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Abstract—We found a way to use mathematical search to
provide better navigation for reading papers on computers.
Since the superficial information of mathematical expressions is
ambiguous, considering not only mathematical expressions but
also the texts around them is necessary. We present how to
extract a natural language description, such as variable names or
function definitions that refer to mathematical expressions with
various experimental results. We first define an extraction task
and constructed a reference dataset of 100 Japanese scientific
papers by hand. We then propose the use of two methods, pattern
matching and machine learning based ones for the extraction
task. The effectiveness of the proposed methods is shown through
experiments by using the reference set.

Index Terms—Natural language processing, mathematical
expressions, pattern matching, machine learning.

I. INTRODUCTION

MATHEMATICAL expressions often play an essential
part in scientific communications. It is not only that

they are used for numerical calculations, but that they are
used for conveying scientific knowledge with less ambiguity,
enabling researchers to precisely define and formalize target
problems. They are also used for proving the validity of newly
discovered properties. Facilitating cross-document retrieval
of mathematical expressions encourages better understanding
of the content: what a formula means, why it was used
there, or how it was derived. However, regardless of the
importance in knowledge-oriented information access, there
have been only a few studies on mathematical searches so
far. Consequently, with current search engines, most of the
mathematical expressions are either totally excluded from the
search or only a fraction of those mathematical symbols are
indexed and retrieved.

Our purpose is to propose a new framework for a
mathematical content search based on semantic analysis of
the content. As mathematical expressions are highly abstracted
and hard to manage without the accompanying natural
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language text, we utilize both the structure of expressions
and natural language descriptions surrounding them (Fig. 1).
It should be noted here, that the existing few studies on
mathematical search relied solely on notation similarity of
equations and do not use any context information. As far
as we know, our research is a first practical attempt to use
both the structure of mathematical expressions and the related
descriptions within the same framework. We focus initially
on a technique for connecting elements of mathematical
expressions with their names, definitions and explanations,
which we collectively call mathematical mentions. Examples
of elements in this case are variables, functions, or other
components that correspond to some newly introduced
mathematical concepts in a target document.

Fig. 1. Illustrative example of proposed mathematical content search.

As a target dataset, we selected 100 scientific papers in
computer science published by the Information Processing
Society of Japan [1]. First, all the mathematical expressions
contained in the dataset were converted into Mathematical
Markup Language (MathML) format, initially using Math
OCR software and then by human check for validating and
correcting unavoidable mistakes. Here, MathML is a common
standard format for mathematical expressions. All the names
and definitions with explicit reference to any of the MathML
elements were then also manually annotated. For example,
given a statement “Let e be the base of natural logarithm”,



the phrase “the base of natural logarithm” is annotated as a
referrer to the mathematical element “e”.

The task we define in this paper is to automatically identify
the referrer/referee pairs on the above target dataset. As
the majority of mathematics-related descriptions follow a
limited number of template expressions, we apply a supervised
machine learning framework in our approach. First, frequently
appearing description patterns are collected from a separately
prepared reference set. Next, using the basic patterns and other
linguistic information as features, a support vector machine
(SVM) is trained to decide whether given candidate pairs
correspond to each other or not. The effectiveness of the
proposed method is investigated using the annotated data in
our experiments. It is better than the method using pattern
matching.

The contribution of our paper is as follows: First,
we show the importance of semantic mathematical search
and introduce a new framework for extending the current
mathematical search systems. For this purpose, we propose
the use of a machine learning-based method that identifies
the correspondence between mathematical expressions and
their natural language descriptions. Second, we manually
construct an annotated corpus and evaluate the performance
of our method. We show that a supervised machine-learning
framework can be used effectively with about 87% precision
and 81% recall. Third, we define a new type of information
extraction task to identify equivalent relations between natural
and formal languages. Our investigation shows that our
framework had a satisfactory performance for this type of
problem with technical writings.

