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Abstract Singular Value Decomposition (SVD) is 

ubiquitous in a range of applications including computer 

science, economics, engineering, geology, oceanography, 

psychology, social networking etc. It is an unsupervised 

modeling technique that creates latent vectors for a 

subspace that reduces the dimensionality of observed data 

from n to k (k<<n) dimensions. Latent variables are 

uncorrelated variation of attribute values that are 

correlated in the original space. Moreover, SVD can be 

used to detect/remove noise/outliers, cluster similar entities 

and make predictions. On the other hand, classification 

tree is a supervised technique that accomplishes the 

similar tasks. It models decision trees from training data in 

order to make intelligent predictions. There is a close 

connection between SVD and decision trees, but differ in 

purpose, algorithm design and error analysis techniques. 

We present a hybrid algorithm bridges the gap between 

these standalone algorithms and adaptively supersedes 

their outcomes. For experimental analysis, we use real-

world benchmark data, wines, publicly available from UCI 

machine learning repository. The algorithm is 

implemented in Matlab, supported by decision trees in 

Weka software, on MacOS Seirra Version 10.12.3 8GB 

160MHZ. 

Keywords. PCA, SVD, MDS, Dimensionality Reduction, 

Classification Tree. 

 

I. INTRODUCTION 

INGULAR Value Decomposition (SVD) is 

ubiquitous in a range of areas including computer 

science, image processing (compression, 

enhancement), engineering, economic and social behavior 

models, geology, oceanography, psychology, psychophysics, 

social networks, visualization, and natural language 

processing [1], [2]. Singular Value Decomposition (SVD) is a 

study of the underlying structure of objects and their 

properties for efficient knowledge exploration.  

Principal Component Analysis (PCA) and Singular Value 

Decomposition (SVD) are interchangeably referred in the 

literature. In fact, PCA is for real symmetric matrices whereas 

SVD is generalization of PCA applicable to any rectangular 

positive semi-definite matrices. However, PCA and SVD are 

equivalent for symmetric positive semi-definite matrices. In 

Section 2, we will elaborate in detail on the difference 

between the two, PCA and SVD. While SVD is used for 

unsupervised modeling, the Multi Dimensional Scaling (MDS) 

and Decision Tree are supervised modeling techniques for 

making reliable classification predictions. Both of these 

techniques have complimentary roles in extracting knowledge 

embedded in data. For example, for recommendation of a 

product, it may be authenticated with large consumer survey 

in the face of high dimensional large question answer data. We 

will present a hybrid algorithm that takes advantage of 

functionality of SVD to optimize Decision trees, resulting in 

substantial reduction in computational effort and reduced 

storage space at insignificant cost in accuracy. 

The paper is organized as: Section II is background 

Section III is on related work, Section IV is algorithm design, 

prediction and accuracy measurement metrics, Section V 

implementation, experiments and discussion of results. 

Section VI is conclusions, Section VII is references and 

Section VIII includes the linear algebra appendix. 

II. BACKGROUND 

The real world business data is in the form of tables. 

Mathematically [see Appendix] speaking, a table is an m×n 

matrix whose m rows are observation vectors and n columns 

are properties/attributes of the observation.   Principal 

Components are new latent vectors blending features in 

original vectors [3]. Because row rank and column rank of a 

matrix are equal, the rank of an m×n matrix A is k, where k ≤ 

min(m, n) [4]. One of the advantages of SVD is that it is 

applicable to positive semi-definite rectangular matrices 

including symmetric square matrices [5], [6]. Linear algebra is 

the backbone of PCA development. Some users use it blindly 

without understanding the algebraic implications. We clarify it 

with the following examples. 

A. What is Eigen-Decomposition? 

 If A is an n×n real matrix and has eigenvalues and 

eigenvectors, then (1) the eigenvectors are normalized to unit 

vectors and (2) the eigenpairs are arranged in the descending 

order of eigenvalues [7].  Let V be the matrix of eigenvectors 

of A. If V is invertible, algebraically VV-1 = I, and 

geometrically V is a latent orientation of original axes for data 

visualization. Let D be the matrix of eigenvalues of A 

arranged in descending order. The goal is to express A in 

terms of eigenvectors matrix V and eigenvalues matrix D as A 

= VDV-1. For example, (1) the matrix [
0 1

−1 −2
] has two 

identical eigenvalues: -1, -1; and only one eigenvector [
1

−1
]. It 

does not have eigen-decomposition. (2) The matrix [
1 0

−2 −1
] 

has two distinct eigenvalues: 1, -1, and eigenvectors: [
1

−1
], [

0
1

] 

S 
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which are linearly independent, but not orthogonal. The eigen-

decomposition is A = VDV-1  

[
1 0

−2 −1
] = [

1

√2
0

−1

√2
1

] [
1 0
0 −1

] [√2 0
1 1

], but V-1 ≠ VT. 

 

If eigenvectors are not orthogonal, this decomposition is not 

useful for data mining. If A is symmetric, then V is orthogonal 

matrix of eigenvalues and the inverse is simply the transpose 

of V, i.e., V-1= VT. 

