

Abstract—In this paper, we present a new algorithm, namely, a

micro artificial immune system (Micro-AIS) based on the Clonal

Selection Theory for solving numerical optimization problems.

For our study, we consider the algorithm CLONALG, a widely

used artificial immune system. During the process of cloning,

CLONALG greatly increases the size of its population. We

propose a version with reduced population. Our hypothesis is that

reducing the number of individuals in a population will decrease

the number of evaluations of the objective function, increasing the

speed of convergence and reducing the use of data memory. Our

proposal uses a population of 5 individuals (antibodies), from

which only 15 clones are obtained. In the maturation stage of the

clones, two simple and fast mutation operators are used in a

nominal convergence that works together with a reinitialization

process to preserve the diversity. To validate our algorithm, we

use a set of test functions taken from the specialized literature to

compare our approach with the standard version of CLONALG.

The same method can be applied in many other problems, for

example, in text processing.

Index terms—Artificial immune system, Clonal selection

theory, micro algorithm, numerical optimization.

I. INTRODUCTION

IO-INSPIRED and Evolutionary algorithms have become

very important within the area of artificial intelligence,

because they have proved successful in solving certain

complex problems of machine learning, classification and

numerical optimization [1]. Such techniques are population

based, in other words, they use a population of potential

solutions enabling a wide exploration of the search space. The

simplicity of an algorithm is one of the current trends in the

field of evolutionary computation, although in the majority of

cases, the performance is sacrificed in favor of a lower

computational cost [2]. Due to the simultaneous manipulation

of a large set of solutions, implementation of an algorithm

requires a large space in data memory and generally high

processing time. To reduce these factors, algorithms with

extremely small populations are designed, and for most

applications their performance is comparable with the standard

population algorithms [3].

As the evolutionary algorithms, Artificial Immune System

(AIS) has been successfully applied to a variety of

optimization problems [4]. AIS is a computational intelligence

paradigm inspired by the biological immune system which has

Manuscript received March 12, 2011. Manuscript accepted for publication

June 6, 2011.

Juan Carlos Herrera-Lozada and Hiram Calvo are with Centro de

Investigación en Computación, Instituto Politécnico Nacional, México D. F.,

07738, Mexico (e-mail: jlozada@ipn.mx, hcalvo@cic.ipn.mx).

Hind Taud is with Centro de Innovación y Desarrollo Tecnológico en

Cómputo, Instituto Politécnico Nacional, México D. F., 07700, Mexico (e-

mail: htaud@ipn.mx).

found application in pattern recognition and machine learning.

Different ways of AIS for optimization as the immune network

theory and the clonal selection principle have been proposed

and implemented by different researchers as explained in [5].

The main motivation of our research is to propose a simple

and powerful algorithm which presents a reduced

computational cost when using a micro population of

individuals within a clonal proliferation scheme which is the

central point in the functioning of artificial immune system.

Two novel mutation operators were designed and

implemented. These operators accelerate the convergence by

providing a uniform search to avoid getting into local

optimum.

In this work we apply micro-AIS for numerical

optimization, but the same method can be applied in many

other problems, for example, in text processing. It is promising

to apply bio-inspired algorithms (more specifically, genetic

algorithms) in text processing tasks, see, for example, [6].

A. Previous Work

In [3] Goldberg introduced the concept of nominal

convergence when he experimented with a simple genetic

algorithm (GA) using a population of only 3 individuals. He

found that these 3 chromosomes were sufficient to ensure

convergence of the algorithm regardless of the size of them,

aided by a process of elitism. Goldberg applied genetic

operators in a nominal convergence which is controlled by two

possible parameters: a specified number of generations or a

degree of similarity among all chromosomes. At the end of the

nominal convergence, the best individual is preserved and two

individuals are randomly generated: they will form the new

population.

In [7] Krishnakumar designed a GA with a population of 5

individuals and he named his algorithm Micro Genetic

Algorithm (Micro-GA). Like Goldberg, Krishnakumar used

elitism to preserve the best single strand found at the end of

nominal convergence, as one of the individuals used for the

next generation. When comparing the performance of the

Micro-GA with a simple GA with a population of 50

individuals, better results were obtained on functions of only

one objective and the GA with a reduced population

converged faster. Krishnakumar’s algorithm has achieved

good results when it is used to solve optimization problems for

high-dimensional functions [8].

