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 

Abstract—The control in biomechanical systems has become 

an active field of biomedical engineering. This paper describes a 

design of adaptive control to achieve desired in the system 

defined as exoskeleton moves, the adaptive method  is located  is 

selected taking into  account  energy savings  because  the  

adaptive controller is based on a scheme of variable gain in time 

Proportional and Derivative  respect to PD control. The structure 

of adaptive gain is determined using a type of control Lyapunov 

function.  The adaptation law uses velocity estimation based on a 

robust exact differentiator (RED) implemented as a variation of 

Super- Twisting algorithm.  The derivative adaptive proportional 

controller is evaluated on simulated exoskeleton structure. The 

set of simulations considers the presence of an external 

disturbance. The controller proves efficient to counter the effects 

of external mechanical system.   Proposed controller 

performance was superior to standard proportional derivative 

controller, and has been shown in this study.  

 
Index Terms—Biomechanical system; Adaptive Control PD; 

Exoskeleton. 

I. INTRODUCTION 

HE development of exoskeletons has boomed in the last 

20 years and because it has helped humans to solve a 

myriad of problems, especially in the biomedical area.  In 

particular exoskeletons have been an interesting line of 

research and widely studied by many researchers in the 

military, industrial and medical area, the latter being the 

greatest social impact, because it provides a direct benefit to 

patients with mobility problems neuromuscular. Here, to 

potentiate the processes of physical rehabilitation of persons 

with motor disabilities are developing new robotic devices 

such as exoskeletons [8][9]. 

 

Exoskeletons are a kinematic chain which engages externally 

individuals whose joints and links correspond to the joints of 

the human body which tries to emulate.  The main feature of 

these mechanisms is direct contact between the user and the 

exoskeleton, which transfers the mechanical power through 

information signals[1]. 

If your paper is intended for a conference, please contact 

your conference editor concerning acceptable word processor 

formats for your particular conference.  

In the area of biomedical, exoskeletons can help mainly in 

the field of rehabilitation, and this is achieved by controlling 

 
 

the movements of the patient through a process of stimulation 

between mechatronic systems and patient. The design and 

control of an exoskeleton is focused on achieving patient 

develop a uniform to finally get a steady gait 

rehabilitation[10]. This is classified as static and dynamic 

walk, wherein the first center of gravity is maintained in a 

second region and its center of gravity is not kept in the same 

region. Both are capable of balancing a person, obtaining 

stability.  This paper presents the design of an exoskeleton and 

development of control algorithms based on a control known 

as adaptive control [3]. 

II. NOTATION 

The following notation was used in this study: ℝn represents 

the vector space with n-components, τ is used to define the 

transpose operation, ‖k‖ is used to define the Euclidean norm 

of   is kϵℝn. ‖k‖H
2 ≔ k⊺Hk is the weighted norm of the real 

valued vector k ∈ ℝn with weight matrix H > 0, H = H⊺, H ∈

ℝn×n. The matrix norm labeled as ‖D‖2, D ∈ ℝn×n is defined 

as the maximum eigenvalue of the matrix D. If two 

matrices  N ∈ ℝn×n and D ∈ ℝn×n, fulfills M > N, that means 

that M-N is a positive definite matrix. The symbol ℝ+ 

represents the positive real scalars. The symbols  

In×n and 0n×n were used to represent the identity matrix I∈

ℝn×n and the matrix formed with zeroes of dimension n × n. 

This is just some harmless text under a subsection. 

III. STATE SPACE FORMULATION OF EXOSKELETON 

Whereas the mechanical structure of an exoskeleton, this can 

be formulated in an equation of state space, 

 

M(q)q̈ + C(q, q̇) + g(q) + Δ(t, q, q̇) = u(t)   

 

Where q ∈ ℝn is the vector of generalized coordinates,  M   is 

the inertia matrix, C is the matrix of Coriolis and centrifugal 

forces, g is the gravitational force term Δ is the term of 

uncertainty y u denotes the vector of controllable forces 

provided by the torque required to move the actuators.  The 

control input u is assumed that some functions is given by 

known feedback. Note M (q) is invertible, where M(q) =
M(q)⊺ and is strictly positive definite. 
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Using the state variable representation of the mechanical 
structure (1), the second order nominal model presented 
above can be represented as follows: 

d

dt
xa(t) = xb(t) 