B. What is PCA? 

The basic concept of PCA is to create smaller set new latent 

variables in place of original large set of variables/attributes 

used in observations [8]. Principal Component Analysis 

(PCA) is a generalization of eigen-decomposition to 

symmetric matrices leading to orthogonal eigenvectors such 

that A = VDVT= VDV-1. However, PCA uses the eigenvectors 

of covariance matrix, ATA = A2 [9].  The eigenpairs are 

arranged in descending order of eigenvalues. The first 

eigenvector gives the direction of the largest spread, and the 

first eigenvalue is the largest spread, see Figure2. It is 

equivalent to the least squares deviation meaning data points 

are at shortest distance from the computed eigenvector.  PCA 

determines eigenpairs for A2 such that the eigenvectors are (1) 

pairwise orthogonal, (2) normalized to unit vectors and (3) 

arranged in the descending order of eigenvalues, (4) that the 

variance along the eigenvectors are maximum in descending 

order. Let V be the matrix of eigenvectors of A2 arranged in 

the descending order of eigenvalues of A, then algebraically V 

is orthogonal matrix and is invertible. Let D be the diagonal 

matrix of eigenvalues of A arranged in descending order 

provided eigenvalues of A are non-negative. For negative 

eigenvalues of A, sign has to be taken into consideration. PCA 

reconstructs A from V and D as A = VDVT = VDV-1.  Figure 

1(a) shows four data points along with the standard coordinate 

axes. Figure 1(b) has eigenvectors and projections of data 

points on the eigenvectors to show the variance of data along 

the eigenvectors as new computed axes. It is a rotation of the 

vase coordinates system. Figure 1(c) displays standard and 

new coordinate systems, data points and their projections on 

the eigenvectors.  

 

 
 

(a)                   (b) 

 
(c) 

Figure 1. (a) Four data points {P1, P2, P3, P4}, (b) 

eigenvectors, projections of data points on the 

eigenvectors to show data spread along new axes, (c) 

representative of uv, and xy frames with data points 

and projections. 

We generalize the previous example to symmetric matrix for 

the PCA. The matrix [
1 0
0 −2

] has eigenvalues 𝜆 =1, -2 and 

the eigenvectors are [
1
0

] , [
0
1

] which are linearly independent, 

and orthogonal eigenvectors. Then the eigen-decomposition A 

= VDV-1 = VDVT is [
1 0
0 −2

] = [
1 0
0 1

] [
1 0
0 −2

] [
1 0
0 1

].    

But PCA uses AAT and ATA which are A2 =[
1 0
0 4

] (A, A2 

symmetric) for computing the eigenpairs.  Except for signs, 

the eigenvalues of A are square roots of the eigenvalues of A2 

that are 4 and 1, the corresponding eigenvectors are 

eigenvectors of A2 are [
0
1

], [
1
0

]. Matlab svd does not 

reconstruct A. In our algorithm, we include the proper signs. 

Here we used the proper sign for square root of 4 to -2, 

because -2 is eigenvalue of A. 

Using eigenvectors of A2, the eigen-decomposition  

A = VDV-1 = VDVT is [
1 0
0 −2

] = [
0 1
1 0

] [
1 0
0 −2

] [
0 1
1 0

].  

C. What is SVD?  

Singular Value Decomposition (SVD) is a generalization of 

PCA to include (1) non-square and (2) positive semi-definite 

matrices [10], [11]. PCA and SVD are equivalent for 

symmetric positive semi-definite matrices.  By definition, an 

m×n real matrix A is positive semi-definite, if vTAu ≥ 0 for 

all vectors u and v. The matrices AAT and ATA are symmetric 

and positive semi-definite. For symmetric matrices AAT and 

ATA, the eigenvalues are de facto non-negative and 

eigenvectors are orthogonal. SVD uses covariance matrices 

AAT and ATA to determine two orthogonal matrices of 

eigenvectors U, V and a diagonal matrix S for eigenvalues 

such that the eigenvectors in U, (and V) are (1) pairwise 

orthogonal, (2) normalized to unit vectors and (3) arranged in 

the descending order of eigenvalues. Then SVD decomposes 

A into three factors U, V and S such that A = USVT.  The 

examples where A is not both symmetric and positive semi-

definite are shown in the Table 1 to understand SVD and PCA 

are not equivalent in general.  

Example. To accommodate both PCA and SVD, we 

generalize the previous example matrix to symmetric, positive 

semi-definite A= [
1 0
0 2

] whereas again AAT=ATA=[
1 0
0 4

]. 

The eigenvalues of A are 2,1; so D= [
2 0
0 1

] which is same as 

S. Thus for PCA/SVD of A, the eigenpairs of AAT, ATA are U 
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= [
0 1
1 0

], V= [
0 1
1 0

], and S = [
2 0
0 1

]. 

And A = USVT becomes  

[
1 0
0 2

] = [
0 1
1 0

] [
2 0
0 1

] [
0 1
1 0

] implying A = USVT. 

Summarizing this discussion, we see that several 

possibilities exist for an arbitrary matrix A. We show these 

examples in Table 1.  

Consequently, we formulate the sufficiency conditions for the 

existence and equivalence of PCA and SVD. If a matrix A is 

symmetric and positive semi-definite, then A has SVD 

decomposition. Recall that for any matrix A, the covariance 

matrices AAT, ATA are symmetric and positive semi-definite. 

We can always get around the exceptional cases for A. In 

Table 1, there are some cases where A is (1) symmetric and 

(1.1) has PCA SVD decomposition equivalent on PSD (1.2) 

has PCA SVD decomposition, but not equivalent on not PSD, 

and (2) not symmetric and (2.1) PCA SVD decomposition 

equivalent on PSD (2.2) has PCA SVD decomposition not 

equivalent on not PSD or non-square PSD. Also for non-

square matrices, there is SVD, not PCA. 

 
TABLE1. FOUR POSSIBLE CASE OF MATRIX 

 

D. What is MDS? [10], [11], [12] Multidimensional Scaling 

(MDS) is a twist of PCA/SVD and resorts to minimization or 

regression optimization for solution to this problem, whereas 

PCA/SVD resorts to eigenpair solution to this problem. The 

new variables are linear combinations of original variables. 

