) to the 

regression line where as red dotted lines are vertical, along the 

y-axis direction. Clearly the normal lines are shorter than 

vertical line.  

 We will explore and exploit  further whether there are some 

other lines whose normal distance error is even smaller than 

this line error. That leads us to next section. 

 

 
Figure 2.  Data points, regression line, approximation errors 

 

 
Figure 3. The red vertical dotted lines are error from OLS line along y-

axis, the black orthogonal dotted lines are error from OLS line along the 

normal. Normal distance error is smaller than vertical distance error. 

III. NORMAL LINEAR LEAST SQUARE 

APPROXIMATION (NLS) 

NLS has not been used in social sciences because of its 

complexity [17].  The ordinary linear approximation (OLS) line 

is not as close to the data points as expected because 

distances/errors are measured along the y-axis. If distances are 

measured along the normal (perpendicular) to the 

approximation line, then line is more representative of data.  

The normal (perpendicular, orthogonal) distance problem is 

formulated below. SVD is a method that accomplishes the same 

goals, without resorting to calculus of extrema computations. 

For the reasons stated above, we assume that the data (xi, yi), 

i=1, 2, …, n is mean-centered, otherwise we can use centralizer 

transformation to mean-center the data.  The problem becomes 

that of finding the value of only one parameter b that minimizes 

f(b) where 
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 f(b)  = 1/n ∑ (
𝑦𝑖−𝑏𝑥𝑖

√1+𝑏2
)2

𝑖=1,𝑛    or  

 f(b)  =  1/n ∑
(𝑦𝑖

2+𝑏2𝑥𝑖
2

−2𝑏𝑥𝑖𝑦𝑖)

1+𝑏2𝑖=1,𝑛  

=  
 𝑦2̅̅ ̅̅ +𝑏2 𝑥2̅̅ ̅̅ −2𝑏𝑥𝑦̅̅ ̅̅

1+𝑏2   (1) 

Thus, for local minima of f(b) =   
 𝑦2̅̅ ̅̅ +𝑏2 𝑥2̅̅ ̅̅ −2𝑏𝑥𝑦̅̅ ̅̅

1+𝑏2   

  f(b)  =   
 𝑏2 𝑥2̅̅ ̅̅ −2𝑏𝑥𝑦̅̅ ̅̅ + 𝑦2̅̅ ̅̅

1+𝑏2   =  
 𝑏2 𝑥2̅̅ ̅̅ −2𝑏𝑥𝑦̅̅ ̅̅ + 

𝑥𝑦̅̅ ̅̅ 2

𝑥2̅̅ ̅̅   −   
𝑥𝑦̅̅ ̅̅ 2

𝑥2̅̅ ̅̅ + 𝑦2̅̅ ̅̅

1+𝑏2     

  =  
 𝑏2 𝑥2̅̅ ̅̅ −2𝑏𝑥𝑦̅̅ ̅̅ + 

𝑥𝑦̅̅ ̅̅ 2

𝑥2̅̅ ̅̅   −   
𝑥𝑦̅̅ ̅̅ 2

𝑥2̅̅ ̅̅ + 𝑦2̅̅ ̅̅

1+𝑏2     

   =  
 𝑥2̅̅ ̅̅ ( 𝑏   − 

𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅  
)2  −   

𝑥𝑦̅̅ ̅̅ 2

𝑥2̅̅ ̅̅ + 𝑦2̅̅ ̅̅

1+𝑏2      

   =  
  𝑥2̅̅ ̅̅ ( 𝑏   − 

𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅  
)2  +  

 𝑥2̅̅ ̅̅  𝑦2̅̅ ̅̅  −  𝑥𝑦̅̅ ̅̅ 2

𝑥2̅̅ ̅̅

1+𝑏2      

Note that 𝑥2̅̅ ̅ 𝑦2̅̅ ̅  −  𝑥𝑦̅̅ ̅2 always ≥ 0. It is equivalent to 

standard result |x•y| ≤ |x||y| which can be quickly derived from 

triangle inequality or geometric definition of dot product. 

We saw that in the unnormalized case, f(b) is minimum when  

𝑏 −  
𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅  
= 0  or  𝑏  =  

𝑥𝑦̅̅ ̅̅

𝑥2̅̅ ̅̅  
 

This is not true in this case, see Figure 4. For OLS, f(b) is 

quadratic, convex and has only one extreme/minima blue 

curve. For NLS, f(b) is not convex, not quadratic red curve. It 

has two extrema, one maxima and one minima. In both OLS 

and NLS cases, the minima are close to each other, but not 

identical. 

 

 
Figure 4 f(b) is convex for OLS case,  

f(b) is not convex for NLS case. 

 

For NLS, f(b) is never negative. As b approaches zero, f(b) 

becomes 𝑦2̅̅ ̅ and as b approaches infinity, f(b) becomes 𝑥2̅̅ ̅.   

To calculate the minimum, setting the first derivative of f(b) 

w.r.t b to zero, f’(b)=0, we get quadratic 

 𝑥𝑦̅̅ ̅ 𝑏2 + ( 𝑥2̅̅ ̅ − 𝑦2̅̅ ̅) 𝑏 − 𝑥𝑦̅̅ ̅ = 0  (2) 

Since it is a quadratic, it has two critical values, b1, b2 

b = 
− (𝑥2̅̅ ̅̅ −𝑦2̅̅ ̅̅ ) ±√(𝑥2̅̅ ̅̅ −𝑦2̅̅ ̅̅ )2+4  𝑥𝑦̅̅ ̅̅ 2

2 𝑥𝑦̅̅ ̅̅
   (3) 

f(b) can’t have both local minima, see Figure 4.  If f”(b1)>0, 

the b1 is a local minima else f”(b2)>0, then b2 is a local minima. 

However, from the Figure 4, it is clear the minimum occurs 

at larger of b1 and b2.    

Once b = 
− (𝑥2̅̅ ̅̅ −𝑦2̅̅ ̅̅ ) +√(𝑥2̅̅ ̅̅ −𝑦2̅̅ ̅̅ )2+4  𝑥𝑦̅̅ ̅̅ 2

2 𝑥𝑦̅̅ ̅̅
 is computed, we have a 

line through the origin (0,0) along the direction 
(1,𝑏)

√ (1+𝑏2)  
 

The normal least square line (NLS) is shown in Figure 5. This 

is not the same as OLS regression line seen in Figures 2 and 3. 

 

 
Figure 5. Cyan dots are the data points blue line is NLS line. Blue dots are 

the approximation, Blue dotted lines are normal errors from NLS line. 

 

 
Figure 6 Red line is OLS, Blue line is NLS. Red dotted lines and Blue 

dotted lines are vertical errors form the Cyan data points.  NLS vertical error 

from Blue line is more than OLS error from red line.  

 

 
Figure 7 Red line is OLS, Blue line is NLS. Red dotted lines and Blue 

dotted lines are orthogonal errors form the Cyan data points.  NLS normal 

error from Blue line is less than OLS error from red line.  
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Further, the approximation error in both cases (OLS and 

NLS) is minimum depending on how the error is measured. 

Visual inspection shows that majority of the cyan dots are 

closer to blue line dots than the cyan dots to red line dots, see 

Figure 6, Figure 7.  This visualization justifies, to some extent, 

to prefer NLS over OLS.  Note when overall vertical error is 

larger for NLS line where as overall normal error is larger for 

OLS line. This confusion needs some resolution.  We will give 

formal justification later in section V. Since NLS is based on 

calculus, its derivative is complex, the second derivative is 

quite complex, we explore an easier implementation of this idea 

by means of exploiting singular value decomposition (SVD). 