Dozier et al. in [9] presented two heuristic-based micro

genetic algorithms which quickly find solutions to constraints

satisfaction problem. They experimented with different sizes

of micro population and found that for a particular problem, a

relatively small number of individuals in the genetic algorithm

was sufficient.

A Micro Artificial Immune System
Juan Carlos Herrera-Lozada, Hiram Calvo, and Hind Taud

B

Coello and Toscano designed a Micro-GA for solving the

multi-objective optimization problem [10], providing criteria

for the management of constraints, besides proposing a scheme

of Pareto dominance with a geographical location to maintain

the diversity and uniformly distribution of the solutions on the

Pareto front. This algorithm works with a population of 4

individuals and uses a secondary memory that stores potential

solutions throughout the search. This approach was widely

used to successfully solve various engineering problems as

discussed in [11] and [12].

Recently, Fuentes and Coello in [13] designed a micro

algorithm for PSO (Particle Swarm Optimization) to solve

optimization problems of one objective and constraints

satisfaction. They use 5 particles (individuals) helped by a

nominal convergence.

With regard to artificial immune systems with small

population, there are no studies reported in the literature.

There are, however, certain similarities with the works cited

above:

1. Population size of 3 to 5 individuals.

2. Nominal convergence is required as well as a

reinitialization process.

3. Elitism is necessary to preserve at least the best

individual obtained at the end of the nominal

convergence.

II. ARTIFICIAL IMMUNE SYSTEM

De Castro and Von Zuben developed the Clonal Selection

Algorithm (CLONALG) on the basis of clonal selection theory

of the immune system [14, 15]. Clonal Selection is based on

the way in which both B-cells and T-cells adapt in order to

match and kill the foreign cells. This algorithm can perform

pattern recognition and adapt to solve multimodal optimization

tasks. The block diagram of CLONALG is shown in Fig. 1.

This algorithm is described as follows:

(1) Generate (randomly) a set (P) of candidate solutions or

antibodies, composed of the memory cells (M) and the

remaining population (Pr), (P = Pr + M);

(2) Select the n best antibodies (Pn), based on affinity;

(3) Clone these n best antibodies in proportion to their

affinity using where Nc is the total

number of clones generated for each of the antigens like

objective function, is a multiplying factor, N is the total

number of antibodies, and is the operator that

rounds its argument toward the closest integer. Each term of

this sum corresponds to the clone size of each selected

antibody, e.g., for N=100 and , the antibody with highest

affinity will produce 100 clones; the antibody with the second

highest affinity produces 50 clones, and so on, giving rise to a

temporary set of clones (C);

(4) Apply a hypermutation to the temporary clones. The

degree of mutation is inversely proportional to the affinity.

The maturated antibodies are generated (C*);

(5) Re-select the best elements from C* to compose the

memory set M. Some members of P can be replaced by other

improved members of C*;

(6) Replace d antibodies by novel ones to introduce the

diversity concept. The probability to be replaced is inversely

proportional to the affinity of the previous remaining

population (Pr).

Fig. 1. Block diagram of the clonal selection algorithm CLONALG

by De Castro and Von Zuben.

Fig. 2. Micro-AIS.

Juan Carlos Herrera-Lozada, Hiram Calvo, and Hind Taud

III. MICRO ARTIFICIAL IMMUNE SYSTEM

Fig. 2 shows our algorithm. Our methodology is based on

the methodology proposed by Goldberg in [3]: the variation

operators are applied to a small population (randomly

generated) to achieve nominal convergence. Subsequently, a

new population should be generated by transferring the best

individuals of the population obtained after the convergence to

the new one. The remaining individuals are randomly

generated.

The proposed algorithm works as follows:

(1) Generate randomly a population of 5 antibodies

(individuals). In the initial generation, these antibodies are

copied directly to the working population and nominal

convergence is controlled by the number of generations, in our

case equal to 10.