Mathematically, observations samples are points in higher 

dimensional space. If xT = [x1, x2, …, xn] is a point in base 

coordinate system, then yT = [ y1,y2,…,yk] , k<<n, is the same 

point in new coordinate system where for p =1,…,k yp = ∑i wip 

x i  the coefficients wip are also called the weights associated 

with xi, namely, wp
T = [w1p,w2p,…,wnp] is a weight vector. This 

means yp is the projection of x on w•p. Algebraically, the 

matrix [w•p] is a linear transformation of x to y. Geometrically, 

it is a matrix of rotation from a standard vector space basis to 

principal component vector basis. The vector w•p is 

determined in such at way that variation of data points along 

this direction is maximum, then the data projection is Aw•p = 

bp, A[w•p] = [bp]. Note that this w•p is the same as vector vp in 

PCA/SVD as such V =[vp] =[w•p], AV = B expresses m×n 

matrix A to smaller m×k matrix B. V is the matrix of 

eigenvectors and amount of spread along each vector is the 

corresponding eigenvalue.  

E. What is a Decision Tree? A decision tree is a tree where the 

paths from the root to the leaf nodes generate rules for 

classification of data items [13],[14]. The conventional way to 

classify multidimensional data is to start with a feature space 
whose dimensionality is the same as that of the data.   The 

attributes are rearranged by leveraging entropy at each step in 

the process of tree construction from the root node to proceed 

to child nodes. Entropy [15Kdnugg2017] is a computational 

technique for determining the best possible attribute to be used 

in the decision tree construction. For example, if an attribute 

has n values xi, we compute the probability p(xi), to associate 

the entropy with x:  

Entropy(x) = − ∑i=1,n p(xi) log2 p(xi) 

 Decision is based on entropy of the feature values. At each 

stage of tree construction, we use the conditional entropy 

based on attributes that have been already selected.  

How is decision tree used? The decision tree can be displayed 

graphically for easy visualization and intuitive understanding 
quickly. In decision tree approach prediction, search in the 

decision table is replaced by decision tree traversal algorithm 

to determine the classification. All machine learning 

algorithms have flaws. For a list of such flaws see [15]. It is an 

interesting article on what is right and what is wrong with the 

algorithms. So one has to understand the fundamental 

underpinnings of the algorithm and has to be vigilant in the 

selection of algorithm before using it. This paper adheres to 

this conviction. 

III.  RELATED WORK 

A. What is meant by Size Reduction, Noise Reduction, and 

Clustering Data? The primary purpose of reduction is to 

optimize storage space and computation time, not necessarily 

to recreate the original data. The most useful contribution 

PCA/SVD is that one can ignore eigenvalues or variations 

below a certain threshold [11]. For this purpose, it is desirable 

to uncorrelated the correlated. Let A be an m×n real and 

symmetric data matrix. We may want to reduce the number of 

variables/properties/attributes of data (row size) or number of 

observations/objects for size of data (column size) or both. We 

create two orthonormal matrices U and V where U and V are 

eigenvector matrices of covariance matrices AAT and ATA. 

Since AAT and ATA are square, symmetric, and positive semi-

definite, there exist (1) orthonormal matrices U, V, such that 

UUT = 1 and VVT = 1 and (2) a diagonal matrix S such that is 

AAT = USUT, ATA = VSVT. Consequently, the positive semi-

definite rectangular matrix A can be recreated from U, V, S : 

A = USVT. The covariance matrix ATA is not necessarily a 

diagonal, but covariance matrix of rotated data AV is 

diagonal: (AV)TAV = (US)TUS = SUTUS = SS = S2 which is a 

diagonal matrix with non-negative values. Similarly 

UTA(UTA)T = SVT(SVT)T = SVTVST = SS = S2. Recall that 

UTU = I implies UUT = I This confirms that the orthonormal 

transformation matrices U and V un-correlate the correlated 

values because the covariance of AV and UTA are diagonal. It 

follows from the diagonal matrix that (1) the pairwise 

covariance is zero, hence variables are uncorrelated in the 

new, rotated coordinate system. (2) eigenvalues of AAT and 

ATA are never negative.  (3) trace(AAT) is equal to the sum of 

eigenvalues of AAT.  

Now we have two orthonormal matrices Umxm and 

Vnxn. The matrix Amxn can be reduced by constraining U and V 

to (1) fewer columns AVnxk by reducing the 

variables/attributes from n to k, k<<n, (2) fewer rows Umxk
TA 

reducing size of data from m observations/rows to k rows, 

k<<m. In case, we want to reduce both attributes and size, 

then we can use kxk instead of mxn A: Unxk
TAVmxk. The data 

size can be further reduced if the number of non-zero 

eigenvaluesis less than k<<min(m,n). 

Data Matrix Positive Semi-Definite Not Positive Semi-Definite 

Symmetric [
1 0
0 1

]  PCA≡SVD [
1 0
0 −1

]  PCA≢SVD 

Not 
Symmetric [

1 0
0 1
0 0

]  SVD but no PCA [
−1 0
0 −1
0 0

] no SVD, no PCA 

7 POLIBITS, vol. 56, 2017, pp. 5–14https://doi.org/10.17562/PB-56-1

Algorithm Optimization Using Features In SVD & Classification In Eigenspace

IMPORTANT: This is a pre-print version as provided by the authors, not yet processed by the journal staff. This file will be replaced when formatting is finished.

IS
S

N
 2395-8618



 

 
 

These concepts and results are used in error analysis 

for determining the optimal number of eigenvectors sufficient 

for dimension reduction. However, (1) it is difficult to extract 

a small number of features for any learning algorithm, and (2) 

PCA/SVD cannot determine exactly which of the original 

uncorrelated variables/attributes can be dropped. Thus it 

cannot determine which original variables are important [1]. 

As we calculate eigenvectors, it becomes trivial that A = USV 

T implies S = UTAV that means A is diagonalizable.  

