External Sandhi and its Relevance
to Syntactic Treebanking

Sudheer Kolachina, Dipti Misra Sharma, Phani Gadde, Meher Vijay,
Rajeev Sangal, and Akshar Bharati

Abstract—External sandhi is a linguistic phenomenon which
refers to a set of sound changes that occur at word boundaries.
These changes are similar to phonological processes such as
assimilation and fusion when they apply at the level of prosody,
such as in connected speech. External sandhi formation can be
orthographically reflected in some languages. External sandhi
formation in such languages, causes the occurrence of forms
which are morphologically unanalyzable, thus posing a problem
for all kind of NLP applications. In this paper, we discuss
the implications that this phenomenon has for the syntactic
annotation of sentences in Telugu, an Indian language with
agglutinative morphology. We describe in detail, how external
sandhi formation in Telugu, if not handled prior to dependency
annotation, leads either to loss or misrepresentation of syntactic
information in the treebank. This phenomenon, we argue,
necessitates the introduction of a sandhi splitting stage in the
generic annotation pipeline currently being followed for the
treebanking of Indian languages. We identify one type of external
sandhi widely occurring in the previous version of the Telugu
treebank (version 0.2) and manually split all its instances leading
to the development of a new version 0.5. We also conduct an
experiment with a statistical parser to empirically verify the
usefulness of the changes made to the treebank. Comparing
the parsing accuracies obtained on versions 0.2 and 0.5 of the
treebank, we observe that splitting even just one type of external
sandhi leads to an increase in the overall parsing accuracies.

Index Terms—Syntactic treebanks, sandhi.

I. INTRODUCTION

N recent years, there has been a steady increase in

awareness about the multi-fold importance of treebank
corpora. This is evident from the number of syntactic
treebanking projects for different languages that have
been initiated and are currently ongoing. Although initial
efforts such as the Penn treebank (PTB) [1] worked
with constituency-based representations, many treebanking
efforts in the last decade have preferred dependency-based
representations. Two main reasons for this preference
can be gathered from the literature. The first reason is
that for languages that are relatively free word-order,
dependency-based representation has been observed to work
better [2], [3], [4], [5]. The second is that the simplicity

Manuscript received October 27, 2010. Manuscript accepted for publication
January 14, 2011.

The authors are with the Language Technologies Research Centre,
IIT-Hyderabad, India (e-mail: {sudheer.kpg08, phani.gadde, mehervijay.
yeleti} @research.iiit.ac.in, {dipti, sangal} @mail.iiit.ac.in)

of dependency-based representation makes it amenable for a
variety of natural language processing applications [6], [7].

A dependency annotation scheme inspired by Paninian
theory was proposed for syntactic treebanking of Indian
languages (ILs) which are both morphologically rich and
relatively free word-order [8]. This scheme has hitherto been
applied to three Indian languages: Hindi, Bangla and Telugu.
The first versions of all three treebanks were released for the
shared task on IL parsing held as part of ICON-2009'. While
the Hindi treebanking effort has matured considerably and the
treebank is being developed at a stable pace [9], [10], [11],
the Telugu and Bangla treebanks are still at a very initial
stage of development. In this paper, we discuss some issues
in Telugu treebanking with special reference to a linguistic
phenomenon known as external sandhi. We discuss how
external sandhi formation in Telugu poses problems during
syntactic annotation of Telugu sentences. We discuss how
this language-specific issue necessitates the introduction of a
sandhi splitting or segmentation stage in the generic annotation
pipeline. As a preliminary step towards a sandhi split treebank
of Telugu, we manually split all instances of one type of
external sandhi widely occurring in the previous version of
the treebank. We conduct an experiment to empirically verify
the efficacy of sandhi splitting in the Telugu treebank for the
task of NL parsing.

II. RELATED WORK AND BACKGROUND

Begum et al. [8] proposed a dependency-based annotation
scheme for syntactic treebanking of Indian languages.
Currently, treebanks of three Indian languages?, Hindi, Bangla
and Telugu are being developed using this annotation scheme.
All these three languages are morphologically rich and have
a relatively free word order. The applicability of this scheme
for syntactic annotation of a fixed word order language like
English has also been studied to some extent [12], [13].
The annotation scheme is based on a grammatical formalism
known as Computational Paninian Grammar (CPG), a brief
introduction to which is given in the next section. Vempaty et
al. [14] give a detailed account of the issues encountered in
the application of this annotation scheme to the treebanking
of Telugu along with the decisions taken to address each of

'NLP Tools Contest on IL parsing. http://ltrc.iiit.ac.in/nlptools2009/
2HyDT-Hindi, HyDT-Bangla and HyDT-Telugu

Sudheer Kolachina, Dipti Misra Sharma, Phani Gadde, Meher Vijay, Rajeev Sangal, and Akshar Bharati

them in the development of version 0.1 of the treebank. They
also discuss a few syntactic constructions in Telugu which are
of interest from the parsing perspective.