(2) Use selection based on ranking. The antibody with the

highest affinity will be the best individual. In our algorithm we

named this individual as BestAb.

(3) Perform the cloning of the antibodies using

, where NC is the number of clones to

be generated for each antibody, n is the total number of

antibodies of the population and i is the current antibody

starting from the antibody with the highest affinity (BestAb).

(4) Consider a population of 5 antibodies and generate a

population of 15 clones: BestAb antibody gets 5 clones; the

second ranking antibody gets 4 clones and so on until the

worst antibody that gets a single clone.

(5) Perform the maturation of clones using mutation

process. The probability of mutation is set at the beginning of

nominal convergence for each group of clones obtained from

the same antibody. This probability is determined in

proportion to the affinity of each antibody and decreases

uniformly in each generation, so the group of clones obtained

from BestAb mutates less than other groups of clones that have

been generated from the remaining antibodies. The single

clone that we got from the worst antibody has the highest

possibility to mutate. For this purpose we use

where i is the antibody that will set the mutation probability

for the group of clones that were obtained from himself and n

is the total antibody population. To decrease the mutation

probability uniformly in each generation, within the nominal

convergence we used

where and generation variable is the

current generation within nominal convergence considering

. Note that we should not divide by

zero.

For the variation of each of the clones, we present two

operators that are rather simple and mostly exploit the search

space to perform different step sizes in the process of

mutation. Several aspects have been considered to implement

these operators: the number of clones, the current generation

within nominal convergence and the permissible range of

values of the decision variables. We use the following two

mutation operators, with a 50% probability, which act on each

decision variable of a clone (in our scheme, the entire solution

vector is mutated):

and

where x´ is the mutated decision variable, x is the decision

variable to mutate, α is a uniform random number where

, generation is the current generation within

the nominal convergence and Nc is the total number of clones.

The value of α is computed for each decision variable of the

clone.

In case of the 5 clones derived from BestAb,

 is a random number between the lower

bound (LB) and the upper bound (UB) of decision variables

and it is a constant value for all the dimension of the clone, in

other words, it has the same value for all decision variables of

the clone.

For the remaining clones which were obtained from the

other 4 antibodies, range is any value (decision variable) from

BestAb antibody which is chosen randomly.

The first operator using in the mutation generates step sizes

larger than the second operator.

(6) Make another selection based on ranking. This time, we

sort the 15 clones with respect to their affinity. We must select

the two best clones (elitism) and the new population is

completed with 3 other clones selected randomly from the

population of mature clones. The remaining clones will be

eliminated, providing a self-regulation within the nominal

convergence.

(7) When nominal convergence is achieved (while working

with 10 generations), we keep the two best clones, and other 3

antibodies are generated randomly to complete the new

working population and the nominal convergence starts again

until the algorithm achieves the stop condition.

IV. EXPERIMENTAL SETUP

In order to validate the proposed approach, we used the

multivariate functions presented in [16]. These functions are

listed in Appendix A. All selected test functions have 30

variables (dimensions) and an optimum value at zero, except

for f08 with an optimum at -12569.5. For all cases we used a

population of 5 individuals and nominal convergence in 10

generations. The general stop criterion of the algorithm varied

depending on the problem to be solved. For the experiments,

we used a 2.66 GHz Quad Core PC with 2MB. Table I shows

the results for 20 runs of the algorithm.

A Micro Artificial Immune System

TABLE I

RESULTS OBTAINED WITH MICRO-AIS

Function
External

cycle

Nominal

Convergence
Best Worst Mean

f01 1000 10 0.0 0.000022 0.000009

f02 1000 10 0.0 0.000017 0.000008

f03 1000 10 0.0 0.000002 0.000001

f04 1000 10 0.0 0.000012 0.000005

f05 1000 10 0.0 0.000028 0.000012

f06 2000 10 0.0 0.000032 0.000015

f07 2000 10 0.0 0.000027 0.000013

f08 2000 10 -12569.5 -12569.57 -12569.496

f09 2000 10 0.0 0.000033 0.000013

f10 2000 10 0.0 0.000011 0.000007

f11 2000 10 0.0 0.000013 0.000004

TABLE II

CLONALG VS. MICRO-AIS

Ab

(antibodies)
Clones

Nominal

Convergence

External

cycle

Evaluations to

objective

function

Time

(seconds)