 When we transform the dataset, error is natural to 

occur due to projection for reducing dimensions. For example, 

for Wine data discussed in section 4.1, we find that as a result 

of SVD, using eigen space of dimension 1,2,3, etc. the error 

decreases, see Figure 2. It shows that just four dimensional 

transformed space data accounts for 98% of the data in the 

original space. 

 
Figure 2. This shows errors due to reduced dimensionality 

when we use 1,2,3…,11 principal components. Reduction in 

data space that accounts for increased computational 

efficiency and increased error. 

 

 Most challenging part of PCA/SVD is interpretation of 

components in terms of original coordinates. Most of the time 

we reduce only the number of attributes (row length). It is 

more useful to apply SVD transformation before applying 

classification tree algorithm. This can be done more efficiently 

in transformed space. Moreover, we apply classification 

learning in the transformed space with substantial reduction in 

computational effort and storage space at insignificant cost in 

accuracy. 

B. Algebraic Foundations and Dimension Reduction 

For a positive semi-definite matrix A, the SVD decomposition 

A = USVT is full spectrum decomposition. If we use fewer, 

say k, columns of V, it reduces to k features in the new frame, 

k << min(m,n), in the m×n data where k indicates the number 

of columns used, Sk is a k×k diagonal matrix. Then Ak = 

UkSkVk
T, Ak has least error from A.  

C.1   Eigen-Decomposition Analysis 

For a symmetric matrix A, eigenvalues exist and are real. The 

eigenvectors generate the vector space of matrix rows.  The 

eigenvectors corresponding to different eigenvalues are 

orthogonal.  

Theorem. Let A be a real symmetric matrix. Show that there 

exists an orthogonal matrix V and a diagonal matrix D such 

that A = VDVT where V is the matrix of eigenvectors of A; 

and D is the diagonal matrix of eigenvalues of A.  

Proof. Let A vi = 𝜆i vi for which (𝜆i, vi) is a corresponding 

eigenvalue and eigenvector pair. We arrange the eigenvalues 

and eigenvectors on descending order of eigenvalues. 

Let D be diagonal matrix of eigenvalues i.e., dii = 𝜆i or D = 

[𝜆i], and V be the matrix whose columns are eigenvectors, i.e., 

V = [vi]. Since V is orthogonal matrix, V-1 = VT. From 

eigenpair equation 

  A vi = 𝜆i vi 

using matrix notation, it becomes  

  A [vi] = [𝜆i vi] = [vi 𝜆i] = [vi ][𝜆i] 

Since A is symmetric V-1 = VT 

AV = VD  A = VD V-1 = VDVT 

Note that the symmetry constraint on A is sufficient, but not 

necessary.  

Example: The matrix A has eigen-decomposition, even when 

A is not symmetric.  

The matrix [
0 0
1 1

] has eigenvalues: 0,1. Eigenvectors: [
1

−1
], 

[
0
1

] which are linearly independent, but non-orthogonal 

eigenvectors. The eigen-decomposition is [
0 0
1 1

] = [
0

1

√2

1 −
1

√2

] 

[
1 0
0 0

] [
1 1

√2 0
].   

This example shows that eigenvectors are not orthogonal, and 

V-1≠VT, thus A = VDV-1, but A ≠ VDVT . 

For PCA, the eigenvectors of  ATA and AAT are used. 

The matrix ATA= [
1 1
1 1

] has eigenvalues:0, 2. 

Eigenvectors: [
1

−1
], [

1
1

] which are linearly independent, 

orthogonal.  

The matrix AAT= [
0 0
0 2

] has eigenvalues:0,2. 

Eigenvectors: [
1
0

], [
0
1

] which are linearly independent, 

orthogonal forming U = [
0 1
1 0

], V = 
[
1 1
1 −1

]

√2
  here U ≠ VT,  S = 

[√2 0
0 0

] , 

Note 1. The PCA is [
0 0
1 1

] = [
0 1
1 0

] [√2 0
0 0

] 
[
1 1
1 −1

]

√2
 which 

eigen-decomposition, SVD, but different. 

 

Note 2. The matrix [
0 0
1 1

] does not have PCA but SVD, 

[
0 0

−1 −1
] = -[

0 0
1 1

] has no PCA , or SVD 

 

C.2  PCA Analysis 

Here we see that for a symmetric matrix, eigen-decomposition 

is guaranteed. For a square, symmetric matrix A, A2 is also a 

square symmetric matrix, eigenvalues of A2 are real and non-

negative. Let (𝛼, u) be eigenpair for A2, i.e., A2 u = 𝛼 u. then 

𝛼 ≥0, because  

 𝛼 = 𝛼 (u, u) = (𝛼 u, u) = (A2 u, u)  

= (A u, ATu) = (A u, Au) ≥0 from symmetry of A.   

 

Theorem. If A is a symmetric square matrix and u is a unit 

eigenvector of A2 with eigenvalue 𝛼, then  

(1) Au is also an eigenvector of A2 with the same 
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eigenvalue 𝛼,  

(2) Au = √ 𝛼 v and Av = √ 𝛼 u where u, v are unit 

eigenvectors of A2.  

Proof: let A2u = 𝛼 u, then AA2u = 𝛼 Au 

then  

AA2u = 𝛼 Au 

A2(Au) = 𝛼 Au 

Since u ≠ 0, and Au ≠ 0, Au is an eigenvector of A2 for the 

same eigenvalue.  

Let us denote the unit eigenvector by v 

The Au = 𝛽 v for some beta. 