Telugu is a Dravidian language with agglutinative
morphology [15]. Although all Indian languages in general are
said to be morphologically rich and therefore have relatively
free word order, there exist considerable differences among
them with respect to their finer morphological properties. For
instance, the morphology of Hindi, an Indo-Aryan language
is said to be inflectional as one morph can be mapped to
several morphemes. However, inflectional morphs in Hindi
such as case-markers and auxiliaries are not bound to their
stems. This is typically considered a property of languages
with analytical morphology. Telugu, on the other hand, is
characterized as having an agglutinative morphology. It must
be noted that agglutination in its original formulation [16],
refers to the property of a one-to-one mapping between
morphs and morphemes. In Telugu, inflectional morphs (which
include different kinds of auxiliary verbs and case-markers) are
always bound to the stem resulting in highly synthetic word
forms. The number of possible verb forms for a verb stem
in Telugu therefore, is very high, aggravating the task of the
morph analyzer. In addition, as we will show through example
sentences in section IV, even full morphological words can
fuse together in Telugu resulting in complex forms which
are morphologically unanalyzable®. Such complexities in the
morphology of Indian languages point towards the need for a
more exact approach while typifying them similar perhaps, to
the one espoused in Greenberg [17].

The notion of external sandhi in traditional Sanskrit
grammars captures well the phenomenon of word fusion
mentioned above. In section IV, we show how this
phenomenon, if not addressed through sandhi-splitting, poses
problems for syntactic analysis of Telugu sentences during
treebanking. This phenomenon was not handled in the
preliminary version of the Telugu treebank* released for the
shared task on IL parsing at ICON 2009. Although the number
of sentences in the Telugu treebank (1400 sentences for
training, 150 sentences each for development and testing) was
comparable to that of the Hindi and the Bangla treebanks?,
the average parsing accuracy for Telugu on both coarse and
fine-grained datasets was much lower as compared to the other
languages [18]. In fact, all the participating systems reported
their lowest accuracies on the Telugu datasets. An analysis
of the Telugu treebank was carried out in order to discover
possible reasons for such low accuracies on the parsing task.
As a result, two possible reasons were identified. One reason
for the relatively low accuracies on the Telugu datasets was
that there was a considerable difference of domain between

31t would not be correct to call instances of such fusion as ‘word forms’
as they fall outside the domain of morphology. We argue in section IV that
they are a result of orthographic expression of prosodic processes.

4version 0.2

SHindi: 1500 training, 150 development, 150 testing
Bangla: 980 training, 150 development, 150 testing

TABLE 1
IL TREEBANK STATISTICS: A COMPARISON

Language sentences words / sentence chunks / sentence
Hindi 1800 19.01 9.18
Bangla 1280 10.52 6.5
Telugu 1700 5.43 3.78

the training set on the one hand, and the development and test
sets on the other. Such ill-effects of domain differences on
the parsing accuracies can be easily avoided by partitioning
the treebank differently and are hence, not a source of worry
during treebank development.

The second reason was the lower number of both words and
chunks in Telugu sentences as compared to Hindi and Bangla
(shown in Table I°). The shared task dealt with chunk parsing
which means that dependencies are shown only among the
chunks[19] in a sentence. In the case of Telugu, as the above
table shows, different syntactic relations are possible with
the same dependency structure leading to sparsity. Statistical
parsers have to learn the same number of syntactic relations
from relatively lesser structure in Telugu as compared to Hindi
and Bangla. We show in section IV that the smaller number
of chunks per sentence in Telugu is directly attributable to the
phenomenon of external sandhi formation.

It must be mentioned that in terms of parsing accuracies,
a similar pattern was observed in the case of Turkish at
both the CONLL shared tasks on dependency parsing [20],
[21]. Interestingly, Turkish is also an agglutinating language
with relatively free word order. In fact, the agglutinative
morphology of Turkish dictated the choice of the treebank
architecture used in the development of the Turkish
treebank [5]. In the Turkish treebank, the complex
agglutinative word forms are represented as sequences
of inflectional groups separated at derivational boundaries.
Syntactic relations are represented between these inflectional
groups rather than between word forms. This information
about word structure is preserved because morphological
features of intermediate derivations are cues for syntactic
relationships. Thus, annotation of syntactic dependencies is
done on top of a tier of morphological segmentation. It would
be interesting to do a detailed comparison of the annotation
schemes of the Turkish and Indian language treebanking
efforts vis-a-vis the properties of these languages.

In another related work, external sandhi has been recently
discussed in the context of building an automatic Sanskrit
segmentizer [22]. In this work, two different approaches to
automatic segmentation are explored, both of which perform
with reasonable accuracy.

