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Abstract—We consider the problem of maximizing expected utility
when utilities and probabilities are given by discrete probability
distributions so that expected utility is a discrete stochastic variable. As
for discrete second-order distributions, that is probability distributions
where the variables are themselves probabilities, the multinomial family
is a reasonable choice at least if first-order probabilities are interpreted
as relative frequencies. We suggest a decision rule that reflects the
uncertainty present in distribution-based probabilities and utilities and
we show an example of this rule in action with multinomial second-order
distributions.

Index Terms—Imprecise probability. second-order probability, discrete
probability distributions, multinomial distributions, expected utilty.

I. INTRODUCTION

WHEN computing the expected utility of a decision alternative
it may not always be possible to give precise values

for the utilities and probabilities of the possible outcomes. The
model for imprecise probabilities used here is discrete second-order
probability distributions. The term second-order probability comes
from the notion that the distributions express the probability that a
first-order probability has a certain value. As motivation for discrete
second-order distributions we may consider updating, the form of
available information and computation of expected utility.

In a continuous second-order setting, a lower bound of a probability
can rarely if ever be the result of an observation. But after seeing
a three-eyed dog in a kennel of ten, I know that at least one out of
ten dogs in that kennel has three eyes. Outside the kennel, I cannot,
based on the observation, say much more than that the probability
of coming across a three-eyed dog is non-zero. Thus, in situations
where the available data has the form of relative frequencies, discrete
rather than continuous second-order distributions would be a suitable
choice for describing imprecise probabilities. In the case of subjective
probabilities, one might as well use discrete distributions unless
one has the need to express the probability of particular irrational
probability values. For instance that I believe that the probability of
seeing another three-eyed dog in my life-time is at least 1/π. That
is, discrete second-order distributions are suitable for both objective
and subjective probabilities while continuous distributions come into
its own in subjective settings. As for computation of distribution
expected utility, the fact that there are a finite number of points in
a discrete distribution makes a direct computation possible. In the
continuous case simulations are necessary.

There is a rich literature on imprecise probabilities, see e.g. [1],
[2], [3], [4], [5]. Here second-order probabilities, see e.g. [6], [7], [8],
[9], in general and discrete second-order distributions in particular are
used and advocated as opposed to interval based models. The standard
interval based approach to imprecise probabilities is to employ sets
of probability measures, also called credal sets. A credal set is
informally a set of probability distributions. Such a set is usually
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restricted by lower (or, equivalently, upper) bounds of probabilities,
and the demand that the set is convex. The intuition appears to
be that instead of choosing precise probabilities one uses the set
of all probability distributions that are consistent with the beliefs
of an agent. Theories of this kind include Choquet capacities [10],
lower probabilities [11] and lower previsions [12]. These theories
are accessibly summed up in [13]. Without going into the details of
these advanced theories one might with an extreme simplification say
that in the traditional models of imprecise probabilities the decision
maker’s or expert’s knowledge is represented by intervals between
the lowest and highest possible values of the probabilities.

But given some form of representation of imprecise probabilities
and utilities it is often not evident what decision rule to employ.
With interval based models of imprecise probabilities there are,
if we choose to maximize a utility rather than minimize a cost,
the rules of Γ-maximax [14], Γ-maximin [15], E-admissibility [16],
[17], maximality [12] and interval dominance. [18], see [19] for a
comparison of these decision rules. These rules have in common
that they single out one or several decision alternatives as optimal
without qualifying the ranking with regard to the uncertainty inherent
in imprecise probabilities.

In contrast, with utilities and probabilities that are expressed by
belief or probability distributions, second-order probabilities, one can
measure the imprecision or uncertainty with e.g. variance. With this
in view it would be reasonable to use a decision rule that reflects
the amount of uncertainty. For example, if the probabilities for all
possible utility and (first-order) probability values are known, one
can compute the probability that one alternative gives higher expected
utility than another alternative.