                                                                                                                                                                         
(1) 

d

dt
xb(t) = f(x(t)) + g(x(t))u(t) + Δ(x(t), t)       

The vector xa  represents the position in each degree of 

freedom of the exoskeleton; the associate vector xb is the 

corresponding velocity. Finally, the function Δ represents the 
uncertainties and perturbations. In this paper, it is assumed 
that 

‖Δ(x(t), t)‖2 ≤ η0 + η1‖x‖2, η0, η1 ∈ ℝ+ 

The control structure was proposed following the adaptive PD 
scheme. This class of control model obeyed 

u(t) = (g(x(t))
−1

) (kp(t)) e(t) + kd(t)
d

dt
e(t) 

Where 

x = [e⊺
de

dt
]

⊺

, e = [x]⊺ 

 
de

dt
= [xb]⊺ 

The mechanical nature of exoskeleton is used here to consider 
that a nonlinear system described by a feasible distributed 
second order nonlinear differential equation can be used for 
representing it mathematically. 

 

He drif term f: ℝ2n → ℝn is a Lipschitz function. The 
following assumption is considered valid in this study. 

 

Assumption 1. The nonlinear system (1) is controllable. 

Based o the previous fact, the input associated term g: ℝn →
ℝn×nsatisfies. 

 

0 < g− ≤ ‖g(k)‖F ≤ g+ < ∞, k ∈ ℝn     (2) 

It is evident that matrix g(z(t)) is invertible t ≥ 0. 

Assumption 2. The nonlinear function f (·) is unknown but 
satisfies the Lipschitz condition 

‖f(x) − f(x′)‖ ≤ L1‖x − x′‖         (3) 

I the previous inequality, ≤ x, x′ ∈ ℝ2nand L1 ∈ ℝ+. 

 

 
Fig.1 Represents the exoskeleton and its free body diagram to obtain its 

mathematical model of the system by the Euler-Lagrange method. 

 

The Euler-Lagrange generate a mathematical model of the 
system is represented by the following two equations: 
 

M(q)q̈ + C(q, q̇)q̇ + g(q) + Δ = u 

 

[
M11(q) M12(q)
M21(q) M22(q)

] q̈ + [
C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

] q̇ + [
g1(q)

g2(q)
]

+ Δ(t, q, q̇) = u 

 
 

IV. CONTROLLER STRUCTURE 

A PD controller is designed using the assumption regarding 

e(t) and 
dy

dx
(t) are measured simultaneously where e is the 

tracking or the regulation error. This is not the regular case in 

real building mechanical structure represented in Figure 1. 

Otherwise, an important resources investment. Therefore, in 

classical in classical literature, one can find two important 

solutions: to construct an observer or using a …first order 

filter to approximate the error derivative. The first one 

requires the system structure (that is in this paper is assumed 

to be unknown because the presence of external perturbations 

and internal uncertainties) and in the second case, the 

derivative approximation is usual poor, especially if the output 

information is contaminated with noises. One additional 

option is considering a class of RED that can provide a 

suitable and accurate approximation of the error derivative. 

Super Twisting Algorithm (STA) has demonstrated to be one 

of the best RED in several times[4][5]. 

 

IV.1 Super-Twisting Algorithm 

In counterpart of some others second order sliding modes 

algorithms, the STA can be used with systems having relative 

degree one with respect to the chosen output Levant (1993). 

The STA application as a RED is described as follows. If 

w1 = r(t) where r(t) ∈ ℝ is the signal to be 

differentiated, w2 =
dr

dt
(t) represents its derivative and under 

the assumption of 
dr

dt
(t) ≤ r+, the following auxiliary equation 

is gotten 
dw1

dt
(t) = w2(t) and 

dw2

dt
(t) =

d2r

dt
(t). The previous 

set of differential equation is a state representation of the 

signal r(t). 
 