III. CPG FORMALISM
The CPG formalism is a dependency grammar inspired, as

mentioned previously, by Paninian grammatical theory. In this

Note that the comparison shown here is based on the datasets released for
the shared task on parsing held at ICON 20009.

formalism, as in other dependency grammars, the syntactic
structure of a sentence in a natural language consists of a set
of binary asymmetric relations called dependencies between
the ‘words’ (lexical items) in that sentence. A dependency
relation is always defined between a head word and a modifier
word that modifies the head. In the CPG formalism, the
verb is treated as the head of a clause. Nouns denoting
the participants in the activity denoted by the verb stem
are treated as modifiers of the verb. The relation between
a verb and its modifier is known as a karaka relation, a
notion central to syntactic analysis in Paninian grammar.
Karaka relations are syntactico-semantic relations that obtain
between a verb and its modifier. Each participant of the activity
denoted by a verbal stem is assigned a distinct karaka. For
example, k1 or karta is a relation that picks out the participant
most central to the activity denoted by the verb. There are
six different karaka relations defined in Paninian grammar.
In addition to karaka relations that obtain between verbs
and their participants, dependency relations can also exist
between pairs of nouns (genitives), between nouns and their
modifiers (adjectival modification, relativization), between
verbs and their modifiers (adverbial modification including
clausal subordination). A detailed dependency label tagset
encompassing all these different kinds of relations is defined
in the annotation scheme based on the CPG formalism [23].

One important point of departure in CPG from other
dependency grammars is that dependency relations may also
be defined between groups of words known as chunks.
A chunk is defined as a minimal, non-recursive structure
consisting of a group of related words. Each chunk has
a unique head word whose category determines the chunk
type. This head word is modified by the other words in
the chunk. In a chunk-based dependency representation,
dependency relations are defined between chunk heads.
Another important concept in CPG which relates to the notion
of a chunk is the vibhakti. For a noun chunk, vibhakti is the
post-position/suffixes occurring after the noun which encodes
information about case-marking and thematic roles (via the
notion of karaka which is syntactico-semantic). Similarly, in
the case of a verb chunk, the verbal head may be followed
by auxiliary verbs which may remain as separate words
or combine with the head as suffixes depending on the
morphology of the language. This information following the
head is collectively called the vibhakti of the verb. The vibhakti
of a verb chunk encodes information about the tense, aspect
and modality (TAM) as well as agreement features of the verb.
Both these kinds of vibhakti have been shown to be crucial in
NLP applications such as parsing [24]. In fact, even during
annotation, nominal vibhaktis serve as cues to identify the
karaka relation that can be assigned to the noun.

IV. EXTERNAL SANDHI AND ITS RELEVANCE TO
SYNTACTIC ANNOTATION

The origins of the notion of sandhi can be traced back to
the seminal work of theorists such as Panini in the Indian

External Sandhi and its Relevance to Syntactic Treebanking

linguistic tradition. Briefly stated, sandhi (‘putting together’)
refers to a set of morpho-phonological processes that occur
at either morpheme or word boundaries. These processes
are captured as sandhi rules in traditional Sanskrit grammars
which are based chiefly on the avoidance of hiatus and
on assimilation [25]. It must be noted that sandhi is also
reflected in the orthography of Sanskrit as the coalescence
of final and initial letters. Two types of sandhi are identified
in language, internal sandhi and external sandhi. Internal
sandhi refers to word-internal morphonological changes that
take place at morpheme boundaries during the process of
word-formation. The internal sandhi rules in Sanskrit grammar
apply to the final letters of verbal roots and nominal stems
when followed by certain suffixes or terminations [25]. An
example of internal sandhi in English would be the positional
variation of the negative morpheme ‘in-’ to give the allomorph
‘im-" when it is prefixed to words that begin with bilabial
sounds (as in ‘impossible’). Such processes lie obviously,
within the domain of morphology. External sandhi, on the
other hand, refers to processes that apply word-externally
(across word boundaries). External sandhi rules in Sanskrit
grammar determine the changes of final and initial letters of
words [25]. Examples of external sandhi formation in English
are the well-known cases of wannalhafta/gotta contractions
where the verb combines with the infinitival ‘to’ following it to
give the contracted form. Note that external sandhi as seen in
these examples need not always be reflected orthographically
in English (‘want to’ while writing, but spoken as ‘wanna’).

The notion of sandhi formation is also well-known in
modern linguistics. However, in much of the literature on
this subject, sandhi is treated purely as a phonological
process. That phonological processes occur across morpheme
boundaries and not across word boundaries is the default
situation in much of phonology. Cases where phonological
rules apply across word boundaries, in other words, cases of
external sandhi formation, have attracted special attention in
generative phonology. In fact, this phenomenon is one of the
central motivations for the theory of Prosodic Phonology [26],
which formalizes the intervention of syntactic conditions
(the relationships between words) in phonological matters. A
similar notion discussed in the literature is that of phonological
phrase which is defined as an organizational unit in phonology
(parallel to syntactic phrase in syntax). A phonological phrase,
therefore, is the domain within which external sandhi rules
operate [27].

