

Abstract—The growing amount of multimedia data available
to the average user has reached a critical phase, where methods
for indexing, searching, and efficient retrieval are needed to
manage the information overload. Many research works related
to this field have been conducted within the last few decades and
consequently, some video database models have been proposed.
Most of the modern video database models make use of
hierarchical structures to organize huge amount of videos to
support video retrieval efficiently. Even now, among open
research issues, video database access control is still an
interesting research area with many proposed models. In this
paper, we present a hybrid video database model which is a
combination of the hierarchical video database model and
annotations. In particular, we extend the original hierarchical
indexing mechanism to add frames and salient objects at the
lowest granularity level in the video tree with the aim to support
multi-level access control. Also, we give users more solutions to
query for videos based on the video contents using annotations.
In addition, we also suggest the original database access control
model to fit the characteristics of video data. Our modified model
supports both multiple access control policies, meaning that a
user may be affected by multiple polices, and multi-level access
control, meaning that an authorization may be specified at any
video level. Theoretical analyses and experimental results with
real datasets are presented that confirm the correctness and
efficiency of our approach.

Index Terms—Video database security, video database model,

content-based video retrieval, access control, multimedia
database.

I. INTRODUCTION
HE field of multimedia systems has experienced an
extraordinary growth during the last decade. Among

many visible aspects of the increasing interest in this area is
the creation of huge digital libraries accessible to users
worldwide. These large and complex multimedia databases
must store all types of multimedia data, e.g., text, images,
animations, graphs, drawings, audio, and video clips. Video
information plays a central role in such systems, and

Manuscript received May 11, 2008. Manuscript accepted for publication

October 22, 2008.
This work was supported in part by Advances in Security & Information

Systems (ASIS) Lab, Faculty of Computer Science & Engineering, HCMUT,
Vietnam.

N. A. T. Tran is with the KMS Company, Ho Chi Minh City, Vietnam (e-
mail: thytran@kms.com.vn).

T. K. Dang is with the Faculty of Computer Science & Engineering,
HCMC University of Technology, VNUHCM, Ho Chi Minh City, Vietnam
(phone:+84-98-3173334, e-mail: khanh@cse.hcmut.edu.vn).

consequently, the design and implementation of video
database systems have become a major topic of interest.

With the huge amount of video information stored in
archives worldwide, video databases have been researched for
many years to introduce efficient ways to manage this kind of
data. Below are some criteria that a video database should
satisfy:

− The first thing that should be satisfied is how to
organize efficiently raw video data. Videos are
gathered from various sources with different formats so
they need to be normalized to a standard form before
being stored. In addition, these videos should also be
compressed to reduce storage space because of their
inherently huge sizes. Furthermore, video database also
extracts key features such as key frames, salient
objects, etc. to achieve high performance video
content-based retrieval.

− Secondly, the video database access control scheme
should be integrated with the database indexing
structure in order that video database access control can
be achieved more effectively. Since video database
access control schemes should exploit semantic visual
concepts and not low-level visual features, these
database indexing units should correspond to the
relevant semantic visual concepts.

− Thirdly, the flexibility and efficiency of transmitting
video data through networks are an important
consideration because most video databases are
deployed over network environments.

− Finally, control over the security of a video database
system is important. Videos can be illegally accessed
while being transferred over the network, or accessed
directly into the database. This is vital for the important
video databases such as national video data stores.

To achieve the above requirements, this paper proposes a
video database system that supports content-based retrieval
and multi-level access control with different policies. This
video database system is illustrated in Fig. 1. It contains two
main components, video analyzing module and query
processing module.

As can be seen in Fig. 1, the videos come from various
sources with different formats so they firstly need to be
analyzed. This step consists of three major tasks:

− Partitioning video into several video shot (shot
boundary detection), extracting key frames and salient

An Extended Video Database Model
for Supporting Finer-Grained Multi-Policy

and Multi-Level Access Controls
Nguyen Anh Thy Tran and Tran Khanh Dang

T

objects of each shot (key-frame and salient object
extraction).

− Classifying and clustering video shots.
− Indexing video database using semantic clusters.
These tasks are handled by the video analyzing component

while the query processing component is responsible for
controlling access to the database. The access control model
should be flexible and reliable. This means that users should
have multiple methods to retrieve the desired videos but they
should only be able to access those to which they have been
authorized.

Fig. 1. A video database system structure.

The rest of this paper is organized as follows: In Section II,

we briefly introduce the most crucial related work. In section
III, after basics of video data processing is presented, we
introduce a new hierarchical video database schema with more
granularity levels. Section IV introduces the proposed
algorithms to manage finer-grained access controls to the
proposed video database. In section V, we present and discuss
the implementation of a system prototype and experimental
results of our proposed video database and access control
model. Finally, section VI gives concluding remarks and
introduces future work.

II. RELATED WORK
Several efforts have been made to construct video database

models to achieve flexible query and reliable access control.
Basically, such efforts include the common data model for
video information and hierarchical video data models [11],
[2]. The first model did support content-based query using
annotations, but was not suitable for large video databases
since its structure was “flat”, meaning every video was at the
same level. This restriction led to a problem in that users
could not browse and navigate to find desired videos. In
contrast, the hierarchical model proposed by Bernito et al.
organized videos into semantic clusters within a tree structure.
This helped to resolve the semantic gap between the low-level
visual features and the high-level semantic visual concepts.
However, this model lacked annotations and so although

browsing requirements can be satisfied, retrieval options were
not flexible.

With regards to video database access control, although
there are some proposed models that support multi-level video
access controls, on the whole, they do not allow users to
specify authorizations at frame and object levels [1], [2]. In
[2] and [3], Bernito et al. suggested a mechanism to manage
access control to hierarchical video objects and another
method to support multiple access control policies. However,
combining them into a unique model is not a simple task
because of authorization conflicts. Consequently, in this
paper, we propose a full-fledged model that supports both a
multi-policy and multi-level access control mechanism.

III. VIDEO DATABASE MODELS
In this section, after major video processing steps are

presented, we introduce an extended storage model for video
data that supports both semantic visual concepts clustering
and flexible content-based retrieval. This newly introduced
video database model can serve as a solid basis for
materializing flexible access control mechanisms in a single
video database system, which will be presented in section IV.

A. Video Processing
This paper does not intend to provide detailed information

about video processing, but still we will provide some basic
background information to offer a context for the proposal of
a new video database model. Firstly, video formats are
discussed in relation to compressed and uncompressed videos.
Secondly, video shot detection methods to split a whole video
into a sequence of meaningful video shots are presented.
Thirdly, methods to extract video key features which will be
utilized by users when searching through the database are
introduced and finally, some video shot classification methods
used to classify video shots into clusters are presented.

Fig. 2. Spatial and temporal sampling of a video sequence.