With continuous second-order probability distributions it seems
to be difficult to find closed expressions for expected utility, see
[20]. In practice, simulations would have to be made. Alternatively,
a decision maker could use discrete distributions. Albeit closed
expressions for expected utility would still be hard to find, the
expected utility values can be easily computed when second-order
distributions are given. Here multinomial distributions are used, but
the point is the use of discrete second-order distributions. Discrete
distributions offer an environment for updating that is hard to
conceive of with continuous second-order distributions and at least
brute-force computation of distribution of expected utility is more
straight-forward. The multinomial distribution family is used here as
an example because of its simplicity, future research will undoubtedly
reveal distributions with more attractive properties.

II. MULTINOMIAL SECOND-ORDER DISTRIBUTIONS

Given that the variables of a second-order distribution are
themselves probabilities, there is a normalization constraint in that
probabilities must sum to one. For this reason it is hard for a
decision maker to construct a second-order distribution by looking
at the possible outcomes separately, and to consider all outcomes
simultaneously might be untenable.



But the decision problem itself might imply principles that restrict
the choice of second-order distributions. E.g. if it is possible
to look at the probabilities of the possible outcomes as relative
frequencies, and if the knowledge that restricts the lower bounds of
the probabilities come from observations, multinomial distributions
are natural candidates, as we shall see.

Consider an experiment with N =
∑n

i=1
ki objects of n different

types. Assume that the probability to pick an object of type i is 1/n.
Since there are N !∏n

i=1
ki!

permutations of the N objects, if there are

ki objects of type i, the probability that there ki objects of type
i, i = 1, . . . , n is

Pr(k1, k2, . . . , kn) =
N !

nN
∏n

i=1
ki!

The marginal distribution for a single number of objects is

Pr(k) =
∑
ki 6=i

Pr(k1, k2, . . . , kn) =
(n− 1)N−k

nN

(
N

k

)
,

which is also the probability that there are k objects of a certain type
among a total of N objects.

If we gain information by looking at a few of the objects and
observe ai objects of type i, the uncertainty is reduced to the
remaining N −

∑n

i=1
ai objects of unknown type. So the question

is how many more than the observed ai objects there are of type i.
The updated probability should be

(N −
∑n

i=1
ai)!

n
N−
∑n

i=1
ai
∏n

i=1
(ki − ai)!

But updating the prior N !

nN
∏n

i=1
ki!

with the hypergeometric

likelihood

Pr(ai|ki) =

∏n

i=1

(
ki
ai

)(
N∑n

i=1
ai

)
gives just the posterior distribution

(N−
∑n

i=1
ai)!

n
N−
∑n

i=1
ai
∏n

i=1
(ki−ai)!

suggested above. The likelihood Pr(ai|ki) is the probability that one
can see ai things among the

∑n

i=1
ai observed given that there are

in total ki objects of type i.
What possibly is new here is that since we consider the frequencies

ki/N as probabilities, the multinomial distributions described here
are examples of discrete second-order distributions, that is, describing
the probabilities of different probability values. The advantages of
discrete second-order distributions would include Bayesian updating
as described above.

We must note, though, that the choice 1/n of underlying
probabilities for the n types of objects is rather arbitrary and even
questionable. For instance, if a relatively large number ai objects of
type i have been observed, it might be that the probability is larger
than 1/n. Work on more sound, alternatively less arbitrary, discrete
second-order distributions is under way. For the purpose of this
paper, though the multinomial distributions here are sufficient. We
wish to show that known discrete probability distributions can serve
as second-order distributions, to see how updating might work and
suggest a decision rule based on discrete second-order probabilities.
The particular distribution family used here is just an example, and
the decision rule suggested here and the associated algorithms do not
depend on any particular form of discrete second-order probability
distribution.