As discussed earlier in the case of English contractions,
external sandhi can be limited to connected speech and need
not be present in text. However, in Indian languages, especially
Dravidian languages, sandhi (both internal and external) has a
wide-spread occurrence and is also orthographically reflected
most of the time. Sandhi phenomena in European languages
have also been studied extensively [28] and external sandhi
has been discussed as occurring prominently in Italian [29].
We refer to all such languages with high prevalence of external
sandhi as Sandhi languages. External sandhi formation in

Sudheer Kolachina, Dipti Misra Sharma, Phani Gadde, Meher Vijay, Rajeev Sangal, and Akshar Bharati

Sandhi languages leads to fusion of morphological words
resulting in morphologically complex/unanalyzable forms.
This poses a problem for all natural language processing
applications such as POS-tagging, chunking, parsing, etc. that
deal with written text. The task of tokenization becomes
complex in these languages as tokens obtained through
sentence splitting can contain more than one morphological
word within them. Since external sandhi is a consequence
of (orthographically visible) phonological processes occurring
at the prosodic level, splitting such instances of sandhi
can not fall within the purview of the morph analyzer.
The task of splitting sandhi forms requires segmentation at
a different level and should be treated as being distinct
from morphological segmentation. Without this distinction
between sandhi formation and other kinds of morphological
changes, the task of morphological analysis in languages
like Telugu becomes extremely complex. In the case of
syntactic treebanking, if cases of external sandhi are not
handled appropriately during tokenization, information about
the syntactic relations that obtain between the words fused
together due to external sandhi formation would be lost. This
can be seen from the following Telugu examples.

(kanpu) _NP (warvAwa)_NP

childbirth after
(saMrakRaNa)_ NP (lexanukoMdi)_VGF
protection Neg-Fin+think-Fin-Sandhi

‘Think that there is no proper protection
post—-partum’

(wagina) _VGNF
appropriate

(lexanukoMdi)_ VGF
Neg-Fintthink-Fin-Sandhi

k2 dv kl
(kanpu) _NP (warvhAwa)_NP (saMrakRaNa) NP
childbirth after protection
mod

(wagina)_VGNF
appropriate

Fig. 1. Example dependency tree from the Telugu treebank without sandhi
splitting.

In this example, the verb in the matrix clause is
‘think’ (Telugu stem: ‘anukoVtam’) which takes a clausal
complement. The verb in the complement clause is a Negative
finite verb (‘lexu’). It can be noticed that in the above example,
both the verbs are fused together as a result of external sandhi
formation. If this issue is not handled prior to dependency
annotation, dependencies would have to be incorrectly shown
between the chunks in the sentence and the fused form
(‘lexanukoMdi’) which is treated as the head of the sentence.
This is linguistically inappropriate for the obvious reason that

the information pertaining to the argument structure of both
the verbs in this sentence is lost in such a representation. The
dependency tree corresponding to this sentence from version
0.2 in Fig. 1 clearly shows this fallacy. The correct dependency
tree for this sentence is also shown in Fig. 2 for comparison.

(anukoMdi)_ VGF
think-Fin

k2

(lexu) VGF
Neg-Fin

8!

(saMrakRaNa) NP
protection

mod_relc

(wagina)_VGNF
appropriate

b7t

(kanpu warvAwa)_ NP
childbirth after

Fig. 2. Example dependency tree from the Telugu treebank with sandhi
splitting.

The following example sentences too contain instances of
external sandhi formation.

(rogaM) _NP (muxirina)_VGNF

disease worsen
(xavAKAnAlo) _NP
hospital-Loc show-Fin-emi-Sandhi

‘Why dont (you) show this disease afflicted
girl in a hospital?’

(pillani)_NP
girl-Acc
(cuparemi)_VGF

(ammakemi) NP (wocakuMdeV)_VGF
Mother-Dat-emi-Sandhi strike-Fin

‘Mother could not think of anything’
(literal: Anything did not strike mother)

The word ‘emi’ undergoes external sandhi in both these
sentences. While in the first sentence, it gets fused to the
predicate in that clause (‘cuparu’), in the second sentence,
it fuses with another argument (‘ammaku’) of the predicate.
Corresponding to this difference in sandhi formation, there
exists an interesting difference in the function of ‘emi’ which
can be noticed from the translations provided. In the first
sentence where it fuses with the verb, its function is similar
to that of a question word (or clitic). In the second sentence,
however, it functionally resembles a Negative Polarity Item
(NPI). This correlation between sandhi formation and the

function of ‘emi’ can be seen as a direct evidence for the
interaction between syntax and prosody. While syntactically
annotating these sentences, if the sandhi form is not split,
information about the syntactic relation of ‘emi’ to its head
would be lost. In fact, this word/clitic ‘emi’ belongs to a
paradigm of demonstrative pronouns in Telugu all of which
can potentially exhibit similar behaviour. If the sandhi in
each of these sentences is not split, syntactically important
information such as argument structure would be either lost
or misrepresented in the treebank.