We show that 𝛽 = √ 𝛼  

 𝛼  = 𝛼 (u, u) = (𝛼 u, u) = (A2 u, u) = (A u, ATu) = 

(A u, Au) = (𝛽 v, 𝛽 v) = 𝛽2 (v,  v) = 𝛽2 

therefore 𝛼  = 𝛽2  

Since 𝛼 𝛽2  

 therefore Au = ±√ 𝛼 v 

Let us use + symbol for simplicity. Also it can be verified that 

Av = √ 𝛼 u. For example, 

Au = √ 𝛼 v implies A2u = √ 𝛼 Av or 𝛼 u = √ 𝛼 Av or Av = 

√ 𝛼 u 

Example This example shows that each eigenvector of A2 is 

an eigenvector of A.  

 let A = [
1 0
0 −1

], A2 = [
1 0
0 1

],  

eigenvalues of A2 are 1, 1 and eigenvectors u = [
1
0

], v = [
0
1

],  

eigenvalues of A are 1, -1 and eigenvectors u = [
1
0

], v = [
0
1

],  

 A2 u = u , A u = u.  

A2 v = v , A v = - v.  

A = USUT  

Trivially, [
1 0
0 −1

]= [
1 0
0 1

] [
1 0
0 −1

] [
1 0
0 1

] 

 

Theorem. Let A be symmetric matrix. Show that there exists 

an orthogonal matrix U and a diagonal matrix S such that A = 

USUT where U is matrix of eigenvectors and S is the matrix of 

square roots of eigenvalues of A2.  

Proof. In PCA, we arrange the eigenvalues and eigenvectors 

according to descending order of eigenvalues. Let S = [𝜆i] be 

diagonal matrix of square roots of eigenvalues and U = [ui] be 

matrix of eigenvectors of A2. Since U is orthogonal matrix, U-1 

= UT and  

  A ui = 𝜆i ui 

which implies that  

  A [ui] = [𝜆i ui] = [ui 𝜆i] 

becomes 

AU = US  A = US U-1 or A = USUT 

C.3   SVD Analysis 

If A is not positive semi-definite, we may not have SVD 

decomposition. For example, let A be a rectangular matrix. 

Then AAT and ATA are symmetric and positive semi-definite. 

The eigenvalues of AAT and ATA exist, are non-negative and 

identical. Let U be matrix of eigenvectors of AAT, and V be 

matrix of eigenvector of ATA, also ATA v = 𝜆 v implies AAT 

(A v) = 𝜆 (A v) or Av is eigenvector of AAT. Since u and v 

are unit vectors, the relation between ATu and v is ATu = 𝜇 v 

for some scalar 𝜇; and the relation between Av and u is Av = 

𝜇 u where 𝜇 = √ 𝜆. For example, if ATu = 𝜇 v, then  

𝜆 = 𝜆 (u, u) = (𝜆 u, u) = (AAT u, u)  

= (AT u, ATu) = (𝜇 v, 𝜇 v)  

= 𝜇2 (v,  v) = 𝜇2 

Thus if we know U or V, the other is readily available.  

We have now  

Avi = 𝜇 iui  for each non-zero eigenvalue 𝜇 i,  

zero value contribute nothing to the matrix of U, S, V. 

A[vi] = [𝜇 iui ] 

A[vi] = [ui 𝜇 i] = [ui ][ 𝜇 i] 

AV = US 

This is called the polar decomposition. An interesting 

outcome of this equation is that projection of right singular 

vectors are scores of left singular vectors. Eigenvectors are 

called factors and eigenvalues are called loads. Since U and V 

are orthogonal, the equation AV = US leads to spectral 

decomposition of A: 

A = USVT 

Example. The matrix A is not positive semi-definite, but A is 

symmetric. The PCA and SVD exist and are not equal to 

eigen-decomposition. 

The matrix A = [
1 0
0 −1

] has eigenvalues 1 and -1 and 

eigenvectors as [
1
0

] and [
0
1

] . It shows that the eigenvectors for 

AAT = ATA = A2 are same, but the eigenvalues are 1,1. This 

results in 

U = [
1 0
0 1

] = V = VT , D = [
1 0
0 −1

] and, S = [
1 0
0 1

] and not 

A≠USVT though we have A = UDU-1= UDUT. 

 

If A is positive definite, square or rectangular, we can have  A 

= USVT, where V is not necessarily U. 

IV. THE ALGORITHM AND THE METRICS FOR 

ACCURACY ANALYSIS 

A. The Algorithm  

Routinely the algorithms for classification and dimensionality 

reduction are used standalone to accomplish the intended 

tasks. As a result, computational efficiency and storage 

efficiency suffer. We create a hybrid algorithm to take 

advantage of the computational and storage efficiency first 

and then apply the classification tree algorithm to data in the 

compressed domain. As a result we get substantial efficiency, 

on the average, we gain 18% computational efficiency at the 

cost of .08% accuracy reduction. Further optimization depends 

on the size of data and data properties. More the number of 

attributes, better the performance of the algorithm. Figure 3 

describes this strategy. 

 

Input: m×n data matrix A 

Output: classification tree for Amxm from reduced data Bmxk 

The enhanced SVD algorithm is as follows 

 Ignore the missing values from consideration.  

 Create covariance matrices AAT and ATA normalized by 

the dimensions 

 Calculate eigenvalues and eigenvectors (normalized to 

unity) of AAT and ATA  

 Calculate eigenvalues of A to track the negative 
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eigenvalues  

 Calculate the square roots of values of AAT and ATA  

       Update the signs according to the sign for eigenvalues of 

A 

 Rank the updated eigenvalues in descending order and 

form a diagonal matrix S  

 Rank the eigenvectors for AAT using the order of 

eigenvalues and form matrix U  

 (Once U is computed V is readily available) 

 Rank the eigenvectors for ATA using the order of 

eigenvalues and form matrix V  

 Determine k<<n for the number of eigenpairs acceptable 

for data reduction. 

 Transform m×n A to reduced m×k data set B = AVk 

The Decision tree algorithm in general is 

 Convert the classification numeric attribute to intelligent 

interval categorical attributes,  

 Apply Entropy based Greedy attribute selection 

       Use entropy to determine the attribute selection at each 

node of the tree construction using 

            max entropy gain 

 Create classification tree nodes 

 The leaf nodes are classes and internal nodes are tree 

paths to generate rules. 

