
 

  

Abstract—In this paper, we present a new algorithm, namely, a 

micro artificial immune system (Micro-AIS) based on the Clonal 

Selection Theory for solving numerical optimization problems. 

For our study, we consider the algorithm CLONALG, a widely 

used artificial immune system. During the process of cloning, 

CLONALG greatly increases the size of its population. We 

propose a version with reduced population. Our hypothesis is that 

reducing the number of individuals in a population will decrease 

the number of evaluations of the objective function, increasing the 

speed of convergence and reducing the use of data memory. Our 

proposal uses a population of 5 individuals (antibodies), from 

which only 15 clones are obtained. In the maturation stage of the 

clones, two simple and fast mutation operators are used in a 

nominal convergence that works together with a reinitialization 

process to preserve the diversity. To validate our algorithm, we 

use a set of test functions taken from the specialized literature to 

compare our approach with the standard version of CLONALG. 

The same method can be applied in many other problems, for 

example, in text processing.  

 

Index terms—Artificial immune system, Clonal selection 

theory, micro algorithm, numerical optimization. 

I. INTRODUCTION 

IO-INSPIRED and Evolutionary algorithms have become 

very important within the area of artificial intelligence, 

because they have proved successful in solving certain 

complex problems of machine learning, classification and 

numerical optimization [1]. Such techniques are population 

based, in other words, they use a population of potential 

solutions enabling a wide exploration of the search space. The 

simplicity of an algorithm is one of the current trends in the 

field of evolutionary computation, although in the majority of 

cases, the performance is sacrificed in favor of a lower 

computational cost [2]. Due to the simultaneous manipulation 

of a large set of solutions, implementation of an algorithm 

requires a large space in data memory and generally high 

processing time. To reduce these factors, algorithms with 

extremely small populations are designed, and for most 

applications their performance is comparable with the standard 

population algorithms [3]. 

As the evolutionary algorithms, Artificial Immune System 

(AIS) has been successfully applied to a variety of 

optimization problems [4]. AIS is a computational intelligence 

paradigm inspired by the biological immune system which has 
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found application in pattern recognition and machine learning. 

Different ways of AIS for optimization as the immune network 

theory and the clonal selection principle have been proposed 

and implemented by different researchers as explained in [5].  

The main motivation of our research is to propose a simple 

and powerful algorithm which presents a reduced 

computational cost when using a micro population of 

individuals within a clonal proliferation scheme which is the 

central point in the functioning of artificial immune system. 

Two novel mutation operators were designed and 

implemented. These operators accelerate the convergence by 

providing a uniform search to avoid getting into local 

optimum. 

In this work we apply micro-AIS for numerical 

optimization, but the same method can be applied in many 

other problems, for example, in text processing. It is promising 

to apply bio-inspired algorithms (more specifically, genetic 

algorithms) in text processing tasks, see, for example, [6]. 

A. Previous Work 

In [3] Goldberg introduced the concept of nominal 

convergence when he experimented with a simple genetic 

algorithm (GA) using a population of only 3 individuals. He 

found that these 3 chromosomes were sufficient to ensure 

convergence of the algorithm regardless of the size of them, 

aided by a process of elitism. Goldberg applied genetic 

operators in a nominal convergence which is controlled by two 

possible parameters: a specified number of generations or a 

degree of similarity among all chromosomes. At the end of the 

nominal convergence, the best individual is preserved and two 

individuals are randomly generated: they will form the new 

population.  

In [7] Krishnakumar designed a GA with a population of 5 

individuals and he named his algorithm Micro Genetic 

Algorithm (Micro-GA). Like Goldberg, Krishnakumar used 

elitism to preserve the best single strand found at the end of 

nominal convergence, as one of the individuals used for the 

next generation. When comparing the performance of the 

Micro-GA with a simple GA with a population of 50 

individuals, better results were obtained on functions of only 

one objective and the GA with a reduced population 

converged faster. Krishnakumar’s algorithm has achieved 

good results when it is used to solve optimization problems for 

high-dimensional functions [8]. 

Dozier et al. in [9] presented two heuristic-based micro 

genetic algorithms which quickly find solutions to constraints 

satisfaction problem. They experimented with different sizes 

of micro population and found that for a particular problem, a 

relatively small number of individuals in the genetic algorithm 

was sufficient. 
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Coello and Toscano designed a Micro-GA for solving the 

multi-objective optimization problem [10], providing criteria 

for the management of constraints, besides proposing a scheme 

of Pareto dominance with a geographical location to maintain 

the diversity and uniformly distribution of the solutions on the 

Pareto front. This algorithm works with a population of 4 

individuals and uses a secondary memory that stores potential 

solutions throughout the search. This approach was widely 

used to successfully solve various engineering problems as 

discussed in [11] and [12]. 

Recently, Fuentes and Coello in [13] designed a micro 

algorithm for PSO (Particle Swarm Optimization) to solve 

optimization problems of one objective and constraints 

satisfaction. They use 5 particles (individuals) helped by a 

nominal convergence. 