In some applications, error is measured along vertical line y-

direction, while in some application error is measured along the 

normal to the Least Squares Approximation line. When there 

is no other algorithm to compare, a technical indicator is used 

to measure to quality of approximation. Bollinger technique 

uses band of 1,2, 3 standard deviation bands to test the 

goodness of the model,  

The third type of error is never used in numerical least square 

approximation. The propensity metric has been used for non-

numerical data.  Our goal is to blend the two algorithms and 

the corresponding measure of error into uniform error metric 

and compare the performance of two methods. The optimal 

approximation is better represented by propensity metric, no 

matter which method of error computation is used. 

IV   SINGULAR VALUE DECOMPOSITION (SVD) 

Today, singular value decomposition is used in many 

theoretical and applied fields: computer science and 

engineering, psychology and sociology, atmospheric science 

and astronomy, health and medicine etc. [18], [19], [16], [20], 

[21].  It is also extremely useful in machine learning and in both 

descriptive and predictive statistics. There is no unique basis 

function for Rn. The goal is to determine a suitable basis 

function so that A can be expressed in response to the 

application. The normal least square approximation (NLS) 

hyperplane can also be obtained directly by using linear algebra 

singular value decomposition (SVD).  Before we discuss the 

connection between NLS and  SVD, we may note that SVD is 

important on its own right due to applications in various areas. 

For the sake of completeness, we give brief description of SVD. 

Singular Value Decomposition (SVD) is a matrix 

factorization technique generalizing eigen-decomposition and 

principal component analysis. Every positive semi-definite real 

matrix can be decomposed into three matrix factors: left 

singular vectors matrix, right singular vectors matrix and a 

diagonal matrix of singular values in descending order on main 

diagonal. The goal is not to recreate the matrix, but to create 

the best linear least square approximation [22], [23]. There are 

various advantages of SVD.   First, 150 years old Principal 

Component Analysis (PCA) is a specialization of eigen-

decomposition to symmetric matrices with orthogonal 

eigenvectors such that A = VDV-1  = VDVT.   In case, A is not 

a square data matrix, PCA does not apply. However, ATA is a 

symmetric square positive semi-definite matrix, then ATA = 

VDVT, [24], [25], [26]. Besides other benefits of this 

factorization, we are interested in direction vector only for least 

square approximation.  The columns of V are eigenvectors of 

ATA corresponding to eigenvalues arranged in descending 

order. Since eigenvectors correspond to directions of 

approximation lines, we show that direction vector of NLS 

corresponds to first eigenvector of SVD [27], [28], [16].    The 

following table, describes the distinction between eigen 

decomposition (ED), PCA and SVD. Briefly, for eigen 

decomposition of A, U is the matrix of eigenvectors of A, D is 

diagonal matrix of eigenvalues of A, conveniently eigenpairs 

are arranged on descending order of eigenvalues. 

ED A = UDU-1  

For PCA and SVD, U and V are matrices of  eigenvectors of 

symmetric matrices AAT and ATA, S is the matrix of singular 

values of positive semi-definite matrix and D is the matrix of 

eigenvalues of A such that  

PCA  A = UDUT 

and  

SVD  A = USVT  

The following Table 1 shows a summary of different aspects  

to express A in terms of ED, PCA, SVD using eigenvectors as 

basis vectors. Examples show the case where the matrix is (1) 

symmetric and positive semidefinite,(2) matrix is symmetric, 

but not positive semi-definite, (3) matrix is not symmetric, but 

is positive semi-definite, and (4) where matrix is not 

symmetric, and no positive semidefinite.   

A. Connection between NLS and SVD 

For simplicity, A is n×2, of data points in the xy-plane. To 

minimize the error between observed P and estimated 

direction v.  Since  P = P•v v + (vxP)xv, minimizing |(vxP)xv| 

means maximizing the distance |P•v v|  or |P•v|  because v is a 

unit vector [16].   

We derive the direction v so that sum of squares of distances 

from training data points to predicted direction vector v is least. 

Note, v passes through the origin because  the data is mean-

centered. Since data is mean-centered, the approximation line 

passes through the origin.  By default, vectors P are column 

vectors in linear algebra, thus rows of A are position vectors 

[x,y]= PT. As seen above, the vector P can be written as the 

sum of a vector along unit vector v and a unit vector w 

orthogonal to v, that is, using vector notation    P = P•v v + (P-

P•v v) = v v+w w.  This means that minimizing the distance w 

amounts to maximizing v. We are to maximize over all data 

points Pi. The problem becomes that of maximizing  

∑i=1,n |Pi•v|2    

for all Pi for some vector v to be determined. Now  

    ∑i=1,n |Pi•v|2  = ∑i=1,n Pi•v Pi•v = ∑i=1,n v•Pi Pi•v  

= ∑i=1,n vTPi Pi
Tv= vT (∑i=1,n Pi Pi

T)v  

= vT (ATA)v.   
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TABLE 1 MATRIX TYPES AND THEIR ED, PCA, SVD 

 

 
 

 
(a)  

 

 
(b)  

Figure 8. (a) Data points, standard x-,y-axes, v1-,v2- eignevectors axes,  

(b) Projection of Data points on v1-,v2- eignevector axes, Data points are 

closer to eigenvectors than the standard axes. 
 

This means that ∑i=1,n |Pi•v|2 is maximum if v is an eigenvector 

of ATA and corresponds to largest eigenvalue of ATA. 

Similarly, all the other eigenvectors can be obtained 

incrementally one at a time, constraining each vector 

orthogonal to the previous eigenvectors. Thus, SVD is 

computed iteratively in descending order of eigenvalues and 

corresponding eigenvectors orthogonal to the previously 

computed eigenvectors. From this analysis, it is clear that the 

largest eigenvalue amounts to the largest spread of data along 

the corresponding eigenvector.  The spread of projections of 

data on v1 is larger than that on v2, see Figure 8(b).  

For example, PT’s are data points in 2D, v1, v2 are 

eigenvectors corresponding to largest eigenvalues of ATA . For 

this consideration, the NLS requires only v1, the direction with 

largest eigenvalue, and with largest data spread.  

Uniqueness of Eigenvectors.  As a side remark, for the 

matrix, any non-zero multiple of an eigenvector is again an 

eigenvector. To make the eigenvectors unique, they are 

normalized to unit vectors.  But if u is unit eigenvector, then –

u is also a unit vector, see Figure A in appendix for 

MATLAB[30], svd computed eigenvectors [27], [28]. In the 

literature, it is an accepted convention to make the first non-

zero component positive in the eigenvector, see Figure [see 

appendix].  Since eigenvectors are ordered, we use ordering to 

make the k-th element of k-th vector to be positive, see Figure 

A [see Appendix] that makes the vectors look more natural like 

a right- handed system. In case, the kth element is zero, then 

the first non-zero element is made positive. This is the approach 

we prefer to use [16].  Incidentally, recall that the direction 

vectors in OLS and NLS had first component as positive in the 

figure. 

For example, consider the matrix A =[
1 0
0 −1

],  then  AAT = 

ATA = A2 =[
1 0
0 1

],  PCA uses AAT and ATA (A, A2 are 

symmetric; A2  is a positive semi-definite matrix) for 

computing the eigen-pairs.   In this example, except for signs, 

the eigenvalues of A are square roots of the eigenvalues of A2 

that are 1 and 1, the corresponding eigenvectors are  

eigenvectors of A2 are  [
0
1

], [
1
0

].  In particular, the eigenvector 

of A corresponding to eigenvalue -1 and eigenvector of A2  

pertaining the  eigenvalue 1 are identical.  Matlab svd function 

does not reconstruct eigenvalues of A accurately. The vectors 

in V are superficially adjusted to match A. In our algorithm, we 

include the proper signs.  Matlab R2017b computes SVD  

resurrects A as   

[
1 0
0 −1

] = [
0 1
1 0

] [
1 0
0 1

] [
0 −1
1 0

].   