The STA algorithm to obtain the derivative of r(t) looks like 
d

dt
w1̅̅ ̅̅ (t) = w2̅̅ ̅̅ (t) − λ1|ŵ1(t)|

1
2sign(ŵ1(t)) 

d

dt
w2̅̅ ̅̅ (t) = −λ2sign(ŵ1(t))  

                                                                              (4) 

ŵ1 = w1̅̅ ̅̅ − w1 

d(t) =
d

d(t)
w1(t) 

 

where λ1, λ2 > 0 are the STA gains. Here d(t)is the output of 

the differentiator Levant[2]. 

sign(z) ≔ {
1 if z > 0

[−1,1] if z = 0
−1 if z < 0

}          (5) 
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 3 

 

 

IV.2 PD controller with the Super-Twisting Algorithm  

 

A single adaptive PD controller is applied over each section of 

the building-like mechanical structure. This is a class of 

ATMD. Each adaptive PD controller proposed in this study 

obeys the following structure 

 

ui(t) = −k1,i(t)ei(t)−k2,i(t)di(t)         (6) 

where ei is xa. The gains in the PD controller are determined 

by 

 

k1(t) = gi
−1(xa(t))(k1(t) + k1

∗ ) 

                                                                                                           

(7) 

k2(t) = gi
−1(xa(t))(k2(t) + k2

∗ ) 

 

With  k1(t) and k2(t) are time varying scalars adjusted by a 

special tracking error dependent adaptive law described by the 

following ordinary differential equations: 
d

dt
k̅1,i(t) = −π1

−1ei(t)Ma
⊺ P2Ei(t) 

                                                                                                            

(8) 

d

dt
k̅2,i(t) = −π2

−1ei+n(t)Mb
⊺ P2Ei(t) 

 

 

Where π1,i and π2,i are free parameters to adjust the velocity 

of convergence for the adjustable gains. In (7), the parameters 

k1,i
∗  and k2,i

∗  are positive constants. The matrices Ma and Mb 

are given by Ma  =  [1 0]⊺ and  Mb  =  [0 1]⊺ : Additionally, 

the term Ei = [ei  ei+n]. The matrix P2,i is positive definite and 

it is presented in the main statement of the main theorem of 

this article. 

The variable di(t) is obtained from the following particular 

application of the STA as RED: 
d

dt
x̅a

i (t) = x̅a
i (t) − λ1|x̂1(t)|

1
2sign(x̂1(t)) 

d

dt
x̅b

i (t) = −λ2sign(x̂a(t))             (9) 

 

x̂a
i (t) = xa

i − x̅a
i  

Considering that displacements on building-like structures are 

small and considering the assumption 1 and 2, it is easy to get 

that ‖
d

dt
xb

i (t)‖ ≤ h∗ where h∗ is a finite positive scalar. 

The following extended system describes the complete 

dynamics of the error signal in close-loop with an adequate 

implementation of (4) and the controller proposed in (6): 

d

dt
xa

i (t) = xb
i (t) 

d

dt
xb

i (t) = f (xi(t)) − k̅1,i(t)ei(t) − k̅2,i(t)di(t)

+ Δi(xi(t), xi+1(t), xi−1(t), t) 

 
d

dt
x̂a

i (t) = x̂a
i (t) − λ1,i|x̂a(t)|

1
2sign(x̂a(t)) 

 
d

dt
x̂b

i (t) = −λ2,i (x̂a(t))  −
d

dt
xb

i (t) 

                                                                                                                  

(10) 
d

dt
k̅1,i(t) = −π1,i

−1ei(t)Ma
⊺ P2,iEi(t) 

 
d

dt
k̅2,i(t) = −π2,i

−1ei+n(t)Mb
⊺ P2,iEi(t) 

 

The following section shows the main result of this paper. The 

theorem introduced in that section gives a constructive way to 

adjust the gains of the STA and it provides the applicability of 

using the adaptive gains for the PD controller. 

 

IV.3 Convergence of the adaptive PD controller 

 

The stability of the  e = 0 is justified by the result presented in 

the following theorem: 

 

Theorem 1. Consider the nonlinear system given in (1), 

supplied with the control law (6) adjusted with the gains given 

in (7) and the derivative of the error signal obtained by means 

of equation (9), if there exist a positive scalar i and if the gains 

are selected as λ1,i > 0, λ2,i > 0the next Lyapunov inequalities 

always have a positive definite solution P1,i. 