With regard to artificial immune systems with small 

population, there are no studies reported in the literature. 

There are, however, certain similarities with the works cited 

above: 

1.    Population size of 3 to 5 individuals. 

2.    Nominal convergence is required as well as a 

reinitialization process. 

3.    Elitism is necessary to preserve at least the best 

individual obtained at the end of the nominal 

convergence. 

II. ARTIFICIAL IMMUNE SYSTEM 

De Castro and Von Zuben developed the Clonal Selection 

Algorithm (CLONALG) on the basis of clonal selection theory 

of the immune system [14, 15]. Clonal Selection is based on 

the way in which both B-cells and T-cells adapt in order to 

match and kill the foreign cells. This algorithm can perform 

pattern recognition and adapt to solve multimodal optimization 

tasks. The block diagram of CLONALG is shown in Fig. 1. 

This algorithm is described as follows:  

(1) Generate (randomly) a set (P) of candidate solutions or 

antibodies, composed of the memory cells (M) and the 

remaining population (Pr), (P = Pr + M); 

(2) Select the n best antibodies (Pn), based on affinity; 

(3) Clone these n best antibodies in proportion to their 

affinity using  where Nc is the total 

number of clones generated for each of the antigens like 

objective function,  is a multiplying factor, N is the total 

number of antibodies, and   is the operator that 

rounds its argument toward the closest integer. Each term of 

this sum corresponds to the clone size of each selected 

antibody, e.g., for N=100 and , the antibody with highest 

affinity will produce 100 clones; the antibody with the second 

highest affinity produces 50 clones, and so on, giving rise to a 

temporary set of clones (C); 

(4) Apply a hypermutation to the temporary clones. The 

degree of mutation is inversely proportional to the affinity. 

The maturated antibodies are generated (C*); 

(5) Re-select the best elements from C* to compose the 

memory set M. Some members of P can be replaced by other 

improved members of C*; 

(6) Replace d antibodies by novel ones to introduce the 

diversity concept. The probability to be replaced is inversely 

proportional to the affinity of the previous remaining 

population (Pr). 

 
 

Fig. 1. Block diagram of the clonal selection algorithm CLONALG  

by De Castro and Von Zuben. 

 

 
Fig. 2. Micro-AIS. 
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III. MICRO ARTIFICIAL IMMUNE SYSTEM  

Fig. 2 shows our algorithm. Our methodology is based on 

the methodology proposed by Goldberg in [3]: the variation 

operators are applied to a small population (randomly 

generated) to achieve nominal convergence. Subsequently, a 

new population should be generated by transferring the best 

individuals of the population obtained after the convergence to 

the new one. The remaining individuals are randomly 

generated. 

The proposed algorithm works as follows: 

(1) Generate randomly a population of 5 antibodies 

(individuals). In the initial generation, these antibodies are 

copied directly to the working population and nominal 

convergence is controlled by the number of generations, in our 

case equal to 10. 

(2) Use selection based on ranking. The antibody with the 

highest affinity will be the best individual. In our algorithm we 

named this individual as BestAb. 

(3) Perform the cloning of the antibodies using 

, where NC is the number of clones to 

be generated for each antibody, n is the total number of 

antibodies of the population and i is the current antibody 

starting from the antibody with the highest affinity (BestAb). 

(4) Consider a population of 5 antibodies and generate a 

population of 15 clones: BestAb antibody gets 5 clones; the 

second ranking antibody gets 4 clones and so on until the 

worst antibody that gets a single clone. 

(5) Perform the maturation of clones using mutation 

process. The probability of mutation is set at the beginning of 

nominal convergence for each group of clones obtained from 

the same antibody. This probability is determined in 

proportion to the affinity of each antibody and decreases 

uniformly in each generation, so the group of clones obtained 

from BestAb mutates less than other groups of clones that have 

been generated from the remaining antibodies. The single 

clone that we got from the worst antibody has the highest 

possibility to mutate. For this purpose we use  

 

where i is the antibody that will set the mutation probability 

for the group of clones that were obtained from himself and n 

is the total antibody population. To decrease the mutation 

probability uniformly in each generation, within the nominal 

convergence we used 

 

where  and generation variable is the 

current generation within nominal convergence considering 

. Note that we should not divide by 

zero. 

For the variation of each of the clones, we present two 

operators that are rather simple and mostly exploit the search 

space to perform different step sizes in the process of 

mutation. Several aspects have been considered to implement 

these operators: the number of clones, the current generation 

within nominal convergence and the permissible range of 

values of the decision variables. We use the following two 

mutation operators, with a 50% probability, which act on each 

decision variable of a clone (in our scheme, the entire solution 

vector is mutated): 

 

and 

 

where x´ is the mutated decision variable, x is the decision 

variable to mutate, α is a uniform random number where 

, generation is the current generation within 

the nominal convergence and Nc is the total number of clones. 

