
 
 

  

Abstract—We propose a model to generate music following a 
linguistic approach. Musical melodies form the training corpus 
where each of them is considered a phrase of a language. 
Implementing an unsupervised technique we infer a grammar of 
this language. We do not use predefined rules. Music generation 
is based on music knowledge represented by probabilistic 
matrices, which we call evolutionary matrices because they are 
changing constantly, even while they are generating new 
compositions. We show that the information coded by these 
matrices can be represented at any time by a probabilistic 
grammar; however we keep the representation of matrices 
because they are easier to update, while it is possible to keep 
separated matrices for generation of different elements of 
expressivity such as velocity, changes of rhythm, or timbre, 
adding several elements of expressiveness to the automatically 
generated compositions. We present the melodies generated by 
our model to a group of subjects and they ranked our 
compositions among and sometimes above human composed 
melodies.  

Index Terms—Evolutionary systems, evolutionary matrix, 
generative grammars, linguistic approach, generative music, 
affective computing. 

I. INTRODUCTION 
usic generation does not have a definite solution. We 
regard this task as the challenge to develop a system to 

generate a pleasant sequence of notes to human beings and 
also this system should be capable of generating several kinds 
of music while resembling human expressivity. In literature, 
several problems for developing models for fine arts, 
especially music have been noted. Some of them are: How to 
evaluate the results of a music generator? How to determine if 
what such a system produces is music or not? How to say if a 
music generator system is better than other? Can a machine 
model expressivity? 

Different models have been applied for developing 
automatic music composers; for example, those based on 
neural networks [15], genetic algorithms [2, 25] and swarms 
[4] among other methods. 
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In order to generate music automatically we developed a 
model that describes music by means of a linguistic approach; 
each musical composition is considered a phrase that is used 
to learn the musical language by inferring its grammar. We 
use a learning algorithm that extracts musical features and 
forms probabilistic rules that afterwards are used by a note 
generator algorithm to compose music. We propose a method 
to generate linguistic rules [24] finding musical patterns on 
human music compositions. These patterns consist of 
sequences of notes that characterize a melody, an author, a 
style or a music genre. The likelihood of these patterns of 
being part of a musical work is used by our algorithm to 
generate a new musical composition. 

To model the process of musical composition we rely on the 
concept of evolutionary systems [8], in the sense that systems 
evolve as a result of constant change caused by flow of matter, 
energy and information [10]. Genetic algorithms, evolutionary 
neural networks, evolutionary grammars, evolutionary cellular 
automata, evolutionary matrices, and others are examples of 
evolutionary systems. In this work we follow the approach of 
evolutionary matrices [11]. 

This paper is organized as follows. In Section II we present 
works related to automatic music composition. In Section III, 
we describe our model. In Section IV, we describe an 
algorithm to transform a matrix into a grammar. In Section V 
we show how we handle expressivity in our model. In Section 
VI, we present results of a test to evaluate generated music. 
Finally, in Section VII, we present some conclusions of our 
model and future work to improve our model. 

II. RELATED WORK 

A. Review Stage 
An outcome of development of computational models 

applied to humanistic branches as fine arts like music is 
generative music or music generated from algorithms. 

Different methods have been used to develop music 
composition systems, for example: noise [5], cellular automata 
[20], grammars [13, 22], evolutionary methods [13], fractals 
[14, 16], genetic algorithms [1], case based reasoning [19], 
agents [21] and neural networks [7, 15]. Some systems are 
called hybrid since they combine some of these techniques. 
For a comprehensive study please refer to [23] and [17]. 

Harmonet [15] is a system based on connectionist networks, 
which has been trained to produce chorale style of J. S. Bach. 
It focuses on the essence of musical information, rather than 
restrictions on music structure. Eck and Shmidhuber [7] 
believe that music composed by recurrent neural networks 
lacks structure, and do not maintain memory of distant events. 
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They developed a model based on LSTM (Long Short Term 
Memory) to represent the overall and local music structure, 
generating blues compositions. 

Kosina [18] describes a system for automatic music genre 
recognition based on audio content signal, focusing on musical 
compositions of three music genres: classical, metal and 
dance. Blackburm and DeRoure [3] present a system to 
recognize through the contents of a music database, with the 
idea to make search based on music contours, i.e. in a relative 
changes representation in a musical composition frequencies, 
regardless of tone or time. 

There is a number of works based on evolutionary ideas for 
music composition. For example, Ortega et al. [22] used 
generative context-free grammars for modeling the musical 
composition. Implementing genetic algorithms they made 
grammar evolve to improve the musical generation. GenJam 
[1] is a system based on a genetic algorithm that models a 
novice jazz musician learning to improvise. It depends on user 
feedback to improve new compositions through several 
generations. 

Todd and Werner [25] developed a genetic algorithm based 
on co-evolution, learning and rules. In their music composer 
system there are male individuals that produce music and 
female critics that evaluate it to mate them.  After several 
generations they create new musical compositions.  

In our approach we focus on the following points:  

– The evolutionary aspect—to keep learning while 
generating;  

– Stressing the linguistic metaphor of musical phrases 
and textual phrases, words and sets of notes; 

– Adding expressiveness to achieve a more human 
aspect;  

– Studying the equivalence between a subset of grammar 
rules and matrices [11]. 

III. MUSIC GENERATION 
A musical composition is a structure of note sequences 

made of other structures built over time. How many times a 
musical note is used after another reflects patterns of 
sequences of notes that characterizes a genre, style or an 
author of a musical composition. We focus on finding patterns 
on monophonic music. 