B. Digital Video Formats
Digital video is a representation of a natural (real-world)

visual scene, sampled spatially and temporally (cf. Fig. 2). A
scene is sampled at a point in time to produce a frame.
Sampling is repeated at intervals, called spatial sampling, (e.g.
1/24 second intervals) to produce a moving video signal. In
each scene, a frame is sampled at certain points, called pixels,
positioned on a square or rectangular grid. At each pixel,
stored information often includes its color like RGB (Red–
Green–Blue) method or its color and luminance like YCbCr
method [14], [15].

Spatial
sampleTemporal sample

Result

Request
MPEG
format

JPEG
format

Conference
Stream

Video

Analyzing
End user

Video
Database

Query
processing

Videos are often compressed prior to being stored and
decompressed before being displayed on the user screen.
There are many video formats all using the CODEC model to
compress and decompress videos [15]. A video CODEC (cf.
Fig. 3) encodes a source image or video sequence into a
compressed form and decodes this to produce a copy or
approximation of the source sequence. If the decoded video
sequence is identical to the original, then the coding process is
said to be ‘lossless’; if the decoded sequence differs from the
original, the process is said to be ‘lossy’. A video encoder
consists of three main functional units: a temporal model, a
spatial model and an entropy encoder.

Fig. 3. An enCOder/DECoder.

The goal of the temporal model is to reduce redundancy

between transmitted frames by forming a predicted frame and
subtracting this from the current frame. The output of this
process is a residual (difference) frame and the more accurate
the prediction process, the less energy is contained in the
residual frame. Fig. 4 illustrates the residual form of two
adjacent frames. The obvious problem with this simple
prediction is that a lot of energy remains in the residual frame
(indicated by the light and dark areas) and this means that
there is still a significant amount of information to compress
after temporal prediction. Much of this residual energy is due
to object movements between the two frames and a better
prediction may be formed by compensating for motion
between the two frames. To reduce this energy, we divide a
frame into multiple NxN blocks and search for their movement
directions called motion vectors. With this approach, the
outputs of temporal model are the motion vectors and the
residual forms of appropriate blocks belong to two frames.
Consider the following example, there is a block (j, k) in the
ith frame which moves to the position (m, n) in the (i+1)th
frame. If we subtract the whole frame (i+1) from frame i, the
residual form at block (j, k) has high remaining energy
because this block already moved to another location. In
contrast, this energy is really small if we subtract block (m, n)
of the frame (i+1) by block (j, k) of the frame i because they
store the same object.

The function of the spatial model is to decorrelate further
image or residual data and to convert it into a form that can be
efficiently compressed using an entropy coder. The purpose of
the transform stage in an image or video CODEC is to convert
image or motion-compensated residual data into another
domain (the transform domain). The choice of a transform
depends on a number of criteria:

Fig. 4. Residual frame (the third one) of the first two frames.

− Data in the transform domain should be decorrelated

(separated into components with minimal inter-
dependence) and compacted (most of the energy in the
transformed data should be concentrated into a small
number of values).

− The transform should be reversible.
− The transform should be computationally tractable

(low memory requirement, achievable using limited-
precision arithmetic, low number of arithmetic
operations, etc.).

The most transform ever-popular is Discrete Cosine
Transform (DCT) [15]. The Discrete Cosine Transform (DCT)
operates on X, a block of N×N samples (typically image
samples or residual values after prediction) and creates Y, an
N×N block of coefficients. The action of the DCT (and its
inverse, the IDCT) can be described in terms of a transform
matrix A. The forward DCT (FDCT) of an N×N sample block
is given by:

 TAXAY = (1)

and the inverse DCT (IDCT) by:

 YAAX T= (2)

where X is a matrix of samples, Y is a matrix of coefficients
and A is a N×N transform matrix. The elements of A are:

0) ! i

N
C 0), i

N
C ,

N
ijCA iiiij ====

+
= (2(1

2
)12(cos π (3)

The output of DCT transform will be compressed using the
entropy encoder which converts a series of symbols
representing elements of the video sequence into a
compressed bit stream suitable for transmission or storage.

C. Video Shot Boundary Detection (SBD)
The first step in indexing video databases (to facilitate

efficient access) is to analyze the stored video streams. Video
analysis can be classified into two stages [9]: shot boundary
detection and key features extraction. The purpose of the first
stage is to partition a video stream into a set of meaningful
and manageable segments, whereas the second stage aims to
abstract each shot using representative objects such as frames,
salient objects, etc. The problem of shot boundary detection

Encoder

Decoder

Transmit or store

 Video source

Display

will be addressed at this point while the problem of selecting
key features from segmented shots will be addressed within
the next section.

Shot boundary detection methods can be categorized into
two main groups. The first one works on the uncompressed
domain and the second works on compressed videos. Methods
in the uncompressed domain can be broadly classified into
five categories: template-matching, histogram-based, twin-
comparison, block-based, and model-based techniques.

Within template-matching techniques, each pixel at the
spatial location (i, j) in frame fm is compared with the pixel at
the same location in frame fn , and a scene change is declared
whenever the difference function exceeds a pre-specified
threshold. Using histogram-based techniques, the histogram
of a video frame and a difference function (S) between fn and
fm are calculated using equation 4. If S is greater than a
threshold, a cut is detected.

∑

=
++ −=

N

i
mmmm ifHifHffS

1
11),(),(),(

 (4)

The third method, twin comparison, uses two thresholds,
one to detect cuts and the other to detect potential starting
frames for gradual transitions. A different trend to detect shot
boundary is called a block-based technique that uses local
attributes to reduce the effect of noise and camera flashes. In
this trend, each frame fm is partitioned into a set of r blocks
and rather than comparing a pair of frames, every sub-frame
in fm is compared with the corresponding sub-frame in fn. The
similarity between fn and fm is then measured. The last shot
boundary-detection technique is termed model based
segmentation where different edit types, such as cuts,
translates, wipes, fades, and dissolves are modeled by
mathematical functions. The essence here is not only to
identify the transition but also the transition type.

On the other hand, methods for detecting shot boundaries
that work in the compressed domain can broadly be divided
into three categories. The first category uses DCT coefficients
of video-compression techniques in the frequency domain.
These coefficients relate to the spatial domain, and as such
they can be used for scene change detection. The second
category makes use of motion vectors. The concept here is
that motion vectors exhibit relatively continuous changes
within a single camera shot, while this continuity is disrupted
between frames across different shots. The final category
merges the above two trends and can be termed hybrid
Motion/DCT. In these methods, motion information and the
DCT coefficients of the luminance component are used to
segment the video.

In summary, techniques that work upon uncompressed
video data lack the necessary efficiency required for
interactive processing. While other techniques that deal
directly with compressed data may be more efficient, but they
often lack reliability.

D. Key Features Extraction
Content based video indexing and retrieval requires that key

features be extracted in the processing phase to improve query
performance. These features include frame, salient object,
audio, text, etc.