TABLE I
UTILITY DISTRIBUTIONS FOR ALTERNATIVE A

Outcome 0 1 2 3 4 5 6 7 8
1 .3 .3 .2 .2 0 0 0 0 0
2 0 0 0 .3 .4 .3 0 0 0
3 0 .1 .2 .2 .2 .2 .1 0 0
4 0 0 0 0 .1 .4 .3 .2 0

We conclude this section with a remark on upper bounds of
probabilities. the lower bounds are given by ai/N , meaning that
ai objects have been observed. But then there can be at most
N−

∑
j 6=i

aj items of type i, so the upper bound of each probability
is given by the lower bounds of the other probabilities.

For instance, let N = 8 and n = 4. Further, let the lower bounds
be p1 ≥ 0, p2 ≥ 1/8, p3 ≥ 3/8 and p4 ≥ 0. Then we know that
p1 ≤ 1−1/8−3/8 = 1/2, p2 ≤ 1−3/8 = 5/8, p3 ≤ 1−1/8 = 7/8
and p4 ≤ 1− 1/8− 3/8 = 1/2.

The corresponding multinomial second-order distribution is

Pr(k1/8, k2/8, k3/8) =

4!

k1!(k2 − 1)!(k3 − 3)!(8− k1 − k2 − k3)!44

Distribution of expected utility is a crucial part in the decision
rule suggested here, and in the example below the distribution will
be computed in a few cases. If second-order probabilities are given by
the multivariate distribution p(k1, k2, . . . , kn) where

∑n

i=1
ki = N

(i.e. the first-order probabilities are the ratios ki/N ), and we have
n independent utilities given by distributions pi(ui), the probability
mass function of expected utility is

h(z) =
∑∑n

i=1
kiui=z

p(k1, k, . . . , kn)pi(ui)

For mathematical reasons concerning primality and co-primality it is
hard to make general claims as to which values of ki and ui that
are involved for every expected utility value z. Thus a brute-force
technique will be employed in this paper.

III. A DECISION PROBLEM WITH FOUR ALTERNATIVES

Let us look at the four constructed decision alternatives A,B,C
or D. Below we give the distributions for the utilities, and the
lower bounds for probabilities that serve as parameters for our
multinomial distributions. The probability and utility values are
arbitrarily chosen for the sake of the example, they are not derived
from any observations or any assessments of real situations. On
the other hand, the model employed in the example can be used
regardless of how data is collected, be it from observations or by
subjective judgments.

A. Alternative A

In the first alternative there are four possible outcomes. The utilities
of these are given by the distributions in table I.

The probabilities have lower bounds p1 ≥ 0, p2 ≥ 1/8, p3 ≥ 3/8
and p4 ≥ 0, so the multinomial second-order distribution is

Pr(k1/8, k2/8, k3/8) =

4!

k1!(k2 − 1)!(k3 − 3)!(8− k1 − k2 − k3)!44
,
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Fig. 1. Expected utility of alternative A
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Fig. 2. Expected utility of alternative B

as in the example above at the end of Section II. These distributions
for utilities and probabilities give the expected utility distributed as
in Figure 1 below.

B. Alternative B

For alternative B the utilities are the same as for alternative A, the
only difference between alternatives A and B is that the probability
of the first outcome is higher at the expense of the probability of
the second outcome; p1 ≥ 1/8, p2 ≥ 0, p3 ≥ 3/8, p4 ≥ 0 and the
second-order probability distributions is

Pr(k1/8, k2/8, k3/8) =

4!

(k1 − 1)!k2!(k3 − 3)!(8− k1 − k−k3)!44

The resulting distribution of expected utility is plotted in Figure 2.

C. Alternative C

Alternative C is distinguished in that one of the possible outcomes
has two possible sub-outcomes with probabilities p11 ≥ 1/4, p12 ≥
0. The utilities of the sub-outcomes are found in Table II.

Outcome 1 then has a distribution of expected utility as plotted in
Figure 3.