A1,i
⊺ P1,i + P1,iA1,i ≤ −Q1,i 

 

A1,i = [
−λ1,i 1

−λ2,i 0
] ; Q1,i = Q1,i

⊺ > 0; Q1,i ∈ ℝ2×2        (11) 

then for every positive value of L1 satisfying equation (3) and 

positive value of h+, there exist positive gains k̅1,i, k̅2,i 
that if the Riccati equations given by 

 

P2,i(A2,i + αiI) + (A2,i + αiI)P2,i
⊺ + P2,iR2,iP2,i + Q1,i ≤ 0       

(12) 

 

have positive definite solution P2,i with 

 

A1,i = [
0 1

−k1,i
∗ −k2,i

∗ ] ; R2,i = Λa,i + Λb,i 

                                                                                                                            

(13) 

Q2,i = 4λmax{λb,i
−1}I2×2 + Λ̅a,i; Λ̅a,i = L1 Λa,i 

 

Λa,i, Λb,i > 0, and symmetric, Λa,i, Λb,i ∈ ℝn×n, αi ∈ ℝ+ 

 

and if the adaptive gains of the PD controller are adjusted by 

(8), thus the trajectories of 

 

E⊺ = [x1
a, … , xn

a , x1
b, … , xn

b] 
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 4 

lim
t→∞

E⊺(t)P2E(t) ≤ ∑
γi

αi

n
i=1           (14) 

where 

P2 = [

P2,1 02×2 02×2

02×2 P2,2 02×2

02×2 02×2 P2,n

]       (15) 

and γi = 2λmax{Λb,i
−1}(hi

+ + 2Δ+
∗ + η0,i) 

V. NUMERICAL RESULTS 

 

 
Fig.2 Represents the Exoskeleton that it was built and where the control 

tests were performed. 

 

When the PD is calculated adaptive controller for the 

system, the derivative obtained by the STA provides some 

advantages. The robustness of STA is applied as a wrapper 

performs best for any driver applied to second order systems 

when the only information available is the output signal. 

Then the first part of the numerical simulations is employed 

to evaluate the performance of the STA as RED. 

The derivative of exoskeleton like positions is compared 

with the information provided by the measurements obtained 

directly from the simulation of the system presented in Figure 

1 and the derivative of reference signal.  

Calculations were done in Matlab software with the 

following parameters of Table 1. 

 

Table 1 exoskeleton parameters were obtained with the 

Solidworks software 
𝒊 𝒎𝒊[𝑲𝒈] 𝒍𝒊[𝒎] 𝒍𝒄𝒊[𝒎] 𝑰𝒙𝒙𝒊[𝑲𝒈𝒎𝟐] 𝑰𝒚𝒚𝒊[𝑲𝒈𝒎𝟐] 𝑰𝒛𝒛𝒊[𝑲𝒈𝒎𝟐] 

1 0.734 0.48 0.24 257.681 136.610 121.386 

2 0.564 0.48 0.24 429.689 86.953 345.264 

 

 

  
Fig.3 Evaluate the adaptive PD control and classical PD for the board of 

the exoskeleton located in the thigh. 

 

 

Fig.4 Evaluate the adaptive PD control and classical PD for the board of the 
exoskeleton located in the calf. 

 

 
Fig.5 Evaluate the error adaptive PD control and classical PD for the board of 

the exoskeleton located in the thigh. 

VI. CONCLUSION  

An adaptive output based controller based on the 

proportional derivative controller was implemented to the 

exoskeleton. The controller was fed with the information of 

the velocity estimated by a RED based on the application of 

the super twisting algorithm. The closed loop controller forced 

the ultimate boundedness of the tracking errors to a region 

around the origin. A special class of Lyapunov function was 

the main tool for obtaining the adaptive gains of the PD 

controller as well as the convergence of the STA used as RED.  

Simulation observed in Fig. 3 shows that the algorithm STA 
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is zero, while the adaptive PD gets that stability in a close to 

zero but is never zero, so does the board located in the calf fig. 

4, therefore the algorithm STA obtains better control for this 

system. 
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