Key-frames are the represented images of a video in order
that users can roughly understand the video without reviewing
through its content. Key-frame extraction is closely related to
shot boundary detection because to find out a shot bound,
SBD algorithms usually search for the frame that has the
largest differences compared to the previous one, while key-
frame extraction methods detect the most unchanged frame
inside each shot. It is cost saving to extract key frames at the
same time as shot boundary detection. The other important
feature, the salient object, is the key object displayed on the
screen as long as the video shot. These are extracted from
video shots and used for many purposes such as video shot
classification, video retrieval and video access control.

Audio is one other important aspect of video data along
with visual information. Audio can be kept as raw data and
will be used to search for the stored video using its tune.
However, analyzing audio is a poor performing process and so
most systems, especially news video database systems,
convert audio into text to reduce processing time when
querying the videos. In conjunction with audio, text or
captions often appear in videos so they too can be used for
video classification and video retrieval efficiently because text
processing is relatively faster than audio or video. When
words have been collected, they need to be ‘cleaned up’ by
some natural language processing algorithms to extract
keywords and calculate their weights.

E. Video Shot Classifying
After the principal video shots and their visual features are

obtained, we focus on generating higher-level visual concepts
such as semantic clusters, so that more effective database
indexing and access control scheme can be supported.
Classification methods have been researched for a long age
and there are many methods had been developed such as
decision tree, k-nearest neighbor (kNN), Naive Bayes (NB),
neural networks (NNet), support vector machines (SVM), etc.

The videos can be classified using its raw visual
information such as visual data (color, brightness etc), audio
data (tune, frequency etc) or higher level information likes
texts or salient objects. To deal with visual and audio data that
have a tremendous number of features, we should use methods
like neural network or support vector machine who can work
smoothly with large number of inputs. For example, we can
use the pixels of labeled videos as inputs of a neural network
to produce its weight vectors used to classify new unlabeled
videos. The most important advantage of these methods is
they can work on high dimensional input with acceptable time
and quality. However, they are too difficult to understand for
human because the result of training step is only a list of
numbers.

On the other hand, decision tree or Naive Bayes are suitable
for higher level classification because the number of inputs is
relatively low in this case. These methods are quite simple and
their training results are visual and understandable by human.
More details of the above techniques are described in [9],
[15], [17], [18], [16], [19], [5], [10], [6], [12].

F. Video Database Model
When very large video data sets are regarded, video

database models and indexing can no longer be ignored if we
want to support effective video retrieval and access control. In
this section, we introduce a hierarchical indexing technique
and its improvement to support multi-level access control.

1) Hierarchical Video Database Model

In order to control access efficiently, most video databases
are designed as hierarchical structures such as the semantic
cluster tree [2]. Within this structure, video contents are first
partitioned into a set of semantic clusters; each semantic
cluster is then partitioned into a set of sub-clusters and each
sub-cluster may consist of a set of sub-regions. Using this
indexing method, the system can handle multi-level access
control efficiently. The indexing structure includes: a root
hash table for keeping track of the information about all the
clusters in the database; a leaf hash table for each cluster in
order to record the information about all its sub-clusters; a
second-leaf hash table for each sub-cluster in order to record
the information about all its sub-regions and a hash table for
each sub-region for mapping all its data points to the disk
pages where the videos reside. To improve input/output
efficiency, all semantic clusters are stored into a set of
independent disks as shown in Fig. 5.

Fig. 5. The hierarchical video database partition

and cluster-based indexing structure.

2) New Finer-Granular Hierarchy Video Database Model

The model described above has many advantages but it also
has some limitations. Firstly, the only video unit supported is
video shot while users are often interested in the whole video
contains a certain shots. Secondly, the hierarchy tree is
inflexible because in the case of extremely large databases, the
tree level cannot be increased. Thirdly, this model cannot
support access control at a frame and salient object granularity
level. Finally, it looses most of the information needed for
flexible content-based retrieval. Even though clusters are high
semantic level extracted from other information, we still need
to remain that information such as captions, audios, images
etc. Given the above reasons, this article suggests a new
model as illustrated in Fig. 6 to tackle these issues.

To address the first restriction, two new video levels are
introduced; video and scene, meaning that a complete video
may contain some scenes and a scene contain some shots.
With this enhancement, a video database administrator can
specify authorizations at video (most often), scene and shot
levels. This article also proposes to modify the original
hierarchy of the video tree to use video groups which consist
of videos or other groups instead of clusters, sub-clusters and
sub-regions. With this amendment, the path from root to the
leaves can be controlled with greater flexibility where new
groups can be introduced or existing groups removed.

Fig. 6. The extended video database diagram.

Along with the two above amendments, it is suggested that
a new video element at the lowest granularity level called
video segment be introduced. This element would prove very
useful when applying access control to a frame or a salient
object. Consider the example in Fig. 7, where there are two
users A and B within the system. A policy applies to user A
that specifies that this user cannot view two frames (j+1)th and
(j+2)th of video shot V. In addition, there is another policy that
restricts user B from seeing object named XXX of video shot
V. The easiest way to handle these two policies is to copy the
whole video shot V to two appropriate versions. However, this
solution will impinge on memory space since video data is
often huge. Using segments is another solution which splits
the video shot to certain segments and then copies the
segments only when needed. In this example, the video shot V
is split into 5 separate parts: (1) from the beginning to frame

 Cluster 1

 Video Contents in Database

Cluster 1

Object 1111

Object 111p

keys entries

 Cluster n

 Subcluster 11 Subcluster 1k Subcluster nl

 Subregion111 Subregion11r Subregion nlt

Cluster n

Object nlt1

Object nltw

keys entries

jth, (2) frames j+1 and j+2, (3) from frame (j+3)th to frame ith,
(4) frames (i+1) and (i+2), (5) from frame (i+3)th to the end.
With this solution, we only need to copy the segment 4th,
which contains only two frames, into two versions: version #1
with original XXX objects, and version #2 with blurred XXX
objects. Then, when user A requires this video shot, the
system will display the 1st, 3rd, 4th- version #1 and 5th segments
while user B sees 1st, 2nd, 3rd, 4th –version #2 and 5th segments.

Fig. 7. An example concerning the segments.

The final adjustment is related to annotations. Since

information in videos is quite "raw" and dispersed, it is almost
impossible to achieve semantic content-based access to videos
unless some additional information is available. In order to
enable flexible and intelligent access to videos, we somehow
need to extract "keywords" which describe semantic contents
of videos. Typically "keywords" are useful for semantic
content-based access to videos include information on:

− what/who appears in the video,
− when the video was broadcast/recorded,
− where the video was recorded,
− what the video is about, etc.
In order to achieve this goal, more annotation is required

such as object annotation, person annotation, location
annotation, event annotation, caption and image. The first four
annotations lend themselves naturally as annotations since
they answer four key questions who, what, when and where
about a video. Caption annotation is broadly used in news
video databases where this kind of information exists on
almost video news. A video database application rarely uses
image annotation because of poor image processing
performance. However, it is utilized in some special video
databases such as airport and gas station security systems to
scan for unusual baggage and terrorist activity.