TABLE II
UTILITY DISTRIBUTIONS FOR OUTCOME 1 OF ALTERNATIVE C

Sub-outcome 0 1 2 3 4 5 6 7 8
1 .2 .3 .3 .2 0 0 0 0 0
2 0 0 .2 .4 .2 .2 0 0 0
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Fig. 3. Expected utility of outcome 1 in alternative C

TABLE III
UTILITY DISTRIBUTIONS FOR ALTERNATIVE C

Sub -
outcome 0 1 2 3 4 5 6 7 8
1 .063 .255 .382 .262 .038 .001 0 0 0
2 0 0 .2 .5 .3 0 0 0 0
3 0 0 0 .1 .2 .3 .2 .1 .1

This expected utility distributions in turn serves as utility
distribution for outcome 1. But in order to facilitate computation
of expected utility of alternative C, the 65 values in Figure 3 are
collected into 9 values corresponding to the scale 0 – 8 employed
for the other utilities. See Table III.

The probabilities for the three main outcomes are p1, p2 ≥ 1/8
and p3 ≥ 3/8, so the multinomial second-order distribution is

Pr(k1/8, k2/8) =
3!

(k1 − 1)!(k2 − 1)!(5− k1 − k2)!33
,

resulting in the expected utility distribution plotted in figure 4.

D. Alternative D

As with alternative C there are three possible outcomes in
alternative D but no sub-outcomes.

And since the lower bounds of probabilities are p1 ≥ 0, p2 ≥
1/8, p3 ≥ 1/8 the second-order distribution is

Pr(k1/8, k2/8) =
6!

k1!(k2 − 1)!(7− k1 − k2)!36

A plot of the distribution of expected utility is found in Figure 5
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Fig. 4. Distribution of expected utility of alternative C
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TABLE IV
UTILITY DISTRIBUTIONS FOR ALTERNATIVE D

Outcome 0 1 2 3 4 5 6 7 8
1 .1 .1 .2 .2 .2 .1 .1 0 0
2 .1 .1 .1 .1 .1 .2 .1 .1 .1
3 .1 .1 .1 .2 .2 .1 .1 .1 0

10 20 30 40 50 60

0.01

0.02

0.03

0.04

Fig. 5. Distribution of expected utility of alternative D

E. Maximizing Expected Utility

We can begin by ranking he alternatives by expectation of expected
utility,

∑64

z=0
zh(z), we then see that

64∑
z=0

zhA(z) = 28.9,

64∑
z=0

zhB(z) = 26.2,

64∑
z=0

zhC(z) = 31.3,

64∑
z=0

zhD(z) = 28.8 ,

so the ranking is C,A,D,B. Obviously, there is little difference
between alternatives A and D, but what is the probability that A
yields higher expected utility than D? Or that the highest ranking
alternative C gives a better result than the second best A?

With probability
64∑
z=0

z∑
x=0

hC(z)hA(x) = .6046

alternative C would give at least as high expected utility as alternative
A. Given that anything less than .5 would mean that C is worse than
A, the superiority of C over A is not very impressive. The point is
that the uncertainties inherent in the second-order probabilities and
utilities carry over to uncertainty of expected utility and that given
the probability of 60 % one can give a cautious recommendation for
alternative C.

Further, the probability that A gives at least as high expected utility
as D is a mere .52, as slight change in the underlying data could
reverse the verdict in favor of D. And with a probability of .59
alternative D is at least as good as B.

The supports for distributions of expected utility, or interval-based
expected utilities, are as follows,

6 ≤ EUA ≤ 51, 3 ≤ EUB ≤ 49, 11 ≤ EUC ≤ 57, 0 ≤ EUD ≤ 63

Overlapping of intervals makes it hard to draw conclusions in terms
of which is the better alternative without applying a maximax or
maximin rule. The highest lower bound of expected utility is 11

for alternative C but the highest upper bound is 63 for D. In such
an interval-based decision analysis there would not be room for
estimation of how probable these extreme values are.