This is inaccurate as [
0

−1
] is not an eigenvector of A or A2. 

Also, it may be noted that [
0 −1
1 0

] is not the transpose or 

inverse of [
0 1
1 0

]. 

Here we used the proper sign for square root of 1 to -1, 

because -1 is eigenvalue of A.  Consistent with the definition 

of SVD with correct sign of eigenvalue [28], [15], the correct 

eigen-decomposition A = VDV-1 = VDVT is  

[
1 0
0 −1

] = [
0 1
1 0

] [
−1 0
0 1

] [
0 1
1 0

]. 

 

Recall, Singular Value Decomposition (SVD) is a 

generalization of PCA to include (1) non-square rectangular 
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and (2) positive semi-definite matrices [21].  However, PCA 

and SVD are equivalent for symmetric positive semi-definite 

matrices.    SVD uses covariance matrices AAT and ATA to 

determine two orthogonal matrices U, V of eigenvectors and a 

diagonal matrix S for singular values such that the eigenvectors 

in U, (and V) are (1) pairwise orthogonal, (2) normalized to unit 

vectors and (3) arranged in the descending order of singular 

values.  A singular value of A is square root of the eigenvalue 

of ATA and AAT. Then SVD decomposes A into three factors 

U, V and S such that A = USVT.   By dropping the least 

significant singular values and corresponding singular vectors, 

best approximation of data matrix can be reconstructed, 

quantitative error can be estimated simply by using the 

discarded eigenvalues. The examples where A is not both 

symmetric and positive semi-definite are shown in the Table 1 

to confirm SVD and PCA are not equivalent in general.  In our 

work, A is symmetric positive semi-definite, consequently AAT 

and ATA turn out to be symmetric positive semi-definite [22], 

[10],[127],[26]. 

 

Example. To accommodate both PCA and SVD, we generalize 

the previous example matrix to symmetric, positive semi-

definite (PSD) matrix A= [
1 0
0 2

] . Now AAT=ATA=A2=[
1 0
0 4

] 

has eigen values 1,4. Thus the singular values for A are 2,1; so, 

D=S= [
2 0
0 1

] which is same as S obtained from SVD.  Thus, 

for PCA/SVD of A, the eigenvectors of AAT, ATA form 

orthogonal matrices U =  [
0 1
1 0

], V= [
0 1
1 0

], and singular 

values become the diagonal entries of S = [
2 0
0 1

].  Now PCA 

as well as SVD factorization is 

[
1 0
0 2

]  = [
0 1
1 0

] [
2 0
0 1

] [
0 1
1 0

]  

which implies that A = USVT = VSVT.  = USUT.   

Summarizing this discussion in Table 2, we see that several 

possibilities exist for an arbitrary matrix A. For example, in 

Table 2, there are some cases where A is (1) symmetric and 

(1.1) has PCA SVD decomposition equivalent on PSD  matrix 

(1.2) has PCA, but SVD does not exist as A is not SPD matrix, 

and (2) not symmetric and (2.1) PCA does not exist because A 

is not square matrix, SVD decomposition exists on PSD matrix 

(2.2) has no PCA, no valid natural SVD decomposition for non-

square non-PSD matrix. Also refer to Table 1 for square 

matrices. 

 

TABLE 2. FOUR EXHAUSTIVE CASES 

 

 

V.  HYBRID GREEDY ALGORITHM DESIGN 

The idea of hybrid algorithm is not just to amalgamate these 

two algorithms in such a way that the new algorithm accuracy 

supersedes the accuracy of the base algorithm, but to extract the 

best features of both and improve on them with propensity 

metric and double SVD. The error analysis is metrically and 

cognitively appealing to humans.  Interval of error, also known 

as Bollinger band of uncertainty,  quantifies the range of 

uncertainty in a value and propensity score is  a frequency 

metric used for comparing them pairwise to determine the best 

algorithm.  Hybrid algorithm uses a doubly robust balancing 

method. it is responsive to treatment for data dealing with 

patient treatments. Hybrid algorithm is designed to overcome 

the limitations of traditional parametric methods.   

We design a hybrid greedy algorithm leveraging the best of 

OLS and NLS/SVD approximation lines in two ways: non-

parametric polygonal possibly overfitting; and parametric line 

in general. For each observed point, (x0,y0),  we have seen in 

Figure 6 and Figure 7  that there is a corresponding predicted 

point (xR, yR) on regression line and  a predicted point (xS, yS) 

on SVD line.  If (x0,y0) is an observed value,  (xR, yR)  is 

predicted point value corresponding to the OLS line y = a + bx. 

The vertical distance is along y direction. The distance between 

(x0,y0) and  (xR,yR) is the y-distance, the OLS regression error  

eR = |y0-yR|.  For normal distance from NLS or SVD 

approximation line, it is along perpendicular to the line, it turns 

out that xS ≠ x0 in (xS, yS) , the distance between (x0,y0) and  

(xS,yS) is Euclidian normal distance eS = 

√(𝑥0  − 𝑥𝑆 )2 + (𝑦0  − 𝑦𝑆 )2 .   

It is clear from Figure 6 and Figure 7 that for some points in 

observed data, eR < eS while for some other points eS < eR.  In 

each method, the total error E is sum of squares of pointwise 

distances (errors) for all data points, question arises which one 

(ER for OLS and ES for SVD) is acceptable due to the dual 

nature on error computation. There is no denying the fact if 

vertical distances are used for both lines, then ER<ES and if 

normal distances are used for both lines, then ES < ER.  Then 

how does the user determine which one preferable to use:  OLS 

or NLS/SVD? For greedy algorithm, define the approximation 

point (xH, yH) to be that point which is closer to the observed 

point (x0,y0) in both ways.  Euclidean distance is used to 

measure closeness. For each input, we will determine 

approximate line that represents the input data no matter how 

the error is computed, see Figure 10 for green color dots, these 

are closer to cyan dots than red line dots or blue line dots. 

Instead of measuring the quantitative distance we define a 

qualitative metric that is more useful in visualization and is 

cognitively acceptable. Non-parametric algorithm uses to 

regression coefficients of OLS and NLS, whereas the 

parametric version computes its own regression coefficients. 
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A. Non-Parametric Hybrid Greedy Algorithm  

Algorithm A: 

Input: array of x and y mean-centered data values 

Output: hybrid greedy approximation points (xH,yH),where 

(xR yR) is on OLS, (xS yS) is on SVD line          

1. Calculate regression coefficients a and b for OLS 

regression from observed x,y 

Calculate predicted values by linear regression yR = a+bx 

 Calculate  approximation error ER 

Test Goodness of the regression line 

2. Calculate A=[x ,y], x, y are columns of matrix A. 

Calculate SVD  [U S V] = svd(A) 

Use first column of V to get b.  a is automatic 

Calculate xS,yS of projected points [xS,yS] on column 

vectors  of V that is AVV’     

Calculate approximation error ES  

Test Goodness of the NLS line 

Compare error ER and ES 

3. Calculate greedy hybrid xH, yH  using a variation of 

relaxation method  

 for all point pairs [xR, yR], [xS, yS] 

 if d( [xS, yS], [x0, y0])<= d( (xR, yR), (x0, y0)) 

   (xH, yH) = (xS, yS); 

else  

 (xH, yH) = (xR, yR); 

end 

end  

Calculate error EH from pointwise eH 

Test Goodness of the hybrid line 

Compare error ES, ER, EH 

Compare by propensity values  

4. xH, yH are arrays of predicted coordinates on hybrid 

polygonal line, cognistically appealing  and lower metric 

error.  