IV. FLEXIBLE ACCESS CONTROL MODEL
In this paper, a content-based access control model is

suggested which is reliant upon high level features extracted
during the video processing stage. The goal of the system is to
provide a flexible framework that can support different
security levels against the video database.

The architecture of the system is illustrated in Fig. 8. There
are three main components within this architecture:
authorization, query engine and authorization management.
The authorization component is responsible for filtering
authorized videos while the query engine searches for
interesting videos that a user has requested. The final
component, authorization management, handles granting
permissions and ensures the consistency and integrity of the
video database system.

Fig. 8. Video database flexible access control architecture.

A. Authorization Model
In this section, an authorization model based on a flexible

authorization model suggested by Bertino et al. in [2], [3] is
introduced. The proposed model provides both multiple access
control polices and a multi-level access control mechanism.
This model also allows the administrator to specify multiple
authorizations over any users or user groups (named subject of
the authorization) against any video level such as videos,
scenes or video shots.

1) Notation and Definitions

This new model manages access control via authorizations.
The subject of each authorization is a user or a user group. A
group can contain some users and/or other user groups. The
relationship between a subject s and a user group Gk can be
either direct or indirect [2]. If s is a member of Gk, we count
this relationship as direct, written s ∈1 Gk. In contrast, the
relationship is indirect, written s ∈n Gk, n > 1, if there exists a
sequence <s1, s2, …, sn+1>, such that s1 = s, sn+1 = Gk and si∈1

si+1, 1 ≤ i ≤ n. The sequence <s1, s2, …, sn+1> is called a
membership path of s to Gk, written mp(s,Gk). Let MP(s, Gk)
represent a set of memberships of s to Gk, either direct or
indirect.

Fig. 9. An extended tree of users and user groups.

In a similar manner for users, the video content of our
system is also organized into an extended tree structure. Let V,
VG and VO represent the videos, video groups and video

G1

G3 G2

B C

G4

A

AUTHORIZATION
MANAGEMENT

AUTHORIZATION

QUERY ENGINE

Video
Database

Permission
Database

USER

Authorized
video

Query request

Query result

Granting
permissions

Frame sequence of video shot V

Frames j+1 and j+2 are
invisible to the user A

Object X is blurred
under user B’s angle

j j+1 j+2 j+3 i i+1 i+2 i+3 i+4

X

objects (frames or salient objects) respectively. A video group
can contain videos and other video groups. We use v ∈k vg to
denote the relationship where v belongs to vg with a
relationship type that is direct (k = 1) or indirect (k > 1). We
also use mp(v,vg) to represent the membership path of v to vg
and MP(v,vg) stands for the set of all paths of v to vg.

Fig. 10. A sample hierarchical video database.

Authorization handles whether a user or user group can
access (positive authorization) or cannot access (negative
authorization) a video element. The authorization model
within this article is based upon the multi-level video access
control model described in [3]. However, within this new
system, the target of each authorization can be a node on the
video content tree instead of a single table. Also supported are
two kinds of authorization called hard (authorization that
cannot be overridden) and soft (authorization that can be
overridden). For example, the authorization that an under 18
years of age user not be able to view some specific shots of
the videos without any exception should be a hard one.

Let U denote all users, G the set of user groups, S = U ∪ G
the set of all subjects, V the set of video contents, VG the set
of video groups, VD = V ∪ VG ∪ VO the set of all video
elements, AZ the set of all authorizations in our system.
Authorizations can be defined as follows.

Definition 1 (Authorizations): An authorization is a 5-tuple
of the form (s, v, pt, g, at) where s ∈ S, v ∈ VD, pt ∈ (+, -), g
∈ U, at ∈ {soft, hard}.

The authorization states that s has been granted (if pt =
“+”) or denied (if pt = “-”) access permission on video
element v by user g with authorization type is at (soft or hard).
For example, the tub (A, VG4, +, B, hard) means the user B
has granted access permission on video group VG4 to user A
with authorization type is hard. Given an authorization a, let
s(a), v(a), pt(a), g(a), at(a) denote the subject, target, access
type, grantor and authorization type, respectively.

Since a user can belong to a number of different user
groups, he or she can be affected by multiple authorizations
and some of them have opposite access types over a video
element. It is the reason why we need to define the rules to
decide which authorization has more priority than the others
in case the conflict happens. Our overriding authorization
model is a user-driven one means it prioritizes the
authorizations based on the relationship between their
subjects. The authorization has a more detail subject will have
higher priority.

Definition 2 (Overriding authorization): Consider pi and pj
are two different authorizations, pi overrides pj over user s

against video element ve, written pi >s,ve pj, s ∈m s(pi), s ∈n
s(pj), m,n ≥ 0, ve ∈l v(pi), ve ∈k v(pj), l, k ≥ 0, iff any of the
following conditions is satisfied:

− at(pi) > at(pj), means at(pi) = hard and at(pj) = soft
− at(pi) = at(pj) and s = s(pi), s != s(pj)
− at(pi) = at(pj) and (∀mp ∈ MP(s, s(pj)): s(pi) ∈ mp or

∃s’ ∈ mp, ∃ p’ ∈ AZ, s’ ≠ s(pj), s’ ∉k s(pi), p’ >s’,ve pj)

The above definition can be explained as the followings:

− pi override pj if the authorization type of pi is hard
while pj’s authorization type is soft.

− pi override pj if pi and pj have the same authorization
type and pi is applied over s directly while pj is not.

− pi override pj if pi and pj have the same authorization
type and for all membership path mp of s to s(pj), either
s(pi) ∈k mp or exists s’ ∈ mp, p’ ∈ AZ and p’ override
pj over user s against video element ve.

Example 1: Consider a video database that contain the
below set of authorizations:
 p1: (G1, VG1, -, C, 1, soft)
 p2: (G1, VG4, -, C, 1, hard)
 p3: (G2, VG1, +, C, 1, soft)
where G1, G2, G3, C are users and user groups in Fig. 9 and
VG1, VG4 are video elements in Fig. 10. In this example, user
A is affected simultaneously by p1, p2 and p3 authorizations.
From p1, A can access VG1 whereas p1 does not allow A to
access VG1. Because G2, subject of p3, has more detail than
G1, subject of G1, so p3 overrides p1 over user A and video
element VG1. In addition, p2 authorization is a hard one so it
will override all other authorization, including p3. In this
example, user A can only access VE1.

Definition 3 (Conflict): Two authorizations pi and pj are
conflict with respect subject s and video element v, written pi
<>s,v pj, with s ∈m s(pi), s ∈n s(pj); v ∈l v(pi), v ∈k v(pj); i, j, l, k
≥ 0, iff pt(pi) ≠ pt(pj) and neither pi >s,v pj nor pj >s,v pi.

In our system, we avoid any conflict by checking any
actions that may cause the conflict. The detail of this task will
be described in section C.

2) Authorization Algorithm

To make sure the users can only view video contents they
allowed to access, we suggest an algorithm to retrieve the
appropriate videos based on the actor and the set of
authorizations in the system. Firstly, we define some more
definitions will be used in this section.