II. RELATED WORKS

We assumed mathematical expressions are represented using
Mathematical Markup Language (MathML) [2]. Although it
is not widespread, MathML is a worldwide standard defined
for mathematical expressions recommended by W3C [3],
and as such, is supported by many existing Web browsers.
An increasing number of MathML compatible software
tools have become available, including editors, mathematics
software packages, and translators between MathML and other
representations such as TEX or OpenMath; there is also Math
OCR software to recognize mathematical expressions printed
on paper [4].

Several researchers have done mathematical searches by
using MathML and other formal languages for mathematics.
Their research can be categorized by their primary goals,
mathematical search and mathematical knowledge-base.

Research on mathematical search targets retrieving
real-world mathematical documents in digital libraries or
on the Web. Since such documents have a great deal of
semantic ambiguity, the majority of mathematical search
systems calculate similarity between mathematical concepts by
considering syntactic information of the formulas. Munavalli
et al. analyzed mathematical expressions written in MathML
and translated the feature elements into index terms in

their MathFind search system [5]. Mišutka et al. also
extended the full text search engine with a formula tokenizer
that converts formulas into representations of different
generalized levels [6]. Adeel et al. generated keywords by
using regular expressions for the mathematical equations
written in MathML, and threw them to existing search
systems as queries [7]. And we also proposed the use of
a method for doing a similarity search for mathematical
equations based on a distance calculation defined for the tree
structure of MathML [8]. On the other hand, research on
mathematical knowledge-base aims to automatically construct
a comprehensive knowledge, or ontology, of mathematics.
Therefore, these researches center in extracting rules or
relations between mathematical elements from mathematics
textbooks or documents. Kohlhase et al. proposed the
use of a web-based, distributed mathematical knowledge
base where relations between mathematical objects such as
symbols, definitions, or proofs were stored in a database and
utilized as mathematical facts [9]. Jeschke et al. presented a
framework for automatic extraction of mathematical ontology
from mathematical texts using natural language processing
[10]. Although their framework is remarkable, general, and
applicable to many mathematics systems, syntactic analysis
of mathematical expressions was still left for future study.

To summarize, existing mathematical search studies
mainly worked on “syntactic” information of mathematical
formulas to identify mathematical concepts useful for
indexing. Contrarily, most mathematical knowledge-base
studies focused on the “semantic” information to extract
relations between mathematics related entities. However,
“syntactic” disambiguation of mathematical expressions often
requires “semantic” interpretation; for example, deciding
whether a symbol in an equation is a variable or a function
without context information is sometimes difficult. Conversely,
“semantic” information alone is often insufficient to identify
precise mathematical relationship between the target elements.
The final goal of our research is to combine both of the
syntactic and semantic features to enable deeper analysis
of mathematical expressions. For this purpose, we dedicate
ourselves to extracting correspondence between mathematical
elements and natural language descriptions.

III. DATASET CONSTRUCTION

Since no annotated corpus is available for MathML
documents, we first constructed a dataset that we can use
to develop and evaluate our method. The flowchart of the
construction is shown in Fig. 2.

First, in the selection phase, we chose 214 papers related to
the machine-learning field using a keyword list shown in Table
I. We then removed 52 papers with only few mathematical
expressions (162 candidates remained), and narrowed the
candidate again in terms of relationship with each other, in
particular, in the reference network (104 candidates remained)
because this is the first step therefore it is desirable that target
papers are relative as far as possible. Since we plan to extend
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Fig. 2. Flowchart for dataset construction.

our work to mathematical content search in future, we intended
our corpus to focus on a specific research topic so that the
papers stand on some common mathematical grounding. We
expect that with varied authors and years of the publications,
sufficient diversity is still maintained for natural language
expressions in the corpus.

TABLE I
KEYWORDS USED TO COLLECT RELATIVE (MACHINE

LEARNING-RELATED) PAPERS

No. Keywords (Japanese) Keywords (English)
1 X�ÓS Machine learning
2 ÊÀ�cÓS Supervised learning
3 ÊÀC0ÓS Unsupervised learning
4 �´��°��µ�Ê (SVM) Support vector machine (SVM)
5 ¢¼�ÀÂ¤��Æ�� Neural network

In the transformation phase, the 104 PDF papers were
transformed into XHTML format where a mathematical
OCR software, InftyReader [4], was used to convert printed
mathematical expressions into MathML representations with
manual consistency check.