 

This algorithm gives non-parametric polygonal 

approximation and possibly overfitting. The next algorithm 

parametrizes it by using SVD on polygonal approximation, see 

Table 2.  The hybrid representation (xH,yH) is closer to the input 

training data (x,y) that the OLS approximation (xR,yR) points 

and NLS approximation (xS,yS) points. Note that in practice we 

do not need to store the polygonal approximation values, it is 

more efficient to retain the regression coefficients of OLS and 

NLS/SVD for real time calculations.   

 

B. Parametric Hybrid Algorithm 

 This algorithm is of theoretical interest and for visualization, 

Algorithm A is sufficient for practical use.  The non-parametric 

polygonal approximation algorithm gives insight for improving 

the accuracy, Figure 11. It has two shortcomings it does 

conserve space, and it is subject to overfitting the input training 

data. Here we explore double approximation to design a general 

algorithm which conserves space as well as it is parametric, see 

Figure 11. 

 

Algorithm B  

Input: array of x and y mean-centered data values 

Output: hybrid approximation line parameters for points 

(xH,yH),where (xR yR) is on OLS, (xS yS) is on SVD line          

 As in algorithm A, polygonal greedy approximation is 

(xH,yH) 

 Use SVD to fit computed points (xH,yH) with SVD 

algorithm  to derive parameters for the direction of the 

line  

 Use direction of this double SVD line to compute 

approximation (xD, yD)  

 Test Goodness of the based on this double NLS line  

 Compare ER,ES, EH, ED, and propensity metric values 

 

Now almost all observed points are closer to greedy line than 

OLS and NLS/SVD approximation lines. It satisfies the general 

parametric and space conservation requirements, see Table2. 

Note over the entire data set, red dots have smallest error 

from cyan dots when distances are measured along y, while 

blue dots have smallest error from cyan dots when distances 

are measured along the normal to the line, see Figure 9.  Each 

green dot is at a smaller of the two distances from cyan dot, 

interestingly, it does not mean that green dots have overall 

smaller error than the two, in fact it will be bigger than each. 

The green dots can be connected by a polygonal line see Figure 

10 or an SVD straight line approximation, see Figure 7. We 

have seen that NLS is better than OLS. We may use SVD to 

approximate data (xH,yH) to (xD,yD)  line, see Figure 11. 

 

 

 

Figure 9. Cyan dots are data points, Red line is OLS line, Blue line is 

NLS/SVD line, Green dots are hybrid approximation dots 
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Figure 10 Non-Parametric polygonal Hybrid data points, Cyan dots are 

points which are closer to green dots than red or blue dots. Hybrid polygonal 

line, green polygonal line connects the green hybrid points (xH,yH). 

 

 
Figure 11 Non-Parametric polygonal line Green dots in Figure 10 are not 

shown here for  clarity. SVD line is created to corresponding green points 

into the green Hybrid parametric line. 

 

C. Precision and Propensity 

We have seen three ways to process data. OLS is best when 

error is measured along y-axis. SVD is best when error is 

measured long normal is measured. Propensity is best when the 

frequency of nearness is used. The question arises which one is 

preferable.  The propensity method is cognitively and visually 

preferable. The linear least square approximation error is 

quantitative measure.  The precision and propensity are a 

qualitative measure of accuracy [10], [31], [11].  Quantitative 

error is a function of the location of data points, propensity 

depends on percentage of data points for pointwise binary 

outcome from comparing error due to a pair of methods.  This 

is similar to precision metric used in data mining community 

confusion matrix. For percentage of data truly closer to OLS, 

SVD lines, Hybrid line pairwise, see Table 2 and Table 5.  From 

Figure 10, it is clear that green construction is preferable, but 

the quantitative error comparison is inconclusive.  However, 

we use propensity metric to determine the level of accuracy that 

hybrid line has as compared to OLS and SVD.  When errors are 

measured in the respective methods, we can calculate the 

propensity value for one line relative to the other line to 

conclude the preference irrespective of which method is used 

to calculate errors. It is determined that overall SVD/NLS 

approximation is better approximation than OLS, see Figure 

10.  Similarly, propensity metric shows, that hybrid line is 

preferable to both OLS and SVD lines, see Figure 11, Table 2. 

Table 5.  

D.  Anomaly Detection and Removal 

It is clear that pointwise vertical distance error, eR, is always 

greater than normal distance error, eS, from any line. Since sum 

of squares of errors for OLS line, ER is smallest in the vertical 

distance metric, the regression error from any other line is 

bound to be larger than error, ER, from OLS line. Pointwise 

error in OLS and NLS is inconclusive. Propensity score metric 

(PSM) is a qualitative measure to differentiate for better 

approximation line, where the distance metric fails. This will 

give insight to error measurement modeling to the algorithm 

designers. PSM can also leveraged identify the anomalies. To 

detect anomalies accurately, we create a confusion matrix for 

frequency of points within one standard deviation of both the 

lines, see Table 3 of confusion matrix for noise reduction using 

Bollinger band about OLS and NLS approximation lines.. Any 

point which is not within this Bollinger band about any of the 

two lines, is probably an anomaly (FF). Such is point is 

candidate for further scrutiny. After analyzing it with the hybrid 

line, it determined that hybrid line is a better differentiator for 

noisy data. After clipping suspicious points for the data, we 

reapplied our algorithm to ascertain that reduced data set gives 

better accuracy, see Table 4, and Table 5. 

 

Example: Noisy data, vertical distances error not realistic. In 

the Figure 12(b), we can see that if fifth point is noisy, it has 

affected the entire approximation line. In particular for the 

neighboring points, there is glaring offset.  Experiments show 

that one outlier point can adversely affect the approximation 

line in the immediate neighborhood of noisy point, see Figure 

12.  Red line is least square regression line on raw data of 20 

points. This regression line is noise sensitive, see Figure 

12(a),(b). If one of data points is an outlier, it can create a large 

adverse effect on the outcome. Figure 12(c) shows the 

improvement on this shortcoming after removing noise. 
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(a) 

  
(b) 

  
(c) 

 
Figure 12, (a) No noise, (b) Noise introduced in position 5, direction of line 

changes , (c) Noise removal, position 5 removed from the data, data has one 

less point. 

 

Figure 12 (a) has no noise, (b) has noise in position 5, as a 

result the regression lines are different, (c) here noise is 

removed, now (a) and (c) are same, but (c) has one less points 

as point 5 has been removed. We do not see any major 

difference in the regression lines. 

 

The goal of the new algorithm is to improve the prediction 

capability rather than numeric value of approximation error.  

Numeric error is a measure of divergence from the true value.  

The hybrid algorithm achieves a balance between quantitative 

and qualitative approximation accuracy of both OLS and 

NLS/SVD. We use STD-standard deviation for confidence 

interval about the approximation lines. If A is the set of points 

outside the confidence interval and B is the set of points where 

eR>eS,  the A⋂B is a candidate set of anomalies.  

 

Table 4 Comparison of Algorithms

 

 

Table 5 Comparison of Algorithms 5% Noise Removal 

 

 

E.  Temporal Sensitivity 

In health care environment, if the time interval for a 

treatment is changed, we expect to see the temporal change in 

response to a treatment.  Using OLS, we see that there is no 

change in response to temporal change, that is, the computed 

error remains unchanged, see Figures 9-12. Figure 13 is the 

visual summary of quantitative and qualitative error in the 

methods. Using the same data set, on scaling the time interval, 

the NLS/SVD and Hybrid algorithms respond positively to the 

changes. This suggests that OLS is not suitable for such 

temporal applications. In the example, we also notice that as 

the slope of the hybrid line increase, the error decreases. 