CLONALG

f01 50 256 0 1000 1,280,000 47.2

f05 70 312 0 1000 21,840,000 78.6

f07 70 312 0 1200 26,208,000 103.7

Micro-AIS

f01 5 15 10 1000 750,000 14.8

f05 5 15 10 1000 750,000 14.2

f07 5 15 10 2000 1,500,000 48.3

To validate the performance of our algorithm with respect to

the standard version of CLONALG, we compared it with

some of the above mentioned functions under equal

conditions. The main results are related with the number of

evaluations of the objective function and convergence time.

Table II lists these results for 20 runs of both algorithms. We

implemented the adaptations to CLONALG for using

multivariate functions. For CLONALG we used a

multiplication factor and the number of antibodies listed

in Table II.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new micro algorithm based on

clonal selection theory for solving numerical optimization

problem. Since the model of the artificial immune system does

not include a crossover operator, cloning (set to 15 clones in

our case) and mutation represent the main challenges for

maintaining diversity.

Two mutation operators were designed in our approach

showed excellent solutions with a low computational cost.

These operators were used without modifications in all

selected test functions. As shown in the results listed in Tables

I and II, the Micro-AIS converges faster than CLONALG and

uses less data memory. The nominal convergence and elitism

of 40% of the population (considering only 5 antibodies) are

of great importance to ensure the proper functioning of the

algorithm.

Future work is aimed at the following four aspects:

- Find faster mutation operators,

- Design versions for handling constraints and muti-

objective optimization,

- Develop possible hardware architectures, and

- Develop applications in different areas (for example, in

text processing) and experiment with them.

REFERENCES

[1] D. Ashlock, Evolutionary Computation for Modeling and Optimization,

Springer, 2005.

[2] M. Munetomo and Y. Satake, “Enhancing Model-building Efficiency in

Extended Compact Genetic Algorithms,” in ICSMC '06. IEEE

International Conference on Systems, Man and Cybernetics, 2006,

Volume 3, Oct. 8-11, 2006, pp. 2362-2367.

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning, Addison Wesley, Reading, MA, 1989.

[4] L. Nunes de Castro and J. Timmis, Artificial Immune Systems: A new

Computational Intelligence Approach, Springer, 2002.

[5] D. Dasgupta, “Advances in artificial immune systems,” Computational

Intelligence Magazine, IEEE, vol 1, issue 4, pp. 40-49, Nov. 2006.

[6] A. Gelbukh, G. Sidorov, D. Lara-Reyes, and L. Chanona-Hernandez,

“Division of Spanish Words into Morphemes with a Genetic

Algorithm,” Lecture Notes in Computer Science, 5039, Springer-

Verlag, pp. 19-26, 2008.

[7] K. Krishnakumar, “Micro-genetic algorithms for stationary and non-

stationary function optimization” in SPIE Proceedings: Intelligent

Control and Adaptive systems, 1989, pp. 289-296.

[8] G. Alvarez, Can we make genetic algorithms work in high-

dimensionality problems? Stanford Exploration Project (SEP) report

112, 2002.

[9] G. Dozier, J. Bowen and D. Bahler, “Solving Small and Large Scale

Constraint Satisfaction Problems Using a Heuristic-Based Microgenetic

Algorithm,” in Proceedings of the First IEEE Conference on

Evolutionary Computation (ICEC'94), Z. Michalewicz, J. D. Schaffer,

H.-P. Schwefel, D. B. Fogel and H. Kitano (eds), 1994, pp. 306-311.

[10] G. Toscano, Carlos. A. Coello, “A Micro-Genetic Algorithm for

multiobjective optimization,” in First International Conference on

Juan Carlos Herrera-Lozada, Hiram Calvo, and Hind Taud

Evolutionary Multi-criterion Optimization, Lecture Notes in Computer

Science, vol. 1993, Springer, 2001, pp. 126-140.