In the annotation phase, we manually enumerated all
the pairs of mathematical expressions and corresponding
mathematical mentions. First we normalized each sentence
(e.g. remove HTML tags) and then split it in morphemes
by using a Japanese language morphological analyzer MeCab
[11] and then put BIO tags on them to show whether
each word correspond to each mathematical expression.
For simplication, we only considered compound nouns
as candidates for mathematical mentions here. Although
mathematical mentions are often expressed as complicate
noun phrases with prepositions, adjectives, or adverbs, we
annotated only the last compound nouns in the phrases (note
that Japanese language is a head-final language). After this
process, the four papers without any pairs of mathematical
expressions and descriptions were removed from the corpus,
which resulted in 100 annotated papers left.

An example sentence in this dataset is shown in Table II.
The target sentence can be translated into English as “Here,
distribution Exp1 represents the prior probability distribution
of the parameter Exp2” where Exp1 and Exp2 represent
mathematical expressions. Each target expression is labeled
independently using a separated column. In this case, Exp1
has two corresponding mathematical mentions “distribution
(�ê)” and “the prior probability distribution (áÏÉ��ê)”
and therefore these words are put B or I tags. Since only noun

phrases are considered as candidates of mathematical mentions
in our framework, B/I tags are not put on the phrase “the prior
probability distribution of the parameter Exp2” but instead on
“the prior probability distribution” as the second mathematical
mention of Exp1.

TABLE II
EXAMPLE SENTENCE IN THE DATASET

ID Morpheme Tags
0 ,, (here) O O
1 @ O O
2 � O O
3 �ê (distribution) B O
4 Exp1 Pred O
5 H O O
6 ¨À¸�� (parameter) O B
7 Exp2 O Pred
8 G O O
9 áÏ (prior) B O
10 É� (probability) I O
11 �ê (distribution) I O
12 k O O
13 ñ2 (represent) O O

IV. METHODS FOR IDENTIFYING CORRESPONDING
DESCRIPTION

In this section, we propose the use of two methods for
identifying mathematical mentions corresponding to each
mathematical expression: pattern matching and one based on
machine-learning.

A. Basic Approach

Given a target mathematical expression, the objective here
is to find phrases that represent a meaning, definition, or
name of the expression. Multiple phrases can be the correct
mathematical mentions for a certain mathematical expression.
To simplify the problem, we presuppose that: first, all of the
mathematical mentions are nouns or compound nouns and
second, these mentions co-occur with the target mathematical
expression within the same sentence. The problem is then
attributed to the binary categorization of each noun phrase
in the same sentence with the target mathematical expression.

Our basic approach for this task consists of two steps. First,
the sentence containing a target mathematical expression is
parsed by a morphological analyzer and the noun phrases are
extracted using simple extraction rules; continuous nouns are
combined to form a compound noun. Second, for each noun
phrase in the sentence, a binary classification is applied to
decide whether the phrase is a corresponding mathematical
mention to the target or not. Note that each noun phrase in the
sentence is processed multiple times if the sentence contains
several mathematical expressions. If we take a sentence in
Table II as an example, we see that the sentence includes
two mathematical expressions (Exp1 and Exp2) and four noun
phrases (“here (,,)”, “distribution (�ê)”, “parameter (¨À
¸��)”, “the prior probability distribution (áÏÉ��ê)”).
We, therefore, obtain eight candidate instances to classify
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([Exp1, “here”], [Exp1, “distribution”], [Exp1, “parameter”],
[Exp1, “the prior probability distribution”], [Exp2, “here”],
[Exp2, “distribution”], [Exp2, “parameter”], and [Exp2, “the
prior probability distribution”]) in total (Fig. 3).

Fig. 3. Classification candidates of a sentence.