Definition 4 (Video database projection): The projection of
a video database VD with respect to a video element ve,
written ∏ve(VD), is a set of video vei such that vei ∈k ve, k ≥ 0.
It means ∏ve(VD) only contains the child nodes of ve in the
hierarchical video tree.

 ∏ve(VD) = {v: v ∈ VD, v ∈k ve, k ≥ 0} (5)

Definition 5 (Video database prune): Consider a set of
videos VS = {ve1, ve2, …, ven}, the result after VS is pruned,

VE2

VD

VG VG3 VG2

VG4 VE1

VE4 VE5

VE3

written ∠(VS), is a set contains the elements of VS and each
one is not a child of any other elements inside VS. It can be
described formally as follow.

 ∠(VS) = VS – {vi: vi ∈ VS, ∃vj ∈ VS, vi ∈k vj, k > 0} (6)

The purpose of the prune operator is to filter the nodes and
to keep only nodes at highest levels in the tree. We define this
operator because if a user can access a video element, he or
she will be able to access all its children in the video tree. For
instance, ∠{VE2 ,VE4, VE5, VG2, VG3} = {VG2, VG3}.

Next is the algorithm to filter the list of video contents that
a user can access. First of all, it will get all video elements
granted to the user by positive authorizations. Then, it collects
the video elements that are inaccessible to that user. This list
contains all video elements that were granted by negative
authorizations except the video contents that the negative
authorization is overridden by a positive one.

ALGORITHM 1. FILTER VIDEO CONTENTS THAT A USER CAN ACCESS

METHOD authorizeVideo(u)
 initialize AV to be empty
 let pos_permission and neg_permission are lists of

positive and negative permissions respectively
 let UV is a list of videos that the user cannot access
 let TV is a temporary list of videos
 for each permission p ∈ P do
 if (u ∈k s(p)) then
 if (pt(p) = +) then
 add p to pos_permission
 else
 add p to neg_permission
 endif
 endif
 endfor
 for each permission p+ ∈ pos_permission do
 AV = AV ∪ v(p+)
 endfor
 for each permission p- ∈ neg_permission do
 uv = v(p-)
 for each permission p+ ∈ pos_permission do
 TV = ∠(∏v(p+) ∩ ∏v(p-))
 for each video element ve ∈ TV do
 if (p+ >u,ve p-) then
 uv = uv – ve
 endif
 endfor
 endfor
 UV = UV ∪ uv
 endfor
 AV = ∠(AV – UV)
 return AV
END AUTHORIZEVIDEO

Fig. 11 illustrates the meaning of this algorithm. In this
figure, AV represents all video elements the user was granted
access permission. UV represents the video elements the user
was denied access permissions. TV = AU ∩ UV represents the

video elements belong to both accessible and inaccessible
ones. vi ∈ TV is a video element that was granted by the
positive permission p+ and negative permission p- and p+
override p-. Finally, that user can access all videos belonging
to orange parts (left).

Fig. 11. An illustration of algorithm 1.

B. Query Engine (Video Retrieval)
This component collects requests from end users and

searches through the authorized videos to retrieve those
relevant and returns them to the users.

Fig. 12. The access control model under:
(a) querying mode and (b) browsing mode.

The query engine must be reliable, meaning that users can

only access those videos to which they have been granted
permission. The component must also be flexible, in order to
support various means for the users to reach their interesting
videos. Bertino et al. [2] suggested a system to support two
access methods named querying and browsing. Under the
querying method, users request specific video shots based on
some criteria. By contrast, under browsing mode, users
browse through and navigate the video database through its
semantic categories. Based on the previous result, we

Username, password

User requirements

Browsing requirement

Hierarchical Nodes with
ICON Images in Indexing tree

Videos with visited ICON

Videos
on disks

Read/write
filtering

Authorized
browsing results

Authorization

Username, password

User requirements

Querying requirement

Similarity search on
Indexing structure

Query results

Videos
on disks

Read/write
filtering

Authorized query
results

Authorization

AV vj
vk vi

TV

UV

(a)

(b)

introduce two adapted algorithms for the same problem with
respect to our newly proposed video database schema. Fig.
12a and 12b illustrate the phrases in querying and browsing
mode respectively. As can be seen from the diagrams, both
algorithms include an authorization phase as described
previously in section A. Next, we will present the two access
methods described above in more detail.

1) Querying Mode

Under the querying mode access control, a user submits a
query to require the access to a video element. A query is a n-
dimensional tuple (x1, x2, …, xn) of which xi, i = 1.. n is a value
of the ith feature. Below is the algorithm to retrieve video
elements based on the features input.

ALGORITHM 2. QUERYING ACCESS CONTROL MODE

INPUT:
 User ID
 A query with (x1, …, xn) format where xi is a feature’s
value
OUTPUT:
 AIV (authorized interesting video) – set of authorized

filter video elements or
 ACCESS_DENIED if there is no video matches the
query
METHOD queryVideo(u, (x1, …, xn))
 AV = authorizeVideo(u)
 if (AV is empty)
 return ACCESS_DENIED
 else
 AIV = solve_query(request, AV)
 if (AIV is empty)
 return ACCESS_DENIED
 else
 return AIV
 endif
 endif
END queryVideo
 This access control procedure consists of two main steps:
(1) Firstly, it narrows the search space by filter a list of

videos the user can access;
(2) Secondly, it calculates all matching ranks between each

video element in the AV list and the input query. Then,
the system returns the result which will be videos
ordered by their similarities with the input query.

 This is a change compare to the original algorithm
introduced in [2]. The original algorithm calculates matching
ranks first then filters the list based on authorization rules.
Here we have reversed this sequence in order to reduce the
search space as soon as possible.

 ‘Solve_query’ takes x = (x1, x2, …, xn) as an input and
calculates the similarity between the x vector and each
authorized video. Then, it only keeps N videos which have the
highest similarity measures which exceed a predefined
threshold. The most popular features used for searching would
be the video group, location (the ‘where’), produced date (the

‘when’), related persons (the ‘who’), texts, pictures and audios
(the ‘what’). These features were extracted from the contents
of videos while they were being processed. This is the reason
why the access model presented is called a content-based
video retrieval model. Each feature may be defined a weight
representative of its importance level compared to others.
Similarity between a video v and a feature vector x is defined
as below.

∑

=

=
N

i
iii wxvmatchxvrank

1
*),(),((7)

where vi represents for the ith feature of video v and wi is xi’s
weight.

 Matching video group, location, date, person features are
quite simple since they are obviously matched (match = 1) or
unmatched (match = 0). For example, if video v belongs to
sport group then match(v, ‘sport’) = 1. In contrast, matching
text, image and audio features is difficult since they require
text processing, image processing and audio processing
knowledge, respectively.

 When extracting text, it is split them into words and only
the keywords s are stored. That is, words appearing more
frequently than a given threshold. To calculate the similarity
between an input string containing n keywords {k1, k2, …, kn}
and a video v, we use the formula below.