The value of α is computed for each decision variable of the 

clone. 

In case of the 5 clones derived from BestAb, 

 is a random number between the lower 

bound (LB) and the upper bound (UB) of decision variables 

and it is a constant value for all the dimension of the clone, in 

other words, it has the same value for all decision variables of 

the clone. 

For the remaining clones which were obtained from the 

other 4 antibodies, range is any value (decision variable) from 

BestAb antibody which is chosen randomly. 

The first operator using in the mutation generates step sizes 

larger than the second operator. 

(6) Make another selection based on ranking. This time, we 

sort the 15 clones with respect to their affinity. We must select 

the two best clones (elitism) and the new population is 

completed with 3 other clones selected randomly from the 

population of mature clones. The remaining clones will be 

eliminated, providing a self-regulation within the nominal 

convergence. 

(7) When nominal convergence is achieved (while working 

with 10 generations), we keep the two best clones, and other 3 

antibodies are generated randomly to complete the new 

working population and the nominal convergence starts again 

until the algorithm achieves the stop condition.  

IV. EXPERIMENTAL SETUP 

In order to validate the proposed approach, we used the 

multivariate functions presented in [16]. These functions are 

listed in Appendix A. All selected test functions have 30 

variables (dimensions) and an optimum value at zero, except 

for f08 with an optimum at -12569.5. For all cases we used a 

population of 5 individuals and nominal convergence in 10 

generations. The general stop criterion of the algorithm varied 

depending on the problem to be solved. For the experiments, 

we used a 2.66 GHz Quad Core PC with 2MB. Table I shows 

the results for 20 runs of the algorithm. 
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TABLE I 

RESULTS OBTAINED WITH MICRO-AIS 

Function 
External 

cycle 

Nominal 

Convergence 
Best Worst Mean 

f01 1000 10 0.0 0.000022 0.000009 

f02 1000 10 0.0 0.000017 0.000008 

f03 1000 10 0.0 0.000002 0.000001 

f04 1000 10 0.0 0.000012 0.000005 

f05 1000 10 0.0 0.000028 0.000012 

f06 2000 10 0.0 0.000032 0.000015 

f07 2000 10 0.0 0.000027 0.000013 

f08 2000 10 -12569.5 -12569.57 -12569.496 

f09 2000 10 0.0 0.000033 0.000013 

f10 2000 10 0.0 0.000011 0.000007 

f11 2000 10 0.0 0.000013 0.000004 

 
TABLE II 

CLONALG VS. MICRO-AIS 

 
Ab 

(antibodies) 
Clones 

Nominal 

Convergence 

External 

cycle 

Evaluations to 

objective 

function 

Time 

(seconds) 

CLONALG       

f01 50 256 0 1000 1,280,000 47.2 

f05 70 312 0 1000 21,840,000 78.6 

f07 70 312 0 1200 26,208,000 103.7 

Micro-AIS       

f01 5 15 10 1000 750,000 14.8 

f05 5 15 10 1000 750,000 14.2 

f07 5 15 10 2000 1,500,000 48.3 

 

To validate the performance of our algorithm with respect to 

the standard version of CLONALG, we compared it with  

some of the above mentioned functions under equal 

conditions. The main results are related with the number of 

evaluations of the objective function and convergence time. 

Table II lists these results for 20 runs of both algorithms. We 

implemented the adaptations to CLONALG for using 

multivariate functions. For CLONALG we used a 

multiplication factor  and the number of antibodies listed 

in Table II. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we presented a new micro algorithm based on 

clonal selection theory for solving numerical optimization 

problem. Since the model of the artificial immune system does 

not include a crossover operator, cloning (set to 15 clones in 

our case) and mutation represent the main challenges for 

maintaining diversity. 

Two mutation operators were designed in our approach 

showed excellent solutions with a low computational cost. 

These operators were used without modifications in all 

selected test functions. As shown in the results listed in Tables 

I and II, the Micro-AIS converges faster than CLONALG and 

uses less data memory. The nominal convergence and elitism 

of 40% of the population (considering only 5 antibodies) are 

of great importance to ensure the proper functioning of the 

algorithm.  

Future work is aimed at the following four aspects:  

-    Find faster mutation operators,  

-    Design versions for handling constraints and muti-

objective optimization,  

-    Develop possible hardware architectures, and  

-    Develop applications in different areas (for example, in 

text processing) and experiment with them. 
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APPENDIX A 

Multivariate functions for the experimental setup, taken 

from [15]. 
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=)(4 xf  maxi [ ]{ }301, ≤≤ ixi
     

-100 ≤  xi  ≤  100 

min (f4 ) = f4 (0, …, 0) = 0 

 

 

f05 – Generalized Rosenbrock’s Function 
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f06 – Step Function 
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f07 – Quartic Function with Noise 
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f08 – Generalized Schwefel’s Problem 
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f09 – Generalized Rastrigin’s Problem 
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f10 – Ackley’s Function 
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f11 – Generalized Griewank’s Function 
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