B. Pattern Matching Based Method

Our first attempt is based on a naive assumption that
scientific papers use a limited number of template expressions
to describe the meanings of mathematical expressions. The
method based on pattern matching is used to clarify how
well the mathematical mentions can be obtained by using a
few representative patterns between a mathematical expression
and a mathematical mention. We extract most frequent eight
patterns from five randomly selected papers in IPSJ Journal (a
journal on the field of information science) by hand. Note that
these papers are not included in the dataset described in section
III, where we choose only literature on machine learning. To
keep a generality of the patterns, we did not restrict the topic
of the papers. The extracted patterns are shown in Table III.

TABLE III
MOST FREQUENT EIGHT PATTERNS EXTRACTED FROM THE FIVE PAPERS

No. Patterns
1 [Noun](+[AnotherExp]+“�”+...)+[Exp]
2 [Noun]+“k”(+...)+[Exp]+“A”+〈2d/Ì2〉
3 [Exp]+“k”(+...)+[Noun]+“A”+〈2d〉
4 [Exp]+“H”(+...)+[Noun]+“@”+〈�d〉
5 [Noun]+“A”+“�L”(+...)+[Exp]+“@”+“Ì2”
6 [Noun]+“k/H”+[Exp]+“�”
7 [Exp]+“k/H”+[Noun]+“�”
8 [Exp]+“H”(+...)+[Noun]+“k”+〈ñ2〉

Here, [Noun] is a candidate noun, [Exp] is a mathematical
expression, A function “〈v〉” returns the root form of the
verb v, the operator “/” denotes the or function, and “(+...)”
indicates that there are zero or more words there. “(+
[AnotherExp] + “,” + ...)” indicates that there are zero
or more sequences of another expression and comma. For
instance, pattern 1 expresses the case that the [Noun] is the
previous word of target [Exp] or the case that there are
only some mathematical expressions and commas between the
[Exp] and [Noun]. In Fig. 3, both [Exp1, “distribution”] and
[Exp2, “parameter”] match pattern 1. The pair [Exp1, “prior
probability distribution”] matches pattern 8.

Using these patterns, identification is performed as follows;
given a pair of a mathematical expression and a candidate
noun, a classifier returns true if the pair matches any of
the patterns used and false if it does not. As a preliminary
experiment, we confirmed that a classifier using above eight
patterns achieved 85% in F-measure for another five randomly
selected papers in the IPSJ Journal. We will evaluate the
patterns in a larger dataset in section V.

C. Machine Learning Based Method

We also investigated a supervised learning approach to
the task, using the basic patterns above and other linguistic
information as clues for classification. As described in
subsection IV-A, we formalized a problem as a binary
classification for each noun phrase on the condition that the
target mathematical expression and automatic morphological
analysis are given. Here, we used an SVM-based binary
classification model. The features that we used for the
classification are shown in Table IV. Every feature in the
table is expressed by using a binary value. The features
are categorized into four types. First, the eight patterns
extracted in the previous subsection are directly used as
features. Second, several types of tokens which decide the
structures of the sentence are used as clues for determining
the relationship between [Noun] and [Exp]. Checking through
the tokens between [Noun] and [Exp], this type of features
tests the existence of commas and brackets, which decide the
syntactic structures, and case markers of subject and object
(“H” and “k”), which determine the argument structures
between the [Noun] and [Exp]. Intuitively, the likelihood of
the relationship between [Noun] and [Exp] may be lower
if these features are triggered. Third, neighbor tokens of
[Noun] and [Exp] are used as clues. And the last type
feature is about dependency analyses. The dependency relation
between the [Noun] and [Exp] must provide important clues
for determining corresponding pairs.

Using a training set in section III, the L2-regularized L1-loss
function is minimized with the Primal Estimated sub-GrAdient
SOlver (Pegasos) algorithm [12]. We used the Classias [13] to
estimate the parameters.