Hybrid approach 

 Collect data, clean the data items with incomplete values 

 Apply the enhanced PCA that may reduce classifier 

dimension based  

 Reduce the data set by ignoring contribution of 

unacceptable eigenvalues (near zero eigenvalues) 

 Apply Classification Tree algorithm in the reduced 

domain and original base domain 

 Analyze and compare the results.   

Figure3. Algorithm for Hybrid approach 

 

The enhanced PCA/SVD algorithm is implemented in Matlab 

and decision tree algorithm J48 is used from Weka software. 

Benchmark data on wines is obtained from UCI ML dataset 

repository. The following metrics are used to benchmark the 

accuracy. 

 

B. The Metrics for Accuracy Analysis  

B.1 Metrics for Decision Trees 

The Data mining community uses gold standard, precision, 

recall and F measures, to determine the predictive accuracy of 

the classification [15].  For example, Precision is related to the 

accuracy of positive prediction, predicting negative as positive 

that means false positive, a false alarm, whereas, Recall is 

related to the accuracy of prediction on positive data, 

predicting positive to negative that meaning false negation, a 

missed case.   

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   

  𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

One can err on one side or the other: if one decreases the 

number of false negatives to ensure that it is less likely to miss 

an actual value, or one can reduce the number of false 

positives at the cost of misses. One can "fine tune" the 

detection algorithms. One way to tune is the F-measure, which 

is the weighted Harmonic mean of Precision and Recall. For 

example, the F-measure [15], is defined by Harmonic mean of 

P and R, 

𝐹 =
1

𝛼
𝑃

+
1 − 𝛼

𝑅

    𝑜𝑟   𝐹 =
𝑃𝑅

(1 − 𝛼) 𝑃 + 𝛼 𝑅
 

where α  [0, 1]. The weight α can be fine-tuned by 

decreasing the missed at the cost of increasing the false 

alarms. The default balanced F-measure is with equally 

weighted precision and recall, which means making α = 1/2 

making 

𝐹 =
2𝑃𝑅

𝑃 + 𝑅
 

B.2 Metrics for Dimensionality Reduction SVD 

Based on k<<n, k highest eigenvalues out of n eigenvalues are 

selected to analyze dimensionality reduction. Recall A is the 

original matrix; V is the matrix whose columns are 

eigenvectors of ATA. There are three equivalent ways to 

measure errors; experimental simulations verify this and the 

theorems confirm it. The value of k is determined as follows: 

First by dropping near zero eigenvalues, the error is the based 

on the dropped eigenvalues λp, p=k+1…n. Second since 

corresponding eigenvector are dropped, the projection in 

eigenspace becomes AV and projection space constrained to k 

dimensions becomes newAV. Thirdly, the projection 

translated in the base space becomes newA. 

Error is measured in three ways:  

     
Σp=k+1,n λp 

Σp=1,n λp
 relative error in the eigenvalues 

      
|AV−newAV|  

|AV|  
   relative error in projection space. 

      
|A−newA|  

|A|  
 relative error in the original space 

For logical data, the data is coerced to numerical integer data, 

thus quantization is performed before error checking.  

 

V. IMPLEMENTATION AND EXPERIMENTATION 

The SVD algorithm, implemented in Matlab, is enhanced by 

prioritizing the directions of eigenvectors produced by the 

Matlab svd function. In addition to entropy heuristic used in 

the Weka tree construction algorithm J48, we updated it to 

include svd as part of the tree construction. The metrics in 

section 3 are used to benchmark the overall accuracy obtained 

in the confusion matrix. 

  Benchmark data on Wine dataset is obtained from 

UCI [16] where it has been extensively studied. Besides the 

classic site, there are numerous sites where the same data sets 

are available. For our purposes data is ready to use for 

analysis. Many times it may still not be practical to use 

directly due to the data size and computational bottlenecks. 

Data customization may need to be performed, e.g. data 

reduction in size and removal of attributes irrelevant to 

classification. If data gets transformed, it may be mapped in 

the original space for analysis or the analysis may be 

performed in the transformed domain. 

  We experimented it both ways and found that either 
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way the algorithm performs better that brute force decision 

tree algorithm. We show results of experiments in Table 2 and 

Table 3. Our purpose is to show the improvement in reduced 

computations of the hybrid algorithm on classification without 

loss of accuracy.  

V.      WINES DATASET 

 A predictive model on Wine dataset is useful to provide 

guidance to vineyards regarding quality and price expected on 

their produce without heavy reliance on volatility of wine 

tasters [16]]. Two datasets are available, of which one dataset 

is on red wine and has 1599 different varieties. All wines are 

produced in a particular area of Portugal. Dataset has 12 

attributes: (fixed acidity, volatile acidity, citric acid, residual 

sugar, chlorides, free sulfur dioxide, total sulfur dioxide, 

density, pH, sulphates, alcohol, quality). Quality is based on 

sensory data and the rest are function of chemical properties of 

the wines. All 11 chemical properties of wines are real 

variables, whereas Quality is an ordinal variable with possible 

ranking from 1 (worst) to 10 (best).  Since Weka J48 uses non-

numeric categorical attribute for classification, we replaced 

the numbers 1 to 10 by number strings One, Two, Three, Four, 

Five, Six, Seven, Eight, Nine, Ten. 