IV. TIME COMPLEXITY

The relevant parameters for the complexity of computing discrete
expected utility are n, the number of possible outcomes, and N , the
number of points in the discrete distributions. The number of points
are not necessarily the same for probabilities and utilities, or even
between probabilities or utilities, but for simplicity we assume that
they are, as in the example above. In any case the different numbers
of distributions points would hardly differ by magnitudes.

Assuming N+1 first-order probability values ki/N ranging from 0
to 1 and N+1 utility values, there are N1+1 different possible values
of expected utility, from 0 to N2. Given expected utility z, we must
collect all allowable probability and utility vectors that produce the
value z of expected utility. But since there is not as yet an expression
for the minimal solution x to a diophantine equation ax+by = c, (the
formula x = a−1c(modb) depends on a and b being co-prime), we
cannot use a closed expression for directly computing the distribution
of discrete expected utility. The raggedness of the plots give some
indication that discrete distributions of expected utility might not have
simple expressions independent of primality and co-primality. Instead
we have to go through all (N + 1)2n−1 possible choices of n − 1
probabilities and n utilities and see whether they produce the expected
utility z. Each such check costs O(log2N) arithmetic operations. In
total we have O(N2n log2N) operations for computing expected
utility.

If we consider the number of possible consequences n of a decision
alternative as a constant inherent in the problem, the time complexity
is polynomial in N , meaning that increasing the granularity of
the distributions is not prohibitively expensive. However, it is also
possible to imagine that deeper investigation of the decision problem
leads to splitting of consequences, thus increasing n. Than again, such
a situation would rather lead to deeper levels of the decision tree as
in alternative B as in our example in Section III. Then n does not
change, but computing the distribution of utility for the sub-events
makes for another O(N ′2n

′
logN ′) operations.

We have suggested a decision rule based on expectation of
expected utility and probability assessments of the probability that
one alternative yields higher expected utility than another.

Expectation of expected utility is computed by N2 + 1
multiplications and N2 additions, O(N2 logN). And the suggested
comparison of alternatives, the probability that, say alternative
A has at least as high expected utility as alternative B,∑N2

z=0

∑
x=0

zhA(z)hB(x) means

N2(N2 + 1)(2n2 + 1)

12
− N2(N − 1)

4
∈ O(N6)

multiplications, or O(N6 log2N) elementary operations.

V. CONCLUSIONS

With second-order probabilities it is possible to express any
consistent beliefs about the probabilities of an event. In fact, it is
not hard to imagine that a decision maker might shy away from
all the possibilities and express his or her knowledge through e.g.
intervals. but it may be that the nature of the decision problem
makes some second-order distributions more suitable than others.
Such differentiation will be a matter for future research. Also, given
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a certain distribution family, consistency constraints might limit the
choice to the lower bounds of the probabilities. Indeed such local
information might be all that the decision maker has access to.
Here we have looked at multinomial distributions for the purpose
of expressing second-order probabilities.

It has been demonstrated that discrete second-order probability
distributions allow for updating through observations in a way that
continuous distributions would not. And such discrete distributions
lend themselves naturally to probability viewed as relative frequency.
Furthermore, even when relative frequencies are inappropriate or
unavailable, or simply when subjective probabilities are desired
or required, continuous second-order distributions offer more
possibilities than their discrete counterparts only in rather contrived
examples.

In the second-order model, uncertainty is in a manner of
speaking made precise. For utilities, probabilities and expected utility,
variances may be computed, or the probability that the probability
of an outcome is lower than a given value, or the probability that
a decision alternative has a higher expected utility than another
alternative. Such computations are however for the foreseeable future
impossible to conduct save by simulation when using continuous
distributions.

We have shown an example of second-order decision making with
discrete distributions and shown that the necessary calculations are
computationally costly, but far from intractable.
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