V. EXPERIMENTS AND DISCUSSIONS

This section gives experiments for evaluating each
identification method. We divided the dataset described in
section III into three subsets: 60 papers for training, 20 for
development and 20 for testing. The training set has 3, 867
positive and 53, 153 negative instances, the development set
has 1, 267 positive and 17, 440 negative instances, and the
test set has 1, 193 positive and 16, 219 negative instances.
We evaluate each model in terms of precision, recall, and
F1-measure on the test set. We do not use the training and
development set for the method based on pattern matching.

To make a baseline, we used a simple method that returns
true iff the target noun phrase is the previous token of the
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TABLE IV
FEATURES USED FOR MACHINE LEARNING

Features Explanations
Pattern (1-8) Are triggered if target pair matches each

of eight patterns.
Another mathematical
expression, comma, or
opening/closing brackets

Test existance of another mathematical
expression, comma, or opening / closing
brackets between the target noun and the
mathematical expression.

Case markers “H”, “k” Test the existance of case marker “H” or
“k” between taret noun and mathematical
expression.

Other tokens Test whether other types of tokens are
clipped by targets or not.

Order Test whether the target noun lies anterior
to mathematical expression or not.

Noun [Noun] itself.
Composition Triggered if target noun is a compound

noun.
Position from [Exp] Integer numbers indicating a position from

[Exp] (..., -2, -1, 1, 2, ...).
Previous/next words of
[Noun]

Surface and PoS of previous/next word of
target noun.

Previous/next words of
[Exp]

Surface and PoS of previous/next word of
target mathematical expression.

Nearest verb lemma Lemma form of verb which first appears
after latter target.

Word combination Combination features using two to six
features from features about near words.

Existence combination Combination features using two to three
features from features about existence.

Dependency relation Tests whether the clause including target
noun is dependent/head of that including
mathematical expression / both clause
have common head.

target mathematical expression. For example in Fig. 3, the
baseline outputs two pairs [Exp1, “distribution (�ê)”], [Exp2,
“parameter (¨À¸��)”].

The result of each model is shown in Table V and Table
VI. We evaluated the following four models for the machine
learning method: without pattern and dependency relation
features (w/o pat&dep), without pattern features (w/o pattern),
without dependency relation features (w/o depend), and with
all the features (All features). We use two different evaluation
criterions: based on soft and strict matching, respectively. With
soft matching based evaluation, automatically extracted noun
phrases are considered as true if they partially match human
annotated ones. On the other hand, with strict matching based
evaluation, the extracted phrases are considered as true only
if they exactly agree with human annotated ones. While the
former allows misidentification of the boundaries of the target
noun phrases, the latter requires the exact identification.

The highest performance was achieved by machine learning
model with dependency analysis features. Essentially, machine
learning based models obtain higher precisions and much
higher recalls than the method based on pattern matching. It
can be seen that w/o pattern and All features models have no
significant difference, which means the existence of pattern
features doesn’t have much influence on the performance.
These results suggest that the manually selected patterns

TABLE V
PRECISION/RECALL/F1-MEASURE OF EACH METHOD

(SOFT MATCHING EVALUATION)

Development set Test set
Methods Prec. Recall F1 Prec. Recall F1

Baseline 95.04 57.46 71.62 95.21 61.61 74.81
Pattern Matching 89.46 69.69 78.35 91.80 75.11 82.62

w/o pat&dep 92.53 82.16 87.04 92.50 85.83 89.04
Machine w/o depend 92.46 82.24 87.05 92.59 85.83 89.06
Learning w/o pattern 92.21 83.11 87.42 92.45 86.17 89.20

All features 92.20 83.03 87.38 92.45 86.17 89.20

TABLE VI
PRECISION/RECALL/F1-MEASURE OF EACH METHOD

(STRICT MATCHING EVALUATION)

Development set Test set
Methods Prec. Recall F1 Prec. Recall F1

Baseline 87.99 53.20 66.31 89.90 58.17 70.64
Pattern Matching 82.98 64.64 72.67 87.09 71.25 78.38

w/o pat&dep 86.13 76.48 81.02 87.35 81.06 84.09
Machine w/o depend 86.07 76.56 81.04 87.43 81.06 84.12
Learning w/o pattern 85.60 77.43 81.45 87.32 81.39 84.25

All features 85.89 77.35 81.40 87.32 81.39 84.25

were implicitly complemented by the combination of features
obtained via SVM learning. On the other hand, the dependency
feature contributed to the performance improvement. It
can be presumed that dependency information successfully
captured grammatically generalized and structural patterns
which cannot be represented by using sequential patterns.