In the next section, we describe how such sandhi forms
in the previous version of the treebank were manually split
leading to a new version of the treebank.

V. SANDHI SPLITTING IN SYNTACTIC TREEBANKING

The examples in the previous section show how external
sandhi formation in Telugu, can lead to either loss or
misrepresentation of syntactic information in the treebank.
The sandhi forms in such sentences need to be split so that
syntactic relationships involving tokens undergoing sandhi
are accurately represented. In this section, we discuss the
rationale for introduction of a distinct sandhi splitting stage
in the annotation pipeline. We also describe how sandhi forms
in the Telugu treebank were split to produce a new sandhi
split version. However, we first give a brief overview of the
annotation pipeline being followed for IL treebanking.

A. Annotation Pipeline for IL Treebanking

The annotation process followed to develop a treebank
of CPG-based dependency structures for Indian languages
consists of multiple steps (see Fig. 3). Sentences are tokenized
to begin with. The tokens obtained at the end of this step
are analyzed by a morph analyzer in the next step. At
the third stage, the tokens in the sentence are POS-tagged
which is followed by chunking at the fourth stage where
tokens are grouped into chunks. As mentioned earlier, it is
possible in this annotation scheme to annotate dependency
relations between chunks (in fact, heads of chunks). This
distinction between inter-chunk and intra-chunk dependencies
is based on the observation that intra-chunk dependencies
can be generated with high accuracy given the chunks and
their heads (except in very few cases such as compounds,
collocations). Thus, annotation of inter-chunk dependencies
alone in phase 1 of the annotation would result in a chunk-level
dependency treebank. This strategy also minimizes the time
requirements of syntactic treebank development which is
usually seen as a labor-intensive and time-consuming task.
At the next stage in the pipeline, the dependency relations
are annotated between the chunks. This is followed by
post-processing in the form of quality checks and validation.
The processing at each of these stages can be automated
followed by human post-editing. Information obtained at each
stage of processing is used by subsequent stages. Currently,
processing at the first four stages, namely tokenization, morph

External Sandhi and its Relevance to Syntactic Treebanking

analysis, POS-tagging and chunking, is being reliably done
using highly accurate tools. The task of dependency annotation
can also be automated using vibhaktis as cues for karaka
assignment. However, it must be noted that vibhaktis can also
be ambiguous which is why the task of karaka assignment
is not always straight-forward. Therefore, it was decided that
reliable annotation of syntactic dependencies can be achieved
only through manual annotation.

In order to get an idea about the degree of occurrence of
external sandhi, and also about the different kinds of sandhi
possible, a detailed manual study of 600 sentences from
the previous version of the Telugu treebank was done. We
observed that there was no straight-forward method to identify
sandhi forms in Telugu. The assumption that sandhi forms
can be identified based on the output of the morphological
analyzer is not correct. This is because forms for which the
paradigm-based morph analyzer does not generate any analysis
include, apart from cases of external sandhi, inflections of
unknown words. In addition, the morph analyzer sometimes
analyses sandhi forms incorrectly treating them as words.
These observations suggest that splitting of sandhi forms
should precede morph analysis. In fact, Sandhi splitting must
be done as part of the tokenization step as external sandhi
causes the fusion of tokens. Once the tokens in a sentence are
obtained, all the other steps in the annotation process can be
carried out without any changes. Fig. 3 shows the annotation
pipeline with a sandhi splitting stage introduced prior to morph
analysis. This additional stage would be necessary for all
Sandhi languages.

‘ Tokenization ‘

|

‘ Sandhi splitting ‘

]

‘ Morph Ana.lysi s ‘

|
‘ POS Tagging ‘

l

‘ Chunking ‘
l

‘ Dependency Annotation ‘

|

‘ Post—processing ‘

Fig. 3. Modified annotation pipeline for Sandhi languages such as Telugu.

B. Sandhi Splitting in the Telugu Treebank

In the course of the manual study, it was observed that
e-demonstratives in Telugu (such as ‘emi’ in the examples
from the previous section), undergo sandhi with neighbouring
words most of the time. In this regard, they can be compared

Sudheer Kolachina, Dipti Misra Sharma, Phani Gadde, Meher Vijay, Rajeev Sangal, and Akshar Bharati

TABLE II
DIFFERENT KINDS OF MODIFICATIONS MADE TO VERSION 0.2 OF THE
TELUGU TREEBANK

Type of modification # of modifications

POS-tag corrections 239
Chunk tag corrections 136
DepRel corrections 673
Sandhi splitting changes 179
All 1227

to what are known an leaners such as ‘to’ in English [27].
Another interesting observation about these elements is that
their function seems to vary according to the part of speech
of the word they lean on. Since this class of pronouns has
a distinct form, it is possible to easily extract their instances
from the treebank. All instances of external sandhi involving
these demonstratives were extracted and split. Since this work
is a preliminary exploration of external sandhi in the Telugu
treebank, we restrict ourselves to manual sandhi splitting.
However, in order to be able to split all types of external
sandhi over the entire treebank, automating the task of sandhi
segmentation is a mandatory requirement. It is expected that
the sandhi rules in Telugu we encountered during the process
of manual sandhi splitting would aid in the development of an
automatic segmentizer.