Before we use our algorithm, we analyze by using 

standalone Weka algorithm J48, classification model is 

constructed and confusion matrix for accuracy calculated for 

baseline comparison. We used SVD to determine the 

eigenvalues and found that the ratio of two smallest 

eigenvalues to largest eigenvalue is .0004  (all 11 eigenvalues 

are 60.573958, 9.433888, 6.540730, 1.550106, 1.338038, 

0.346191, 0.188387, 0.148977, 0.101789, 0.040841, 

0.024550). We decided to drop the smallest two eigenvalues 

out of 11 eigenvalues and apply the classification to the 

reduced dataset. The result show the there is 18% reduction in 

data with no loss of accuracy, in fact accuracy improved 

slightly. This may account for noise reduction. Computation is 

also speeded up by applying the algorithm in the compressed 

space with retaining slightly better accuracy because 

conversion to base space is eliminated. Thus we reduced the 

data by 18% and applied the decision tree algorithm in two 

ways: in original space and in compressed space. The results 

are shown as confusion matrix in Table 2 and Table 3  

The latent variables do not tell much about the 

original variables. Prediction of Quality ranking from the 

chemical properties of the wines can be inferred from the 

latent variables directly. 

 
TABLE 2. CONFUSION MATRIX FOR DECISION TREE GENERATED 

BY J48 ALGORITHM 

Precision Recall F-

Measure 

Class 

0.2 0.111 0.143 Eight 

0.492 0.472 0.482 Seven 

0.609 0.635 0.622 Six 

0.71 0.72 0.715 Five 

0.054 0.038 0.044 Four 

0.167 0.1 0.125 Three 

0.612 0.622 0.616 weighted 

average 

 

 
TABLE 3. DATA REDUCTION WITH SVD AND J48 ALGORITHM IN 

RAW, REDUCED, AND TRANSFORMED DOMAIN. 

 

VI. CONCLUSION 

We have given a hybrid algorithm that takes advantage of 

reducing data by dropping near zero eigenvalues and applying 

classification algorithm on latent variables. We applied the 

hybrid algorithm to a well-known benchmark dataset of  a 

collection of Wines. For comparison the classification 

algorithm is applied in both the full base space and reduced 

eigenspace. We have shown that hybrid algorithm outperforms 

the usual standalone algorithm applied to data reduction and 

classification on their own for the intended tasks. Though 

accuracy result shown by confusion matrices are comparable, 

but the reduction in computational effort and storage space is 

significant. The application developers working in this area 

will find it useful in real time computations. 
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VIII. APPENDIX A 

The linear algebra definitions used here can be found in any 

textbook [4]. Briefly we describe in frequent terms definitions. 

We adopt the convention that the vectors are column vectors 

by default. The linear algebra concepts of vector, transpose of 

a vector, scalar product of a vector, Euclidean norm or length 

of a vector, unit vector, sum of two vectors, dot product of two 

vectors, orthogonal vectors, Gram-Schmidt orthogonalization, 

matrix, square matrix, identity matrix, diagonal matrix, 

transpose of matrix, symmetric matrix, sum of matrices, 

product of matrices, inverse of a matrix, orthogonal matrix, 

norm of a matrix, orthogonal matrix, rotation matrix, rank of 

a matrix, determinant of a matrix, vector space, and basis of a 

vector space, are standard terms in linear algebra. Additional 

terms that we use are an eigenvector, and an eigenvalue. By 

conventions of linear algebra, all vectors are column vectors 

unless categorically and specifically stated. For details on 

linear algebra, reader may consult references  

For convenience in reading this paper, the notation 

necessary for readability is: matrices are described in 

uppercase, vectors are in lowercase bold, and the elements in 

matrices and elements in vectors are lowercase italic. For 

example, 

 

Definition. If u and v are both row vectors or both column 

vectors, and v is a unit vector, then the scalar projection of u 

on v is given by u•v which is expressed as a matrix product 

if u and v are column vectors, then u•v = uT v = 

[𝑢1 . . . 𝑢𝑛] [

𝑣1

…
𝑣𝑛

]  

 

Definition. The vectors u and v are orthogonal if u•v = uTv = 

0. 

 

Definition. A set of vectors is orthonormal if each vector is a 

unit vector, and any two different vectors are mutually 

orthogonal. 

 

A matrix is a 2D array consisting of rows and columns. For a 

matrix A, we use the shorthand notation for matrix A = [𝑎𝑖𝑗], 

where 𝑎𝑖𝑗  is the ij-th element of A. If A is a matrix, ai• is a row 

vector representing the i-th row of matrix A, and a•j is a 

column vector representing the j-th column of A. Thus ith row 

is ai• = [ 𝑎𝑖1, 𝑎𝑖2,…, 𝑎𝑖𝑛]. Similarly jth column is a•j = [

𝑎1𝑗

𝑎2𝑗
…

𝑎𝑚𝑗

]. 

Definition. The matrix A= [aij] is said to be symmetric if aij = 

aji for all i,j. That is, the elements across the main diagonal are 

identical, that is, A is equal to its transpose, A = AT. 

 

Definition. The norm of a matrix A is defined as the square 

root of the sum of squares of all elements in A. If A = [aij] 

then |A| = √(∑i,j aij
2)  

 

Definition. The trace of a matrix A is defined as the sum of 

entries on its main diagonal. If A = [aij] then trace(A) = ∑i aii  

 

Definition. The matrix A is orthogonal, if the rows (and 

columns) are pairwise orthogonal, and AAT = ATA = I, the 

identity matrix.  

There are three statistical terms associated with a matrix A: 

trace , rank, determinant, 

 

Proposition. For a square matrix A,  

trace(AAT) = trace(ATA) = trace(A2) = |A|2 

    trace(AAT) = ∑i ai• ai•
T = ∑i ai• • ai• 

 trace(ATA) = ∑i a•i
 T a•I = ∑i a•i

 • a•i 

     = ∑i ∑k aik aik,    = ∑i ∑k aki aki,    

 In either case                 = ∑i ∑k aik
2 = |A|2 

It is the sum of squares of all the entries in A, |A| = 

√trace(AAT) = √trace(ATA) = √trace(A2) 

 

Definition. The rank of a matrix A is the number of linearly 

independent rows (and columns) in a matrix. It is equivalent to 

number of non-zero eigenvectors. 