[11] Y. Ming and L. Cheng, “Application of Micro Genetic Algorithm to

Optimization of Time-Domain Ultra-Wide Band Antenna Array,” in

Microwave and Millimeter Wave Technology, 2007, ICMMT '07,

International Conference, April 2007, pp. 1-4.

[12] J. Mendoza, D. Morales, R. López, J. Vannier, and C. A. Coello,

“Multiobjective Location of Automatic Voltage Regulators in a Radial

Distribution Network Using a Micro Genetic Algorithm,” IEEE

Transactions on Power Systems, vol. 22, issue 1, pp. 404-412, Feb.

2007.

[13] J. C. Fuentes and C. A. Coello, “Handling Constraints in Particle Swarm

Optimization Using a Small Population Size,” Lecture Notes in

Computer Science, MICAI 2007: Advances in Artificial Intelligence,

vol. 4827, Springer, 2007.

[14] L. Nunes de Castro and F. J. Von Zuben, “The clonal selection

algorithm with engineering applications,” in Proceedings of Genetic

and Evolutionary Computation Conference, Workshop on AISAA, July

2000, pp. 36-37.

[15] L. Nunes de Castro and F. J. Von Zuben, “Learning and optimization

using the clonal selection principle,” IEEE Trans. Evol. Comput., vol. 6,

no. 3, pp. 239-251, Jun. 2002.

[16] E. Mezura, J. Velázquez, and C. A. Coello, “A comparative study of

differential evolution variants for global optimization,” in ACM,

GECCO 2006, pp. 485-492.

APPENDIX A

Multivariate functions for the experimental setup, taken

from [15].

f01 – Sphere Model

2
30

1

1)()(∑
=

=
i

ixxf

-100 ≤ xi ≤ 100

min (f1) = f1 (0, …, 0) = 0

f02 – Schwefel’s Problem

∑ ∏
= =

+=
30

1

30

1

2)(
i i

ii xxxf

-10 ≤ xi ≤ 10

min (f2) = f2 (0, …, 0) = 0

f03 – Schwefel’s Problem

∑ ∑
= =











=

30

1

2

1

3)(
i

i

j

jxxf

-100 ≤ xi ≤ 100

min (f3) = f3 (0, …, 0) = 0

f04 – Schwefel’s Problem

=)(4 xf maxi []{ }301, ≤≤ ixi

-100 ≤ xi ≤ 100

min (f4) = f4 (0, …, 0) = 0

f05 – Generalized Rosenbrock’s Function

∑
=

+ −+−=
29

1

222

15)1()(100)(
i

iii xxxxf

-30 ≤ xi ≤ 30

min (f5) = f5 (1, …, 1) = 0

f06 – Step Function

 
2

30

1

6)5.0()(∑
=

+=
i

ixxf

-100 ≤ xi ≤ 100

min (f6) = f6 (0, …, 0) = 0

f07 – Quartic Function with Noise

=)(7 xf [)1,0
30

1

4 randomix
i

i +∑
=

-1.28 ≤ xi ≤ 1.28

min (f7) = f7 (0, …, 0) = 0

f08 – Generalized Schwefel’s Problem

()()∑ =
=

30

18 sin)(
i ii xxxf

-500 ≤ xi ≤ 500

min (f8) = f8 (420.9687, …, 420.9687) = -12596.5

f09 – Generalized Rastrigin’s Problem

[]∑ =
+−=

30

1

2

9 10)2cos(10)(
i ii xxxf π

-5.12 ≤ xi ≤ 5.12

min (f9) = f9 (0, …, 0) = 0

f10 – Ackley’s Function

f10 (x) = −20e −0.2
1

30
x

i

2

i=1

30

∑












− e

1

30
cos(2π x

i
)

i=1

30

∑








+ 20 + e

-32 ≤ xi ≤ 32

min (f10) = f10 (0, …, 0) = 0

f11 – Generalized Griewank’s Function

∑ ∏
= =

+−=
30

1

30

1

2

11 1)cos(
4000

1
)(

i i

i
i

i

x
xxf

-600 ≤ xi ≤ 600

min (f11) = f11 (0, …, 0) = 0

A Micro Artificial Immune System