Experiments confirm that the slope of 45 degrees is brake-even 

point with maximum error. Slope below or above 45 degrees 

accounts for reduction in error. For comparison of the three 

algorithms, see Table 2, Table 3. It shows the computed 

direction vectors of the approximation lines, approximation 

error in the Euclidean distance metric, and propensity how 

close is training data to one algorithm vs the other formulation, 

see Figures 13-17.   
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Figure 13 Relative errors one time interval [0.01,0.62] 

 

 

Figure 14 Relative errors on time interval [0.01,0.93] 

 

 

Figure 15 Relative errors on time interval [0.02,1.25]  

 

Figure 16 Relative errors on time interval [0.02,1.56] 

 
Figure 17. Green line shows percentage of Hybrid points closer to data 

points as compared to OLS. Purple line shows percentage of SVD points 

closer to data points as compared to OLS. Blue line shows percentage of error 

in OLS. Yellow and red (on top of each other) percentage of error in SVD and 

Hybrid algorithms. 

VI.  CONCLUSION 

In the paper, we have explored several algorithms and several 

metrics to determine cognitively and visually acceptable 

criteria for least square regression.  The algorithms are ordinary 

least squares regression (OLS), orthogonal least square 

regression(NLS) and Singular value decomposition (SVD). We 

explored these algorithms along with our hybrid algorithm. We 

exploited them using the quantitative and qualitative metrics. 

We explored    1. various ways to approximate numerical data, 

2. Temporal versions of prediction, 3.  how to reduce noise.   

Here we first removed noise by virtually using OLS and NLS. 

The hybrid data is then approximated by leveraging NLS/SVD, 

double approximation. It is determined that hybrid algorithm 

outperforms the other  algorithms when applied and compared 

pairwise. This will give insight for error measurement 

modeling to the researchers. They will benefit from the hybrid 

linear least approximation algorithm. 

OLS was found to be insensitive to temporal data spread, 

whereas SVD was implicitly modifying the independent 

(temporal) variables of the original input in pursuit of lower 

error. We designed a hybrid algorithm that overcomes these 

shortcomings and supersedes the accuracy of the existing 

algorithms.   From the experiments, it follows that error is least 

for lines that are almost horizontal or vertical, the breakeven 

point occurs as the slope of the line becomes closer to 45 

degrees.  No matter what the slope is, the new hybrid regression 

line error is always bounded above by the error in OLS 

regression line. It is interesting to note that OLS remains 

unchanged while new regression line approximation error 

responds to the slope variation. We also showed how to 

improve svd algorithm of MATLAB[30]  with correct 

directions of eigenvectors, a natural technique.  The algorithm 

was implemented on MAC OS Mojave v 10.14, IntelCire i5, 

8GB 1600MHZ using Matlab R1700b [30].  We have described 

the error measurement methods and propensity metric that is 

preferable for exploitation and visualization. 
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VII. APPENDIX   

A. Principal Component Analysis, and Singular Value 

Decomposition 

This section is self-contained tutorial on PCA/SVD.  The 

linear algebra concepts of vector, transpose of a vector, scalar 

product of a vector, Euclidean norm, length of a vector, unit 

vector, sum of two vectors, dot product of two vectors 

(analytical, geometric, matrix forms), orthogonal vectors, 

Gram-Schmidt orthogonalization, matrix, square matrix, 

identity matrix, diagonal matrix, transpose of matrix, 

symmetric matrix, sum of matrices, scalar product of a matrix, 

determinant of a matrix, rank of a matrix, inverse of a matrix, 

norm of a matrix, orthogonal matrix, rotation matrix, rank of a 

matrix, determinant of a matrix, product of matrices, vector 

space, and basis of a vector space,  are standard terms in linear 

algebra. Additional terms that we use are an eigenvector, and 

an eigenvalue.  All vectors are column vectors unless 

specifically stated. All matrices and vectors are real in this 

discussion. For details on linear algebra, reader may consult 

references [13, Jolliffe1995]. 

All the required transformations are built in the toolboxes of 

modern languages, Java, C++, Matlab, R, and Python. Weka 

contains tools for data pre-processing, classification, 

regression, clustering, association rules, and visualization.  

Herein modeling tools are eigenvalues and eigenvectors of 

covariance matrix.  MatLab and Python automatically rank the 

eigenvalues in descending order, and orders the eigen vectors 

accordingly.  Descending order is more natural because 

eigenpairs are important for further analysis in dimension 

reduction. In statistics, Principal Component Analysis (PCA) 

[Jolliffe1995] is also known as discrete  Karhunen-Lo`eve (KL) 

transform  which is used for extracting patterns from complex 

data sets by reducing the dimensionality of complex data set. 

 

B. Definitions and properties of Vectors 

Definition.  A vector is an ordered set of finite number of 

elements and is denoted by a column vector u.  Almost all the 

time we encounter vectors with numeric values for elements.  

In fact, they can be of any valid type. 

The vector notation: a vector is denoted by a bold lowercase 

character. The elements of a vector are italic lowercase. For 

example, u = [u1, u2, …, un] is a row vector, v = [

𝑣1

…
𝑣𝑛

] is a column 

vector. 

Definition.  The transpose of a vector u is denoted by uT.  

Transpose of a column vector is a row vector, and transpose of 

row vector is column vector. The transpose of a column vector 

u is written as uT = [u1, u2, . . ., un] or u may also be written as 

u = [u1, u2, . . ., un] T.  

Definition.  The scalar multiple of a vector u  by a scalar s is 

denoted by su and is obtained by multiplying each component 

of u by s: su = [su1,su2,. . .,sun]T. 

Definition.  For any vector u, the norm or length of u is 

denoted by |u| and is the square root of the sum of squares of 

its components:  

      |u| = √(u1
2+…+un

2),   |u|2 = u1
2+…+un

2 = u•u= uTu. 

Definition.  A vector u is a unit vector if it is of unit length, 

|u|2 = 1, u•u = uTu = 1. 

Definition.  The sum of two vectors u  and  v is written as 

u+v and is defined as vector whose elements are sums of 

respective components of u and v, e.g., u+v = [u1 + v1, u2 + v2, 

. . ., un + vn]T. 

Definition.  The dot product of u and v is denoted by u•v.  It 

is defined in several different equivalent ways. 

Analytically dot product u•v is the sum of products of 

components of u and v: u•v = u1v1+. . .+unvn. 

Geometrically dot product is u•v= |u||v|cos() where  is the 

angle between the directions u and v. 

Matrix product form the dot product is expressible as a row-

column matrix multiplication u•v= uTv = [𝑢1 . . . 𝑢𝑛] [

𝑣1

…
𝑣𝑛

].   

Property: If u and v and two vectors, it is true that |u•v|≤|u||v|. 

It follows trivially from geometric definition of dot product and  

cosine an angle that is less than or equal to 1. 

Property. Dot product is commutative.  

  u•v = u1v1+. . .+unvn = v1u1+. . .+ vnun= v•u, or uTv = vTu. 

Definition.  The vectors u and v are orthogonal if   

u•v = uTv = 0. 

Definition.  A set of vectors is orthonormal if each vector is 

a unit vector, and any two different vectors are mutually 

orthogonal. 

Matrices are used to represent data elegantly and efficiently 

for visual inspection. All the knowledge is hidden in the tables. 

Rows can be interpreted as classification rules with attribute 

values. One of the attributes can be a classification attribute. 

The matrix notation: an mxn matrix is denote by A = [aij] 

where  the ij-th element of matrix A is denoted by aij.  For 

example, any matrix can be represented systematically by using  

corresponding elements:  A = [aij],  U = [uij],  V = [vij],  S=[sij]. 

If A is a matrix, ai• is a row vector representing the i-th row of 

matrix A, and a•j is a column vector representing the j-th 

column of A. Thus ith row is ai• = [ 𝑎𝑖1, 𝑎𝑖2,…, 𝑎𝑖𝑛]. Similarly 

jth column is a•j = [

𝑎1𝑗

𝑎2𝑗
…

𝑎𝑚𝑗

]. 