 

Definition. The determinant of a matrix A is denoted by 

det(A) and is defined as product of the eigenvalues of A. 

 

Definition. For a matrix A, if there exists a non-zero vector u 

and a real number 𝜆 such that Au = 𝜆 u, then 𝜆 is called an 

eigenvalue and u is called the corresponding eigenvector. The 

term singular value and singular vecror are also used. 

If 𝜆 is an eigenvalue, it is computed by solving the 

characteristic equation det(A- 𝜆 I)=0.  

Note. Any non-zero multiple of a eigenvector is again an 
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eigenvector. To make them unique, they are normalized to unit 

vectors, see Figure A1 (a). But if u is unit eigenvector, then –u 

is also a unit vector. In the literature, they use the convention 

of making the first non-zero component positive in the 

eigenvector, see Figure A1(b). Since eigenvectors are ordered, 

we propose to make the k-th element of k-th vector to be 

positive, see FigureA1(c) that makes the vectors look like a 

right handed system. 

 

Theorem. If the matrix is symmetric, then for different 

eigenvalues, the eigenvectors are orthogonal.  

 

Definition. The matrix A is diagonalizable if there is an 

invertible matrix V such that A = V D V-1 where D is diagonal 

matrix of eigenvalues. If there are n distinct eigenvalues for 

n×n matrix, then it is diagonalizable. 

 

Theorem. If the matrix is symmetric or diagonalizable, then 

there are as many eigenvectors as eigenvalues. 

 

Proposition The eigenvalues of a real symmetric matrix are 

real. 

Let A u  𝜆 u, u is a unit vector.   

 𝜆 = 𝜆(𝐮, 𝐮) = (𝐮, 𝜆𝐮) =  (𝐮, 𝐴𝐮)  

=  (𝐴𝐮, 𝐮)̅̅ ̅̅ ̅̅ ̅̅ ̅  =  (𝜆𝐮, 𝐮)̅̅ ̅̅ ̅̅ ̅̅ ̅ =   𝜆(𝐮, 𝐮)̅̅ ̅̅ ̅̅ ̅̅ ̅  

=  �̅�  

Therefore 𝜆 = �̅�, that is 𝜆 is equal to its complex conjugate, 

thus eigenvalues are real. 

 

Definition. A matrix A is positive semi definite if vTAu≥0 for 

all vectors u, and v.  

 

Proposition. For a positive semi definite matrix A, 

eigenvalues must be non-negative.  

Proof. If u is an eigenvector of A, then Au = 𝜆 u, that is, 𝜆 = 

uTAu ≥ 0, thus eigenvalues are non-negative . 

 

Proposition. If A is a positive semi-definite matrix, then 

• Eigenvalues of AAT and ATA are non-negative 

Let 𝜆 be eigenvalue of ATA and AAT.  

  𝜆 =  𝜆 (𝐯, 𝐯)  =  (𝜆𝐯, 𝐯) = (ATA v, v) = (Av, Av)≥0 

and is the variance of Av 

• Eigenvalues of AAT and ATA are identical. 

Let 𝜆 be eigenvalue of ATA. 

If ATA v = 𝜆 v, then AATA v = 𝜆 Av 

Since v ≠ 0, Av ≠ 0, and AAT(Av) = 𝜆 (Av) 

Therefore Av is an eigenvector of AAT, hence 𝜆 is an 

eigenvalue of AAT. 

Similarly, if 𝜆 be eigenvalue of AAT, then 𝜆 be 

eigenvalue of ATA 

• Eigenvectors for different eigenvalues of AAT and ATA are 

orthogonal. 

Since AAT and ATA are symmetric, the eigenvectors 

are orthogonal. 

Also, let u, v be eigenvectors and α, β be 

corresponding eigenvectors of AAT and ATA respectively. 

Then 

  𝛼(u, v)  = (𝛼 u, v) = (AAT u, v)  

= (u, AATv) = (u,𝛽v) = 𝛽 (u, v)  

  𝛼(u, v)  = 𝛽 (u, v)  

if 𝛼 ≠ 𝛽, (u, v) must be zero. 

 

• If AAT u = λ u and AT u = 𝜇 v, v is unit vector then 𝜇 = √ λ 

  λ  = 𝜆(𝐮, 𝐮) 

  = (λ u , u) = (AAT u, u ) 

= (AT u , AT u) = (𝜇v, 𝜇v) 

   = 𝜇2 (v, v) = 𝜇2 

 

 

 
                       (a) 

 
(b) 

 
  (c) 

 

Figure A1. Matrix A representing four points P1, P2, P3, P4, 

axes are in black. V1 and V2 vectors resulted by using Matlab 

functions (a) Magenta: eig() function is used, we get arbitrary 

signs of vectors (b) Blue:  svd() function is used and first 

component coerced to be positive for all eigenvectors, (c) Red: 

we organized it to look more natural right handed system, 

adaptively making the sequential component positive.  

 

Proposition. For a symmetric matrix A, trace(A) = 

trace(UDUT) = trace(D) = sum of eigenvalues of A, that is, 

trace(A) = ∑i λi 

Proof.  

trace(A) = trace(UDUT) =  

  = ∑i ui• Dui•
T 

  = ∑i [ uik λk] ui•
T where [ uik λk] is a row 

vector with index k 

  = ∑i∑k  uik λk uik 

  = ∑k   λk ∑i uik uik  
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  = ∑k   λk u•k •u•k    u•k is a unit column vector.  

  = ∑k   λk  

Thus it shows that trace(A) is the sum of eigenvalues of A. 
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