)(*),(),(

1
i

n

i
i kwvkcountvsmatch ∑

=

=

(8)

where count(ki,v) returns number of appearance of ki word
inside video v and w(ki) is weight value of ki.

 For the produced date, the matching value is bigger when
the video is newer and vice versa. Give d is the interesting
date that a user wants to query the videos, the distance
between a video v and d is calculated as below.

datedate

dd
vdmatch v

minmax
||

),(
−

−
=

(9)

where vd id the date when v is produced, max_date is the
produced date of the newest video and min_date is the
produced date of the oldest video in the search space.

 There are some variants of audio retrieval methods such as
query by keywords and query by examples. Query by
keywords applies to audio content and basically follows the
same approach used in traditional text based information
retrieval. The user provides several keywords as search terms,
and the query engine compares them with the textual
information attached with audio files in the database to
determine the list of returns. Query by example is a more
natural way for retrieving audio content. For example,
suppose we are looking for a music masterpiece. We have no
clue of the title, but we have a short portion of it, for example,
a 10 second clip. We can use this piece of audio sample,
normally in the format of a file, as a query object. The search
engine analyzes the content of query example, computes
acoustic features, compares the audio content with audio files

in the database, and then generates search results accordingly.
The major issue of this query method is how to speed up the
search procedure.

 Some modern video databases support image searching,
especially faces tracking. For example, camera systems in
airports are responsible for detecting unusual objects such as
unattended bags or terrorist activity. These systems must
discover the above items in quick time in order that security
guards will have the ability to react. To improve searching
performance, the data needs to be prepared offline using
machine learning methods like neural network and support
vector machines, etc.

2) Browsing Mode

Under the browsing access control mode, a user browses
and navigates through video groups without specify searching
criteria. Browsing refers to a technique or a process where
users skip through information rapidly and decide whether the
content is relevant to their needs. Browsing video databases
should be like scanning the table of contents and indices of a
book, or flipping through the pages, to quickly get a rough
idea of the content and gradually focus on particular chapters
or sections of interest. We believe the proposed semantic
clustering technique and cluster-based hierarchical indexing
structure would be very suitable for such fast browsing.

C. Authorization Management
The main purpose of authorization management component

is to maintain the consistency and integrity of the system. It is
responsible for validating all actions that may cause
unsolvable conflicts to occur. Consider the example used in
definition 3, where two authorizations p1 and p2 are conflict if
exist a video element ve and a user u affected by them and
neither p1 >u,ve p2 nor p2 >u,ve p1.

With two types of authorization–soft and hard, we may
have three kinds of relationship between the authorizations:
hard–hard, hard–soft and soft–soft. The second relationship
(hard-soft) cannot be a conflict because a hard authorization
always overrides a soft one. In addition, to prevent the
conflicts between hard authorizations, this newly proposed
system would only accept negative hard authorization. This
means all positive authorizations have a soft property.

 softpatpptPp =⇒+=∈∀)()(,)((10)
This restriction is quite natural because we might often

prohibit a user from accessing to some kinds of videos and
rarely do we force a user to always access some particular
videos.

Finally, there is only the last relationship, soft – soft, needed
to be verified for conflicts. Below are four actions of an
administrator that may cause a conflict to occur:

− Adding a new authorization.
− Adding an existing user subject to a group.
− Adding an existing video element to a group.
− Deleting an existing authorization.

To support checking the consistency of the system, we
define a new term named general conflict as follows.

Definition 6 (General conflict): Two authorization p1 and
p2 are generally conflict, written p1 <> p2 if exists at least
one video v and one user u such that p1 <>s,v p2.

For each kind of action, we suggest a different algorithm to
check conflict individually.

1) Check Conflict when Adding a New Authorization

When a new authorization p(s, v, pt, g, at) is added to the
system, a conflict may occur over children nodes of s in the
user tree. Consequently, the system must verify the conflict
between p and each authorization p’ affects any children of s.

ALGORITHM 3. CHECK CONFLICT WHEN ADDING A NEW AUTHORIZATION

INPUT:
 Authorization p: (s, v, pt, g, soft)
OUTPUT:
 True: if the system still is consistent means there is no

conflict happens
 False: otherwise
METHOD checkNewPermission(p)
 PP = empty
 for each s’ ∈ ∏(s)
 for each p’ ∈ P
 if (pt(p’)≠ pt(p)) and (∏v(p’)∩∏v(p)≠φ) and
 (s’∈ks(p’))
 PP = PP ∪ p’
 endif
 endfor
 endfor
 for each p’ ∈ PP
 if p’ <> p
 return False
 endif
 endfor
 return True
END checkNewPermission
The first step in the above algorithm is to collect a list of

authorizations needed to be verified for conflict against p.
This list includes all authorizations p’ which i) has opposite
access type compared with p, ii) p and p’ affect to at least one
video element, iii) subject of p’ is an ancestor of s’ or its
children. The second step verifies conflict of each
authorization in the above list against p. This algorithm will
return False whenever a conflict occurs. Otherwise, it returns
True meaning the new added authorization is valid.

We will use Fig. 12 to explain the algorithms in this section
and the next two sections. The video database in this figure
contains five existing authorizations listed {p1, p2, p3, p4,
p5}. When adding a new authorization p6 which restricts the
permissions of G5 over V1. Based on the algorithm, PP
contains three authorizations {p1, p2, p4} needed to be
verified conflict with p6. Authorization p3 does not belong to
this list because it has the same access type as p’s. We also
don’t need to verify p5 because it and p6 affect to two disjoin

video set. On completion, the algorithm returns False because
there is one conflict between p6 and p4 over user D and video
group V1.

Fig. 13: A video database with some authorizations.

We are now proving that our algorithm is correct and

sufficient. Assume that the algorithm is wrong, meaning there
exists an authorization named p’: p’ ∉ GP and p’ <> p.
Another assumption is that there is an authorization p’
conflicts with p and the system still is consistent.

With the first assumption, because p’ ∉ GP we infer that
∏s(p’) ∩ ∏s(p) = ∅ or ∏v(p’) ∩ ∏v(p) = ∅. This means p
and p’ have two separated affected spaces. Therefore, they
cannot conflict with each other and hence, this assumption is
incorrect.

With the second assumption, let (u,v) be a pair of user and
video where the conflict happens between p and p’. The
system still is consistent means there is at least one
authorization p1 that satisfies p1 >u,v p or p1 >u,v p’. If p1
overrides p over (u,v), we can infer that p’ also overrides p
over (u,v) based on the last item in the authorization
definition: ∀mp ∈ MP(u,s), ∃u ∈ mp, p1 >u,v p. Similarly, if p1
override p’, we can also infer that p overrides p’, too.
Anyway, p’ and p are not conflict so this assumption is not
correct.