Definition.  If m=n , then mxn matrix is called a square 

matrix.  

Definition.  If every entry of a square matrix D is zero except 

for the diagonal entries dii, then the matrix D is called diagonal 

matrix.   In general, for mxn matrix, if every entry except dii, is 

zero, it is also diagonal matrix. 
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Definition.  If every entry of a square matrix I is zero except 

for diagonal entries, Iii , which are unity, then the matrix I is 

called identity matrix.   A diagonal matrix with diagonal entries 

1 becomes identity. 

Definition.  The transpose of a matrix A is denoted by AT and 

is defined by interchanging rows to columns or interchanging 

columns to rows. If A =[aij],  then AT =  [aji]. 

Definition. The trace of a matrix A is defined as the sum of 

entries on its main diagonal. If A = [aij] then trace(A) = ∑i aii  

Property. For a square matrix A,  

trace(AAT) = trace(ATA) = trace(A2) = |A|2 

Proof.  trace(AAT) = ∑i ai• ai•
T = ∑i ai• • ai• 

 trace(ATA) = ∑i a•i
 T a•I = ∑i a•i

 • a•i 

       = ∑i ∑k aik aik,    = ∑i ∑k aki aki,    

In either case       = ∑i ∑k aik
2 = |A|2 

It is the sum of squares of all the entries in A,  

 |A| = √trace(AAT) = √trace(ATA) = √trace(A2) 

Proposition. For a symmetric matrix A, trace(A) = 

trace(UDUT) = trace(D) = sum of eigenvalues of A, that is, 

trace(A) = ∑i λi 

Proof.  

trace(A) = trace(UDUT) =  

  = ∑i ui• Dui•
T 

  = ∑i [ uik λk] ui•
T  

where [ uik λk] is a row vector with index k 

  = ∑i∑k  uik λk uik 

  = ∑k   λk ∑i uik uik  

  = ∑k   λk u•k •u•k    u•k is a unit column vector.

  

  = ∑k   λk  

Thus it shows that trace(A) is the sum of eigenvalues of A. 

Definition.  The mxn matrix A and pxq  matrix B are 

compatible for addition if m=p, and n=q.  The sum is denoted 

by A+B and is defined by A+B==[aij + bij] 

Definition.  The mxn matrix A and pxq matrix B are 

compatible for multiplication AB if n=p.  If matrices A, B are 

compatible for multiplication, then matrix product AB =[∑k=1,n 

aikbkj] = [ ricj] = [ ri
T•cj] = [ ri•cj

T] where ri is the ith row of A 

and cj is the jth column of B.  

For a matrix A, the product AAT and ATA is called 

covariance of matrix A. 

Definition.  A square matrix A is invertible if there is a matrix 

B such that AB = I, B is called the inverse of A.   The inverse 

of invertible matrix A is denoted by A-1 so that AA-1 = I. 

Definition.  The matrix A is orthogonal, if the rows and 

columns are pairwise orthogonal, and AAT = I, identity matrix.  

Property.  The transpose of a product is the product of 

transposes in reverse order: (AB)T  =  BTAT.  

Definition.  The matrix A is symmetric if A = AT. The matrix 

A is self-inverse. 

Property. For any matrix A, the product ATA is a symmetric 

matrix:  (ATA)T = ATATT = ATA. 

Definition.  The Euclidean norm of a matrix A is denoted by 

|A| and defined by |A|  = √∑i,j (aij
2). 

Property: If A and B and two matrices, it is true that 

|AB|≤|A||B|.  

Proof. Let ri be i-th row of A,  ri
T be i-th column of AT.. Let 

cj be j-th column of B,  cj
T be j-th row of BT. Then 

|AB|2 = ∑i,j (ri
T•cj) 2 ≤ ∑i,j  |ri

T|2|cj|2≤∑i |ri|2∑j |cj|2≤|A|2| |B|2 

Definition.  The rank of a matrix A is the number of linearly 

independent rows/columns in a matrix.  

Property. The row rank and column rank of a matrix are the 

same. 

Proof. Orthogonal transformation does not change the rank. 

Since A = USVT , the rank of A is the same as rank of USVT. It 

is the same as rank of S.  Since S is a diagonal matrix, the row 

rank and columns rank of a diagonal matrix are same. 

Definition.  The determinant of a matrix A is denoted by 

det(A). The determinant is computed recursively in terms of 

row or column and it cofactors. 

 

C. Eigenvalues and Eigenvectors 

Definition.  Let A be nxn matrix. If there exists a non-zero 

vector u and a number   such that Au  =   u, then  is called 

an eigenvalue and u is called a corresponding eigenvector.  

The equation Au  =   u is called the characteristic equation. 

If A is an nxn matrix, an eigenvalue of A is a solution of 

determinant(A-I) = 0.  It is a polynomial of degree n, and has 

n solutions called eigenvalues. The eigenvalues are called eigen 

(proper, latent, characteristic, singular) values. The 

eigenvectors are also known as eigen (proper, latent, 

characteristic, singular) vectors. The eigenvectors and 

eigenvalues in tandem are referred to as eigenpairs. The 

coordinate system defined by eigenvectors is called  the 

eigenspace or eigenframe. The transformation matrix is called 

rotation matrix. 

Note. An eigenvector is not unique, if u is an eigenvector, 

then any non-zero multiple of u is also an eigenvector. To make 

it unique, it is a convention to normalize it to a unit vector, u. 

But u and – u are unit vectors. Many researchers make first 

non-zero element in the unit vector positive[Leskovec2014]. 

This is not satisfactory in some cases: (1) it requires search for 

the nonzero element and (2) it does not bring about a natural 

right handed tradition.  For example, in Figure A (c), we show 

a better way to make eigen vectors unique. 
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(a) 

 
(b) 

 
(c) 

Figure A.  (a) Eigenvectors as computed by MATLAB svd, (b) by 

convention, each vector has first non-zero element positive, (c) our approach, 

first eigenvector has first non-zero element positive, second eigenvector has 

second non-zero element positive by using ordering of eigenvectors so the 

eigenvectors form a right handed system. 

 

Vector space basis is the set of vectors so that every other 

vector in the space can be expressed as a linear combination of 

the basis vectors.  For Rn, ek = ( ekj ) for k=1,n  where ekk = 1 

and ekj is zero for j≠k, { ek } is a basis of vectors. In fact any 

linearly independent set { uk } of n vectors can be a basis of Rn. 

Any n linearly independent, orthonormal unit vectors is an 

orthogonal basis of Rn.  

For SVD, we use these special matrices ATA and AAT for 

calculating the eigenvectors of ATA and AAT.   Herein, we 

elaborate the details of some results that we take for guaranteed.  

For an arbitrary non-symmetric rectangular mxn matrix A, the 

matrix AAT is mxm and the matrix ATA is nxn. Both are 

symmetric and square matrices. 

Proposition The eigenvalues of a real symmetric matrix are 

real. 

Proof. The complex conjugate of u is denoted byu.  Let  be 

an eigenvalue of A, then Au =  u, where u is a unit vector and 

Au = u.   A is real,  Au = u. 

  =  uTu =  uT u =  uTAu  =  uTATu  for real 

symmetric A 

  = (Au) T u =  uTu=   

therefore    = .  Hence  is a real number. 

Example. If the matrix is not symmetric, eigenvalues are not 

necessarily real. For example, let A= [
1 1

−1 1
] , it is non-

symmetric, its eigenvalues are complex: 1 ± √-1.   

Example. If A is matrix, it may have repeated eigenvalues. Let 

A=[
1 0
0 1

] , it is symmetric, its eigenvalues are 1.  The  

eigenvectors form a basis of the transformed space. Let 

A=[
1 1
0 1

] , it is non-symmetric, its eigenvalues are 1. The  

eigenvectors do not form a basis of the transformed space. 