In the process of manual sandhi splitting from the previous
version of the treebank, we encountered POS-tag and chunk
tag errors made by the automatic taggers which were
corrected. Errors in annotation of syntactic dependencies
(both attachment and relation label) from earlier phases of
annotation were also corrected. The statistics about all these
different kinds of modifications are given in Table II. The new
version of the treebank resulting from these modifications is
numbered as version 0.57.

VI. PARSING EXPERIMENT

Although treebanks can be used for a variety of purposes,
the major impetus for treebanking in recent times, has come
from the rapid developments in the area of data-driven
natural language parsing. In fact, the relationship of sandhi
formation with the syntax of Telugu discussed in this work
was discovered in the light of a detailed analysis of the results
of the NLP tools’ contest for IL parsing at ICON 20098. In
order to empirically verify the usefulness of sandhi splitting in
the treebank for syntactic parsing, we experiment by applying
a data-driven dependency parser first, to sentences from the
previous version of the treebank and then, to the new version
in which sandhi splitting was manually done. A comparison
of the parsing accuracies obtained using these two versions of
the treebank would help us understand not only the effect of
sandhi formation on Telugu parsing but also the efficiency
of the design choices we made to address it in the new

TThis new version of the treebank is released for the NLP tools’ contest
on IL parsing at ICON 2010. http://ltrc.iiit.ac.in/niptools2010/
8 http://ltre.iiit.ac.in/nlptools2009/

TABLE I
DESCRIPTION OF THE DATASETS USED IN THE PARSING EXPERIMENTS
Dataset Description
set-0 1600 sentences from treebank version 0.2
set-1 POS-tag, Chunk tag and DepRel error corrections
set-2 sandhi-splitting changes only
set-3 both changes

version of the treebank. In addition, as already mentioned
in the previous section, modifications made to the previous
version of the treebank include post-editing changes wherein
the errors of the automatic POS-tagger and chunker are
corrected and also, dependency corrections (both attachment
and label corrections). For our parsing experiments, we created
four different datasets each containing a different version of
the same set of sentences. Set-0 contains sentences drawn
from the previous version of the treebank. The sentences in
set-0 are replaced by their post-edited (POS-tag, chunk tag
and dependency relation corrected) versions to create set-1.
Sentences in set-0 containing instances of external sandhi are
replaced by their sandhi split versions to create set-2. Finally,
set-3 is made up of sentences containing both post-editing and
sandhi-splitting changes. The details of the datasets are briefly
summarized in Table III.

Applying a data-driven parser to these different datasets,
we tried to tease apart the influence of these different kinds
of modifications on the parsing accuracy. We use the publicly
available MaltParser [30] in this experiment with learner and
feature model settings identical to those of the system that
reported the highest accuracies for Telugu parsing at the NLP
tools’ contest 2009. In order to be able to pin-point the effect
of the annotation changes on the parser performance and also,
to normalize for sentence length and complexity, we ran the
parser in cross-validation mode (10-fold) besides applying it
to a test set of 150 sentences. Both these accuracies for each
dataset are shown in table IV.

As shown in table III, set-0 is comprised of sentences
drawn from the previous version of the treebank. Therefore,
the accuracies obtained on set-O are treated as the baseline
accuracies in this experiment. It must be noted that the
baseline accuracies obtained in our experiment using set-0
are considerably higher than the best accuracies reported on
the same version of the treebank released for the NLP tools’
contest shared task on parsing 2009 [18]. This difference in
accuracies can be attributed solely to the way the treebank
was partitioned to create the released datasets. The accuracies
obtained on set-1 are slightly greater than the baseline
accuracies. The increase in unlabeled attachment score (UAS)
(both cross-validation and test set) is higher than the one
in labeled attachment score (LAS). This difference between
the accuracies obtained on set-1 and the baseline accuracies
demonstrates the effect of correction of errors from the
previous version of the treebank.