2) Check Conflict when Adding an Existing User Subject to a
Group

When adding an existing user or user group s to other user
group g, s will inherit all authorizations affect to g. Thus, we
need to check conflict between a set contains the
authorizations affect to g, named GP, and another set SP
contains the authorizations affect to s and its children.
Naturally, this algorithm collects the authorizations of GP and
SP first and then checks conflict between every each pair in
those two sets.
ALGORITHM 4. CHECK CONFLICT WHEN ADDING AN EXISTING USER SUBJECT TO A

USER GROUP

INPUT:
 s: user or user group
 g: user group where s will be added to
OUTPUT:
 True: if the system still is consistent means there is no

conflict happens

 False: otherwise
METHOD checkMoveMember(s, g)
 SP = empty
 GP = empty
 for each p ∈ P and g ∈k s(p)
 GP = GP ∪ p
 endfor
 for each p ∈ P and s ∈k s(p)
 SP = SP ∪ p
 endfor
 for each p ∈ SP
 for each p’ ∈ GP
 if pt(p’) ≠ pt(p) and ∏v(p)∩ ∏v(p’) ≠ ∅
 return False
 endif
 endfor
 endfor
 return True
END checkMoveMember
In Fig. 13, if we add the user group G7 to G3, two possible

conflict authorization sets are GP = {p1} and SP = {p2, p5}.
Since neither p1 conflict with p2 nor p5, G7 will be added to
G3 successfully.

3) Check Conflict when Adding an Existing Video Element to
a Group

Assuming that we are adding an existing video element v to
a video group vg. The fact that two authorizations p1 and p2
can only conflict if they affect at least one common video,
means we only verify conflict between the authorizations
affecting v and all its child nodes in the video tree. Below the
algorithm is presented in detail.
ALGORITHM 5. CHECK CONFLICT WHEN ADDING AN EXISTING VIDEO ELEMENT TO

A GROUP

INPUT:
 v: a video element
 vg: video group where v will be added to
OUTPUT:
 True: if the system still is consistent means there is no

conflict happens
 False: otherwise
METHOD checkAssignVideo(v, vg)
 PP = empty
 for each vi∈ ∏ v
 for each p ∈ P and vi ∈k v(p)
 PP = PP ∪ p
 endfor
 endfor
 for each pi ∈ PP
 for each (pj∈PP) and (pt(pi)≠pt(pj)) and
 (∏v(pi)∩∏v(pj)≠∅).
 if pi <> pj
 return False
 endif
 endfor
 endfor

G0

G1 G2

G5

G9

G4 G3

G8 G7 G6

B A C D E

p1(+) p2(+)

p3(-)

p4(+)

p5(+)

p6(-)

V0

V1 V2

V4 V3 V5

V6

 return True
END checkAssignVideo
In Fig. 13, if we add the video group V2 to V0, the possible

conflict authorization set is PP = {p1, p2, p4, p5} and SP =
{p2, p5}. Since there is no conflict that occurs between any
pair of authorizations of PP list, V2 is added to V0
successfully.

4) Check Conflict when Deleting an Authorization

When an authorization p(s, v, pt, g, at) is deleted, s and its
children will be affected again by the authorizations p’ which
was overridden by p. Consequently, we must check the
conflict between a set containing the authorizations affecting
s, named SP, and another set CP containing the authorizations
affecting s and its children.

ALGORITHM 6. CHECK CONFLICT WHEN DELETING AN AUTHORIZATION

INPUT: Authorization p: (s, v, pt, g, soft)
OUTPUT:

True: if the system still is consistent means there is no
conflict happens

 False: otherwise
METHOD checkDeletePermission(p)
 SP = empty
 CP = empty
 for each p’ ∈ P and s ∈k s(p’)
 SP = SP ∪ p’
 endfor
 for each s’ ∈ ∏(s)
 for each p’ ∈ P and s’ ∈k s(p’)
 CP = CP ∪ p’
 endfor
 endfor
 for each p1 ∈ SP
 for each p2 ∈ CP
 if pt(p1) ≠ pt(p2) and ∏v(p1)∩ ∏v(p2) ≠ ∅
 return False
 endif
 endfor
 endfor
 return True
END checkDeletePermission

V. SYSTEM PROTOTYPE AND EVALUATION
In order to establish the practical importance of our

extended video database model and novel access control
mechanism, we implemented a system prototype and carried
out empirical evaluations with real-world datasets. The
prototype and experimental results are presented below.

A. Choosing the Database Management System
For supporting digital video, the chosen Database

Management System (DBMS) has to provide a multimedia
data types such as image and video. In our framework, the
video data type will be used to store the StoredVideo entities
(cf. Fig. 6). Neither the BLOB (Binary Large Object) nor the

file solutions are satisfactory because they could not provide a
mechanism to identify, retrieve and use a small piece of a
stored video segment. The file-based solution brings along the
additional solution of managing data that is not fully under
control of the DBMS. It will usually be more difficult to
maintain the consistency of the system and in some cases
impossible to provide necessary access restriction.

Due to these reasons, after considering popular commercial
DBMSs, we decided to choose the Oracle interMedia to
implement our video database by using its new multimedia
data types such as ORDImage and ORDVideo. The first one,
ORDImage data type, supports storing and image matching
that is ideal for content-based retrieval. While the second one,
ORDVideo data type, allows us to retrieve a part of the whole
video stream and also to define the video stream’s quality via
the bit-rate parameter.

B. The Access Control Model
Implementing the browsing mode is quite simple because

we only need to implement algorithm 1, authorizeVideo. In
contrast, in addition to authorization problem, the query mode
require us more efforts to refine the solve query algorithm.
Fig. 14a and 14b are the screenshots of our system with the
query and browsing modes.

(a) Querying mode.

(b) Browsing mode.
Fig. 14. Video retrieval pages.

The videos shown in Fig. 14a are the ones that match the
criteria entered by a user and sorted by the distances between
their contents and the input query which contains keyword,

video group, produced date, event, location, object, person,
caption and image. Since the expressions for matching video
group, location, produced date, person, object and texts
(caption and keyword) had been presented in section B, hence,
in this section, we will suggest a formula for the last query
element, the image.

 100
weight)),Iore(i,evaluateSc

ingnature..ORDImageSmax(ORDSYS

1),(j−=vimatch

(11)

where ORDSYS.ORDImageSingnature.evaluateScore is a
built-in function of Oracle interMedia. It returns the distance
between two images, 0 if they are identity and 100 if they are
totally different. In this formula, Ij stands for the jth key frame
of the video v and weight has a value of “color=1, texture=0,
shape=1, location=0”, meaning we only focus on the color
and the shape while searching. In this case, we compare the
input image and every key frame of the video v to find out the
maximum similar frame. There are a number of previous
works that deal with estimating the similarity between two
data objects. Interested readers are directed to [8], [13], [7].

C. The Permission Management Model
In our system, we allow a user to specify a permission at

any user level (user or user group) against multiple video
levels (video group, video, scene, shot, segment and object).
In addition, we implemented a strict permission management
system, meaning there is no conflict accepted. It always
checks the conflict occurrence when an actor adds/edits
permissions, a user/user group, or a video/video group. When
a conflict happens, a message is shown that indicates exactly
which user and video generated the conflict. Fig. 15 shows a
screenshot of the permission management page.