In PCA, for any matrix A, we calculate eigenvalues and 

eigenvectors of covariance matrices ATA (and AAT) which 

form the basis of vector space of rows (and columns) of matrix 

A.   

Proposition. The eigenvalues of special real symmetric 

matrices, ATA and AAT, are real and non-negative. Not all 

symmetric matrices have this property. 

Proof. if  is an eigenvalue and v is a unit eigenvector of ATA, 

then 

 ATA v =  v and v • v =1. 

Now   =  v • v =  vT v  

= vT v =vT(ATAv)  

= (vTAT)Av) = (Av)T (Av)  

= (Av) • (Av) ≥0 .  

That is non-zero eigenvalues of AATand ATA are positive. 

Example.   Every symmetric matrix does not have this property.  

Let A= , it is symmetric, its eigenvalues are -1 and 

3.  Thus all the eigenvalues of symmetric matrix are not always 

non-negative.   

If A= , it is symmetric, all the eigenvalues are non-

negative: 0, 5.  

If A= , it is symmetric, all the eigenvalues are 

positive: 1,3.   

 

Proposition The eigenvectors  corresponding to different 

eigenvalues of a matrix A are linearly independent. 
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Proof. Let u1 and u2 be eigenvectors for distinct eigenvalues 1 

and 2.  We show that they are linearly independent. Let  

 xu1 +y u2 = 0,  

then A(xu1 +y u2)=0 or  

x1u1 + y2u2 =  0, eliminating y we get x(1 -2)u1 = 0, since 

(1 -2)u1 ≠ 0, x = 0 similarly y = 0, hence they are linearly 

independent.   

This is true for any number of eigenvectors corresponding to 

different eigenvalues. It is a useful method of solution of n 

linear equations. 

Proposition The eigenvectors corresponding to different 

eigenvalues of a real symmetric matrix A are orthogonal.  

Proof. Let u and v be eigenvectors for eigenvalues  and  

where  ≠ . 

Then   uTv  =  ( uT)v =  (Au)T v =  vT(Au) =  (vTAT)u  

   =  (Av)T u =  (v)T u =   vTu  

   =   uTv 

Now   uTv =   uTv   or  ( - ) uTv = 0.   

Since  ≠ , uTv = 0 or u•v=0, therefore u and v are orthogonal. 

 

In SVD, we use AAT and ATA which are naturally symmetric. 

 If the eigenvectors are not orthogonal, it will defeat the 

purpose of simplicity and efficiency. It is possible that an 

eigenvalue of a matrix is of multiplicity greater than one, that 

is, corresponding to an eigenvalue there may be several 

eigenvectors, not necessarily orthogonal. In that case, we can 

use Gram-Schmit orthogonalization process to create 

orthogonal set of eigenvectors.   

 

Property [22] .  Any real symmetric matrix A can be written 

as A = UDUT = UDU-1 for some invertible matrix U. Here U is 

the matrix of eigenvectors of A whereas D is the diagonal 

matrix of eigenvalues of matrix A. 

Proof. Let U be matrix of eigenvectors of matrix A. If uk, k 

is an eigenpair of A, the A uk = k uk or   

  A uk = uk k.  

Then 

 AU =  A [uk] = [A uk] = [k uk] = [uk k] = [uk]D =UD 

Since U is invertible matrix, we have  

 A =  UDU-1 

The eigenvectors may be orthogonal, U is orthogonal matrix.  

Thus A =  UDU-1 =  UDUT 

 

The eigenvalues may not be positive, except for signs, they 

are square roots of the eigenvalues of A2.  

Corrolary.  Since AAT is symmetric, therefore AAT = UDUT, 

where U is the eigenvector matrix and D is the eigenvalue 

matrix of AAT. 

 

Proposition For matrix AAT, let u be an eigenvector 

corresponding to non-zero eigenvalue . Then ATu is an 

eigenvector of ATA with the eigenvalue .  

Proof. Let u be an eigenvector of AAT and  be the 

corresponding non-zero eigenvalue. Then 

AAT u =   u 

Since eigenvalue ≠0 u≠0, therefore ATu is a non zero 

eigenvector and now      

                ATA (AT u )  =  AT (AAT u ) 

= AT u 

=  AT u 

= (AT u) 

Therefore ATu is an eigenvector of ATA with eigenvalue 

≠0.  

 

Similarly if v is an eigenvector of ATA and  be a 

corresponding non-zero eigenvalue of ATA,  Av is an 

eigenvector of AAT.  

 

Proposition Let v be an eigenvector of ATA and  be a 

corresponding non-zero eigenvalue. Then Av is an eigenvector 

of AAT.  

Proof. Let v be an eigenvector of ATA and  be the 

corresponding non-zero eigenvalue. Then 

  ATA v  =  v  

Since eigenvalue ≠0, v ≠0, therefore A v is non zero and 

now      

    AAT (A v)  =  A(A TA v ) 

= A  v 

=  A v 

= (A v) 

Therefore Av is an eigenvector of AAT with eigenvalue ≠0.  

 

Proposition. Let vk be an eigenvector of ATA for non-zero 

eigenvalue k.  Then Avk is an eigenvector of AAT, say, uk, and 

that  Avk= K uk  or uk  = (1/K ) Avk where K is the square 

root of the corresponding eigenvalue k of ATA. 

Proof. Since uk are unit vectors eigenvectors of AAT , and  v k 

are unit vectors eigenvectors of ATA,  Avk is some scalar 

multiple of  uk.   

Let Avk = k uk  for some non-zero K.   Since uk is a unit 

vector,  

          k
 2  = k uk • k uk  = A vk • A vk  

= vk • ATA v k = v k • k v k= k 

or 

     k  = k vk • vk = ATAvk • vk   

= Avk • Avk = k uk • k uk = k * k = k
2 

 

Therefore k
 2 = k or k

  = √k 

 Hence k is a square root of eigenvalue k .   

 

D. Singular Value Decomposition    

Any symmetric positive semi-definite matrix A can be 

represented as the product of three matrices U, S, VT where U 
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and V are orthogonal matrices of eigenvectors of AAT and 

ATA; and S is a matrix whose diagonal entries are square roots 

of eigenvalues of AAT and ATA.   

Proposition The eigenvalues of AAT and ATA are identical 

except for the zero eigenvalues.  Here  is a non-zero 

eigenvalue of AAT if and only if it is eigenvalue of ATA.    

Proof.  is an eigenvalue of AAT  implies there is a non-zero 

vector u such that AAT u =  u  

   AAT u =  u  implies ATAAT u =  At u  

or ATA(AT u) =  (AT u)  

which means  is an eigenvalue of ATA.   

Similarly if  is an eigenvalue of ATA, there is a non-zero 

vector v such that    ATA v =  v   implies  AATA v =  A v  

or  AAT (A v) =  (A v) 

which means  is an eigenvalue of AAT.   

Proposition.  If  A = USVT where matrices U and V are 

orthogonal  then U is matrix of eigenvectors of AAT, V is a 

matrix of eigenvectors of ATA  and S is diagonal matrix of 

square roots of non-zero eigenvalues, and conversely. 

Proof.   

Since      A  = USVT  

then      AAT  = USVT (USVT) T  

= USVT (VTTSTU T)  

= USVT (VTTSTUT)  

= USVT VSTUT  

= US2UT 

Therefore AAT U = US2 .   

That is AAT uk = uk sk
2  for vectors uk. 

Thus U is matrix of eigenvectors uk of AAT.  The diagonal 

entries sk
2 of S2 are eigenvalues of AAT. Thus the entries sk

 of 

S are square roots of eigenvalues of AAT. 

Similarly we can verify that V is the matrix of eigenvectors 

of ATA. 