The accuracies obtained on set-2, although better than the
baseline accuracies, are less than the accuracies obtained

TABLE IV
ACCURACIES ON THE FINE-GRAINED DATASETS

Dataset Cross-Validation Test Set
LAS UAS LS LAS UAS LS
set-0 6745 87.85 7037 6690 87.18 70.02
set-1 67.96 8896 70.57 67.65 88.06 70.59
set-2 67.77 8794 70.66 67.06 88.63 69.40
set-3 68.31 89.50 70.37 68.28 8898 7045
TABLE V

ACCURACIES ON THE COARSE-GRAINED DATASETS

Dataset Cross-Validation Test Set
LAS UAS LS LAS UAS LS
set-0 71.87 8797 7537 69.32 8891 72.10
set-1 73.24 89.55 7578 71.80 90.14 7422
set-2 7220 8832 7533 69.73 8829 72.07
set-3 73.61 89.86 75.89 7129 8998 73.29

on set-1. The accuracies obtained on this set reflect the
effect of splitting just one type of external sandhi. This
is understandable given that the number of sandhi splitting
changes in the treebank is much less than the error corrections
made to create set-1 (see table II). In the cross-validation
experiments with set-1, we observed that the performance of
the parser improves as the number of folds is increased. This
suggests that the parser needs more training data to learn the
new structures created as a result of sandhi splitting in the
treebank.

The performance of the parser on set-3 is significantly better
than both set-1 and set-2. The increase is significant in both
LAS and UAS. This shows that post-editing changes such
as POS-tag and chunk tag corrections as well as dependency
corrections also aid in the learning of sandhi split structures.
The improvement in UAS (1.65 for cross-validation and
1.80 on the test set) is more than that of LAS (0.86 for
cross-validation and 1.38 on the test set).

We also repeated this experiment with similar datasets
created using coarse-grained data °. The parsing accuracies on
the coarse-grained datasets are shown in Table V. The results
of this experiment exhibit a trend similar to that observed in
the case of fine-grained data. However, it must be noted that
the increase in LAS is expectedly much higher in the case
of coarse-grained data. Overall, the results justify our claim
about the importance of splitting sandhi forms in the treebank
for the task of NL parsing.

VII. CONCLUSIONS

In this paper, we introduced the linguistic phenomenon of
external sandhi in Telugu, an Indian language. We discuss
how external sandhi formation in Telugu poses a problem
in the syntactic annotation of Telugu sentences. We show
using examples, that external sandhi, if not handled prior to
dependency annotation in the treebanking process, can lead to
either loss or misrepresentation of syntactic information. We

9The number of distinct dependency labels in the fine-grained data (44) is
reduced to 22 coarse-grained labels.

External Sandhi and its Relevance to Syntactic Treebanking

report the insights gained from a detailed study of the instances
of external sandhi from version 0.2 of the Telugu treebank.
Based on these insights, we propose a modification to the
generic annotation pipeline which would be relevant for all
Sandhi languages. We manually split instances of one type of
external sandhi widely occurring in the previous version of the
treebank. In addition to sandhi-splitting, post-editing changes
which include POS-tag corrections, chunk tag corrections and
dependency (both attachment and label) corrections were also
carried out, resulting in the development of a new version 0.5
of the Telugu treebank. Finally, we conduct an experiment
with a statistical parser to empirically verify the usefulness
of sandhi-splitting for the NL parsing task. The results of
our experiment show that splitting instances of even just one
type of external sandhi has a salubrious effect on the overall
parsing accuracies. Developing an automatic sandhi-segmenter
for Telugu based on our experience of manual sandhi-splitting
is part of our immediate future work.

ACKNOWLEDGMENTS

The authors would like to thank Viswanatha Naidu,
Samar Husain, Prashanth Mannem, Sukhada and Sriram
Venkatapathy for the helpful comments and discussions.
Thanks are also due to all the annotators who did the initial
annotation. The authors especially appreciate Viswanatha
Naidu’s sterling efforts that led to the development of
HyDT-Telugu 0.2.

REFERENCES

[1] M. Marcus, M. Marcinkiewicz, and B. Santorini, “Building a large
annotated corpus of English: The Penn Treebank,” Computational
linguistics, vol. 19, no. 2, pp. 313-330, 1993.

[2] A. Bharati, V. Chaitanya, and R. Sangal, Natural language processing:
a Paninian perspective. Prentice Hall of India, 1995.

[3] J. Haji¢, “Building a Syntactically Annotated Corpus: The Prague
Dependency Treebank,” Issues of Valency and Meaning. Studies in
Honour of Jarmila Panevovd, 1998.

[4] E. Hajicovd, “Prague Dependency Treebank: From Analytic to
Tectogrammatical Annotation,” Proceedings of TSD’98, pp. 45-50,
1998.

[5] K. Oflazer, B. Say, D. Hakkani-Tiir, and G. Tiir, “Building a Turkish
treebank,” Treebanks: Building and Using Parsed Corpora, vol. 20, pp.
261-277, 2003.

[6] A. Culotta and J. Sorensen, “Dependency tree kernels for relation
extraction,” in Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics. Association for Computational
Linguistics, 2004, p. 423.

[7]1 F. Reichartz, H. Korte, and G. Paass, “Dependency tree kernels for
relation extraction from natural language text,” Machine Learning and
Knowledge Discovery in Databases, pp. 270-285, 2009.

[8] R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai, and R. Sangal,
“Dependency annotation scheme for Indian languages,” Proceedings of
IJCNLP-2008, 2008.