Note that the performance of the proposed method is
upper-limited due to our preprocessing policy of compounds
and multi-words described in subsection IV-A. It caused about
6% decrease in the overall performance.

As shown in Table VII, we also evaluated each pattern
individually. Pattern 1 shows the best performance and the
highest frequency while pattern 5 and 8 scarcely appeared
in the dataset. The high precisions of the patterns 1, 2,
and 6 exemplify that we extracted the set phrases by using
these patterns. On the other hand, the result of pattern 5
and 8 suggests that patterns used for describing the meaning
of mathematical expressions may vary depending on the
topic/field of the paper. Eventually, we used the model with all
these patterns, which achieved the highest performance in the
development set as the best pattern model based on matching.

TABLE VII
RESULT OF EACH PATTERN

Development set Test set
No. Precision Recall F1 Precision Recall F1
1 93.70 58.72 72.20 94.07 65.13 76.97
2 87.50 1.66 3.25 95.35 3.44 6.63
3 52.94 1.42 2.77 30.00 0.50 0.99
4 76.40 5.37 10.03 80.36 3.77 7.21
5 NaN 0.00 NaN 0.00 0.00 0.00
6 78.57 1.74 3.40 100.00 1.76 3.46
7 55.56 0.79 1.56 66.67 0.50 1.00
8 NaN 0.00 NaN NaN 0.00 NaN

All 89.46 69.69 78.35 91.80 75.11 82.61
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In addition, to evaluate the sufficiency of the dataset, we
plot the learning curve of the machine-learning model using
all features in Fig. 4. The dataset is comparatively sufficient for
machine learning, but, even if we use the maximum size of the
training set, the curve still does not converge. Therefore, the
gap between pattern matching and methods based on machine
learning may increase, with the size of the dataset.

Fig. 4. Learning curve for the result using machine learning based method.

VI. CONCLUSION

We proposed the use of a method for extracting
natural language descriptions associated with mathematical
expressions in scientific papers. Our experimental results
showed that the proposed machine learning framework works
effectively with our dataset. We expect the performance
can be further improved by using other information like
mathematical expressions& structures. Since this is our first
challenge for the mathematical search that includes both the
syntactic and semantic aspects, in this paper we only focused
here on the information extraction techniques to identify
relationships between the two. We plan to incorporate the
extracted information into the mathematical search system
we already developed and to investigate the potential of the
enhancement.

The remaining two important issues are constructing
a dataset and determining mathematical mentions. First,
the quality of datasets needs to be improved to enable
more reliable evaluations. Our validation study showed the
limitation of manual annotation particularly for appositions
that frequently occur in a target dataset. For example,
given a sentence like “Distribution F is a prior probability
distribution”, the apposition “distribution F ” tends to be
overlooked by a human annotator while automatic extraction
methods evaluate this more accurately. Such an analysis
suggests that the quality of the dataset can be improved
by collecting candidates from different competing extraction
methods and also by carefully reviewing. Second, we assumed
that mathematical mentions are ones of the noun phrases in
the same sentences as the target mathematical expressions.
However, in real applications, other related descriptions are

also useful. For example, given a sentence like “W is
a weight that controls the relative importance of the two
operation points”, not only the term “weight” but also the
succeeding that-clause is informative for users. This makes the
determination of mathematical mentions a more challenging
task and requires a reconfiguration of our task and dataset.

Finally, we expect the proposed scheme will be applicable
to other languages as well because of the general tendency
of mathematical descriptions to follow their characteristic
patterns. They will be also addressed in our future study.
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