Conversely, to prove the converse, let  k, vk be eigenpair for 

ATA, then ATAvk = kvk 

We seen above that the eigenvalues of AAT and ATA are 

identical.  Now as seen above that for non-zero eigenvalues, the 

relation between eigenvectors of ATA and AAT  is Avk = √k 

uk where vk is an eigenvector of ATA and uk is an eigenvector 

of AAT
 

For any n-vector x, it can be expressed as linear combination 

of vk’s 

x =x• v1 v1+…+ x• vn vn 

Ax =x• v1 Av1+…+ x• vn Avn 

Ax = Av1 x• v1 +…+ Avn x• vn  

Ax = Av1 v1•x  +…+ Avn vn•x   

From Avk = √k uk for k=1,n  

Ax = √1 u1 v1•x  +…+ √n un vn•x     

Ax = √1 u1 v1
T x+…+ √n un vn

T x   

Ax =  (u1 √1 v1
T +…+ un √n  vn

T) x 

Since this true for any vector x, 

A =  (u1 √1 v1
T +…+ un √n  vn

T )  

Therefore we have proved that A=USVT 

 

E. Calculating PCA from SVD. 

We prove that for a symmetric matrix A with non-negative 

eigenvalues, PCA can be derived from SVD. If the columns of 

U are eigenvectors of AAT, the columns of V are eigenvectors 

of ATA, the diagonal entries of S square root of eigenvalues of 

ATA, then SVD of A be A=USVT. 

Proposition.  Let A be a symmetric matrix positive semi-

definite, the A=USUT, with columns of U are eigenvectors of 

ATA = A2 if and only if columns of U are eigenvectors of A. 

Proof. By SVD algorithm 

A= USVT  

where The columns of U are eigenvectors of A2;  the diagonal 

entries of S, square roots of eigenvalues of A2. 

Since A is a symmetric square matrix,   

U=V and consequently   A=USUT 

However,  

  A = USUT  implies AU = US  

It means  that the columns of U are eigenvectors of A and the 

diagonal entries of S are eigenvalues of A. 

 

Thus the columns of U are eigenvectors of A2 if and only if 

eigenvectors of A, the diagonal entries of S are square roots of 

eigenvalues of A2 iff the eigenvalue of A are non-negative. 

 

Note. If A is not positive semi-definite, D can have negative 

entries corresponding to negative eigenvalues.  In this case, 

PCA cannot be derived for SVD, see example below. 

 

Example. The matrix A=⌈
1 2
2 1

⌉ is symmetric so is AAT = ATA 

= A2 =[
5 4
4 5

] .  The eigen values of A are 3, -1, singular value 

of A are 3,1.   

Eigenvectors of A= ⌈
1 2
2 1

⌉ are  
[
1
1

]

√2
 and  

[
1

−1
]

√2
 corresponding to 

eigenvalues 3and -1. 

Eigenvectors of A= [
5 4
4 5

]   are  
[
1
1

]

√2
 and  

[
1

−1
]

√2
 corresponding to 

eigenvalues 9 and 1. 

 

Eigenvectors are same, PCA and SVD are not some.. 

PCA: UDUT  =  
[
1 1
1 −1

]

√2
 [

3 0
0 −1

]
[
1 1
1 −1

]

√2
 =  

[
3 −1
3 1

]

√2
 
[
1 1
1 −1

]

√2
=

  
[
2 4
4 2

]

2
 = ⌈

1 2
2 1

⌉ =A. 

However, SVD: USUT  =  
[
1 1
1 −1

]

√2
 [

3 0
0 1

]
[
1 1
1 −1

]

√2
 =  

[
3 1
3 −1

]

√2
 
[
1 1
1 −1

]

√2
=   

[
4 2
2 4

]

2
 =⌈

2 1
1 2

⌉ is not the same as A. 

 

Hence PCA cannot be derived  from SVD if A is not postitive 
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semi-definite. 

 

Orthogonal matrix is also called a rotation matrix, because 

this matrix rotates the original coordinate axes. Rotation does 

not change lengths and relative angles as seen below. 

Property.  If R is orthogonal matrix and u is a vector, then  

  |Ru|=| u | 

Proof. 

 |Ru|2=(Ru)T Ru = uT RT Ru,  

since R is orthogonal RTR=I 

 |Ru|2 = uTIu = uTu = |u|2 

Therefore |Ru|=|u| 

Property.  If R is orthogonal matrix and A is matrix, then  

  |RA|=|A| 

Proof. Let a•j be j-th column of A. Using the rotation property 

of vectors,  

|RA|2  = ∑j=1,n |R a•j|
2 = ∑j=1,n |a•j|

2 = |A|2 

 

Property.  If U and V are orthogonal and S is a diagonal 

matrix, then 

  |USVT|=|D| 

Proof. Using the rotation property of matrices,  

  |USVT| = |SVT| = |VST| = |ST| = |S| =|D| 

 

Property. If rows/columns corresponding to smaller 

variation are deleted, there is smaller loss of information. If 

rows/columns corresponding to zero eigenvalues only are 

deleted, then there is no loss of information in the reduced 

dimensionality.  

Proof. By SVD, there exist U, V, S such that A = USVT. Now 

A’ = U(:,1:k) S(1:k,1:k) V(1:k,:)T by deleting m-k columns 

after first k columns in U and n-k columns after first k columns 

in V, after deleting all rows and all columns after first k rows 

and k columns in S. Let Snew be S corresponding to dimension 

reduction, by zeroing all eigenvalues except first k diagonal 

entries. Let Snew  correspond to dimension reduction. The A’ is 

the same as B= USnewVT. In this reduction, loss of information 

is |A-B|, whereas  A and B have the same size mxn. 

Now  A=USVT   B=USnewVT    

|A-B|  = | USVT - USnewVT |  

= | U(S - Snew)VT |   

using orthonormality of column vectors of U and V we have 

|A-B| = | S - Snew|  

= | S - Snew|  

= √ (∑p>k spp
2)  

= √ (∑p>k p) 

 This shows that the smaller the value of √ (∑p>k p), the 

smaller the norm |A-B|, the closer A and B.  If all eigenvalues  

p  with p>k are zero, then there is no loss of information. 

 

Here are two interesting result. 

Property. If A is symmetric positive semi definite, the A= 

BTB for some symmetric positive semi definite B. 

Proof. By SVD, we have A= USUT. The entries if S are non-

negative. Let B =U√SUT. Since A is symmetric, B is 

symmetric. 

  BBT  = U√SUT(U√SUT ) T 

= U√SUT UTT√STUT 

= U√SUT U√SUT 

= U√S√SUT 

= USUT 

= A 

This property show that SVD transforms correlated data into 

uncorrelated data. 

Property. If A is symmetric positive semi definite, there is a 

transformation M such that covariance matrix MA(MA)T is 

diagonal. 

Proof. By SVD, we have A= USUT.  

Let M=UT 

Then MA= SUT 

Now        MA(MA)T  = SUT (SUT)T 

= SUT UST 

= SST 

= S2 

Note. Let A is mxn, U is mxm, V is nxn, Avk = k uk  and if 

AAt uk =  k
 uk ,  then At uk = k vk  and k =√ k. 

If m<n, we compute V first and then U*S=AV.  If m>n,  then 

we compute U first and then V*SI = ATU. 

Since S is diagonal, its inverse is reciprocal of the diagonal 

entries, except for zero entries which are left unchanged.  In 

case of zero entries, it becomes Pseudo inverse denoted by SI. 

Pseudo inverse is left inverse if m>n otherwise it is left inverse. 

Eitherway U = AV SI or VT = SI ATU or V = UTA SI where 

SI is pseudo inverse.  This is computationally more stable. 

Once U, and V are computed, S can be quickly verified from 

S = UTAV. 
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