Fig. 15: Permission management page.

D. Preliminary Experimental Results
The data set has been used to validate the accuracy and

performance of the system includes 142 video clips extracted
from movies, news and sport clips that fill up 2.8GBs of
memory. The Movies are divided into three groups named

Action, Children, and Music movies while Sport category
contains Football, Tennis and Others groups. Below we
present the video list in detail.

TABLE I.
EXPERIMENTAL DATASETS

Video group Subgroup Number of Video

Action movies 35
Music movies 17

Movies

Children movies 20
News 25

Football clips 25
Tennis clips 10

Sport

Other clips 10

There are three user groups access to this video database

including: Adult, Children and Disabled groups. To fully
control the access of the above groups over the scenes, 11
Action movies have been separated into multiple shots (about
5 shots for each one) and 19 shots are duplicated in order to
hide some inappropriate objects. Totally, to efficiently control
the access, there are 100 MB of memory added to store the
extra shots.

We implemented the prototype using Visual Studio 2005
with Visual Basic/.NET. All the tests were tackled on a laptop
with an Intel Pentium M processor 1.73 GHz running
Windows XP/SP4, 512 Mbytes of shared memory and some
Gigabytes of hard disk capacity. The disk page size was 8Kb
for the datasets. With respect to the system performance, we
tested and collected the intervals to query the videos, to add
new permissions and to retrieve a video. Table 2 shows
experimental results for these operations over our datasets.

TABLE II.
EXPERIMENTAL RESULTS

Action Condition Time Description
No permission in
our system

5 ms

There are 10
existing permissions

40 ms

Add a new
permission

There are 40
existing permissions

120s

Query using text
criteria (title, actor’s
name, etc.)

43 ms With 12 videos
returned
(averagely)

Query
video
database

Query using image
field

94 ms With 3 rows
returned
(averagely)

Retrieve a
video

There are 15
concurrent users are
viewing videos

12 ms

It is obvious from the above results that there are two items
that have poor performance and need to be improved. Firstly,
time to check conflict when adding a new permission is huge,
especially when there are many existing permissions in the
system. Secondly, querying using image also consumes too
much time. To solve these problems, we need to study an

efficient way to check conflict between two permissions and
to compare two images. The correctness of our system’s
access control mechanism is proved by the fact that the system
is robust at controlling access to the database since every user
can only query the authorized videos and no “false hits”
occurred in the tests.

VI. CONCLUSION AND FUTURE WORK
In this paper, our main contribution is twofold: (1)

Proposing an extended storage model for video data to support
semantic visual concepts clustering and flexible content-based
retrieval, and (2) Introducing a novel and flexible access
control mechanism to support both multi-policy and multi-
level access control in the newly proposed video databases.
Our access control approach combines video indexing
mechanisms with a hierarchical organization of video
contents, so that different classes of users can access different
video elements or even the same video element with different
versions on the basis of their permissions. Besides, robust
conflict checking algorithms have also been presented,
ensuring conflict-free authorizations in the whole system.
Preliminary experimental results with real-world datasets have
confirmed the effectiveness of our proposed solutions.

In the future, we plan to investigate the efficiency of the
proposed solutions with respect to the large video databases.
Also, we will apply results of this research to real-world
application domains such as surveillance and satellite video
databases.

REFERENCES
[1] N. Adam, V. Atluri, E. Bertino, E. Ferrari. A Content-based

Authorization Model for Digital Libraries. IEEE TKDE, 14(2), 2002,
296-315.

[2] E. Bernito, J. Fan, E. Ferrari, M-S. Hacid, A.K. Elmagarmid, X. Zhu. A
Hierarchical Access Control Model for Video Database Systems. ACM
TOIS, 21(2), 2003, 157-186.

[3] E. Bernito, S. Jajodia, P. Samarati. Supporting Multiple Access Control
Policies in Database Systems. IEEE Symp on Security & Privacy, 1996,
pp. 94-107.

[4] A. Baraani-Dastjerdi, J. Pieprzyk, R. Safavi-Naini. A Multi-level View
Model for Secure Object-oriented Databases. Data & Knowledge
Engineering, 23(2), 1997, 97-117.

[5] J. Calic, E. Izuierdo. Efficient Key-Frame Extraction & Video Analysis.
In: Proc. Int. Conf. on Information Technology: Coding & Computing,
2002.

[6] Chang S. F., Chen W., Zhong, D. A Fully Automatic Content-based
Video Search Engine Supporting Spatiotemporal Queries. IEEE Trans.
Circ. Syst. Video Tech, 1998, 1-4.

[7] Chen J., Taskiran C., Albiol A., Delp E., Bouman C. A Video Indexing
and Browsing Environment. In: Proceedings of SPIE/IS&T Conf.
Multimedia Storage and Archiving Systems IV, 1999, pp. 1-11.

[8] T. K. Dang. Semantic Based Similarity Searches in Database Systems
(Multidimensional Access Methods, Similarity Search Algorithms). PhD
thesis, FAW-Institute, Johannes Kepler University of Linz, Austria,
2003.

[9] S. Deb. Video Data Management and Information Retrieval. IRM Press,
2005.

[10] B. Furht, O. Marques. Handbook of Video Databases: Design and
Applications. Taylor & Francis Group, 2005.

[11] R. Hjelsvold, R. Midtstraum. Modelling and Querying Video Data.
VLDB 1994, pp. 686-694.

[12] K. Hoashi, M. Sugano, M. Naito, K. Matsumoto, F. Sugaya, and Y.
Nakajima. Shot Boundary Determination on MPEG Compressed
Domain and Story Segmentation Experiments for TRECVID 2004.
KDDI R&D Laboratories, 2004, pp. 7-12.

[13] H.-P. Kriegel, P. Kunath, A. Pryakhin, M. Schubert. MUSE: Multi-
Represented Similarity Estimation. In: Proc. 24th Int. Conf. on Data
Engineering (ICDE'08), Mexico, 2008.

[14] H. Kosch. Distributed Multimedia Database Technologies Supported by
MPEG-7 and MPEG-21. CRC Press, 2003.

[15] I.E.G. Richardson. H.264 and MPEG-4 Video Compression. John Wiley
& Sons, 2003.

[16] B. L. Yeo, B. Liu. Rapid Scene Analysis on Compressed Video. IEEE
Trans Circuits & Systems for Video Technology, 5(6), 1995, 533-544.

[17] J. Y. Zhang. Advances in Image and Video Segmentation. IRM Press,
2006.

[18] H. J. Zhang. Content-based Video Browsing and Retrieval. CRC Press,
1999.

[19] H. J. Zhang, A. Kankanhalli, S. Smoliar, S. Tan. Automatically
Partitioning of Full-Motion Video. Multimedia Systems, 1(1), 1993, 10-
28.