[9] R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D. Sharma, and F. Xia,

“A multi-representational and multi-layered treebank for hindi/urdu,” in

Proceedings of the Third Linguistic Annotation Workshop. Association

for Computational Linguistics, 2009, pp. 186—189.

M. Palmer, R. Bhatt, B. Narasimhan, O. Rambow, D. Sharma, and F. Xia,

“Hindi Syntax: Annotating Dependency, Lexical Predicate-Argument

Structure, and Phrase Structure,” in The 7th International Conference

on Natural Language Processing, 2009, pp. 14-17.

(10]

Sudheer Kolachina, Dipti Misra Sharma, Phani Gadde, Meher Vijay, Rajeev Sangal, and Akshar Bharati

[11] A. Bhatia, R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D. Sharma,
M. Tepper, A. Vaidya, and F. Xia, “Empty Categories in a Hindi
Treebank,” in LREC-2010, 2010.

[12] A. Bharati, M. Bhatia, V. Chaitanya, and R. Sangal, “Paninian Grammar
Framework Applied to English,” South Asian Language Review, 1997.

[13] A. Vaidya, S. Husain, P. Mannem, and D. Sharma, “A Karaka
Based Annotation Scheme for English,” Computational Linguistics and
Intelligent Text Processing, pp. 41-52, 2009.

[14] C. Vempaty, V. Naidu, S. Husain, R. Kiran, L. Bai, D. Sharma, and
R. Sangal, “Issues in Analyzing Telugu Sentences towards Building
a Telugu Treebank,” Computational Linguistics and Intelligent Text
Processing, pp. 50-59, 2010.

[15] B. Krishnamurti, The Dravidian languages. ~Cambridge Univ Press,
2003.

[16] E. Sapir, Language: An introduction to the study of speech. Dover
Publications, 1921.

[17] J. Greenberg, “A quantitative approach to the morphological typology of
language,” International Journal of American Linguistics, vol. 26, no. 3,
pp. 178-194, 1960.

[18] S. Husain, “Dependency Parsers for Indian Languages,” Proceedings
of ICONO9 NLP Tools Contest: Indian Language Dependency Parsing,
2009.

[19] A. Bharati, R. Sangal, D. Sharma, and L. Bai, “Annotating corpora
guidelines for pos and chunk annotation for indian languages,” 2006,
technical report: TR-LTRC-31, LTRC.

[20] S. Buchholz and E. Marsi, “CoNLL-X shared task on multilingual
dependency parsing,” in Proceedings of the Tenth Conference on
Computational Natural Language Learning. Association for
Computational Linguistics, 2006, pp. 149-164.

[217 J. Nivre, J. Hall, S. Kiibler, R. McDonald, J. Nilsson, S. Riedel, and
D. Yuret, “The CoNLL 2007 shared task on dependency parsing,” in
Proceedings of the CoNLL Shared Task Session of EUNLP-CoNLL 2007.
Association for Computational Linguistics, 2007.

[22] V. Mittal, “Automatic Sanskrit segmentizer using finite state
transducers,” in Proceedings of the ACL 2010 Student Research
Workshop. Association for Computational Linguistics, 2010, pp. 85-90.

[23] A. Bharati, D. Sharma, S. Husain, L. Bai, R. Begum, and R. Sangal,
“AnnCorra: Treebanks for Indian languages, guidelines for annotating
Hindi dependency treebank,” 2009, http: // Itrc.iiit.ac.in / MachineTrans /
research/tb/DS-guidelines/DS-guidelines-ver2-28-05-09.pdf.

[24] B. Ambati, S. Husain, J. Nivre, and R. Sangal, “On the role of
morphosyntactic features in Hindi dependency parsing,” in The First
Workshop on Statistical Parsing of Morphologically Rich Languages
(SPMRL 2010), 2010, pp. 94-102.

[25] A. A. Macdonell, A Sanskrit Grammar for students. New Delhi, India:
D.K. Printworld (P) Ltd., 1926.

[26] E. Selkirk, “On prosodic structure and its relation to syntactic structure,”
Nordic Prosody II: Papers from a Symposium, pp. 111-140, 1981.

[27] A. Zwicky, “Stranded fo and phonological phrasing in english,”
Linguistics, vol. 20, pp. 3-57, 1982.

[28] H. Andersen, Sandhi phenomena in the languages of Europe. Mouton
de Gruyter, 1986.

[29] M. Absalom and J. Hajek, “Prosodic phonology and raddoppiamento
sintattico: a re-evaluation,” in Selected Papers from the 2005 Conference
of the Australian Linguistic Society, Melbourne: Monash University.
http:/fwww. arts. monash. edu. au/ling/als, 2006.

[30] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kiibler,
S. Marinov, and E. Marsi, “MaltParser: A language-independent system
for data-driven dependency parsing,” Natural Language Engineering,
vol. 13, no. 02, pp. 95-135, 2007.