A. Linguistic approach 
 Our model is based on a linguistic approach [9]. We 

describe musical compositions as phrases made up of 
sequences of notes as lexical items that represent sounds and 
silences throughout time. The set of all musical compositions 
forms the musical language. 

In the following paragraphs we define some basic concepts 
that we will use in the rest of this paper. 

Definition 1: A note is a representation of tone and duration of 
musical sound. 

Definition 2: The alphabet is the set of all notes: 
alphabet = {notes}. 

Definition 3: A musical composition m is an arrangement of 
musical notes: Musical composition = a1 a2 a3 … an where 
ai ∈ {notes}. 

In our research we work with musical compositions m of 
monophonic melodies, modeling two variables of notes: 
musical frequencies and musical tempos. We split these 
variables to form a sequence of symbols with each of them. 

Definition 4: The Musical Language is the set of all musical 
compositions: Musical Language = {musical compositions}. 

For example, having the sequence of notes (frequencies) of 
musical composition “El cóndor pasa” (the condor passes by): 
b e d# e f# g f# g a b2 d2 b2 e2 d2 b2 a g e g e b e d# e f# g f# g a b2 d2 b2 
e2 d2 b2 a g e g e b2 e2 d2 e2 d2 e2 g2 e2 d2 e2 d2 b2 g e2 d2 e2 d2 e2 g2 e2 
d2 e2 d2 b2 a g e g e 
We assume this sequence is a phrase of musical language. 

B. Musical Evolutionary System 
Evolutionary systems interact with their environment 

finding rules to describe phenomena and use functions that 
allow them to learn and adapt to changes. A scheme of our 
evolutionary model is shown in Fig. 1. 

 
Fig. 1. Model. 

The workspace of musical language rules is represented by 
K and there exist many ways to make this representation, e.g. 
grammars, matrices, neural nets, swarms and others. Each 
musical genre, style and author has its own rules of 
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composition. Not all of these rules are described in music 
theory. To make automatic music composition we use an 
evolutionary system to find rules K in an unsupervised way. 

The function L is a learning process that generates rules 
from each musical composition mi creating a representation of 
musical knowledge. The evolutionary system originally does 
not have any rule. We call K0 when K is empty. While new 
musical examples m0, m1, …, mi are learned K is modified 
from K0 to Ki+1. 

L(mi, Ki) = Ki+1 

Function L extracts musical features of mi and integrates 
them to Ki generating a new representation Ki+1. This makes 
knowledge representation K evolves according to the learned 
examples. 

These learned rules K are used to generate musical 
composition m automatically. It is possible to construct a 
function C(K) where C is called musical composer. Function 
C uses K to produce a novel musical composition m. 

C(K) = m 

For listening of the new music composition there is a 
function I called musical interpreter or performer that 
generates the sound. 

I(m) = sound 

Function I takes music m generated by function C to stream 
it to the sound device. We will not discuss this function in this 
paper. 

C. Learning Module based on Evolutionary Matrices 
To describe our music learning module we need to define 
several concepts. Let L be a learning process as the function 
that extracts musical features and adds this information into K. 
There are different ways to represent K. In our work we use a 
matrix representation. We will show in Section IV that this is 
equivalent to a probabilistic grammar. 

Definition 5: Musical Frequency = {musical frequencies} 
where musical frequencies (mf) are the number of vibrations 
per second (Hz) of notes. 

Definition 6: Musical Time = {musical times} where musical 
times (mt) are durations of notes. 

Function L receives musical compositions m. Musical 
Composition m = a1 a2 a3… an where ai={fi,ti}, i ∈ [1,n], fi ∈ 
Musical Frequency, ti ∈ Musical Time, [1,n] ⊂ Ν 

To represent rules K we use matrices for musical 
frequencies and for musical times. We refer to them as rules 
M. Originally these matrices are empty; they are modified 
with every musical example. 

Rules M are divided by function L into MF and MT where 
MF is the component of musical frequencies (mf) rules 
extracted from musical compositions and MT is the 
component of musical time (mt) rules. 

We are going to explain how L works with musical 
frequency matrix MF. Time matrix MT works the same way. 

Definition 7: MF is a workspace formed by two matrices. One 
of them is a frequency distribution matrix (FDM) and the 
other one is a cumulative frequency distribution matrix 
(CFM). 

Each time a musical composition mi arrives, L upgrades 
FDM. Then it recalculates CFM, as follows: 

Definition 8: Let FrequencyNotes be an array in which are 
stored the numbers corresponding to a musical composition 
notes. 

Definition 9: Let n be the number of notes recognized by the 
system, n ∈ N. 

Definition 10: Frequency Distribution Matrix (FDM) is a 
matrix with n rows and n columns. 

Given the musical composition m = f1 f2 f3… fr where fi ∈ 
FrequencyNotes. The learning algorithm of L to generate the 
frequency distribution matrix FDM is:  

∀i ∈ [1,r], [1,r] ⊂ Ν, FDMfi,fi+1= FDMfi,fi+1+1,  
where FDMfi,fi+1 ∈ FDM. 

Definition 11: Cumulative Frequency Distribution Matrix 
CFM is a matrix with n rows and n columns. 

The algorithm of L to generate cumulative frequency 
distribution matrix CFM is: 

∀i ∈ [1,n], ∀j ∈ [1,n], [1,n]  ⊂ Ν, ∀ FDMi,j ≠ 0       

∑
=

=
j

k
kiji FDM

1
,,CFM  

These algorithms to generate MF, the workspace formed by 
FDM and CFM, are used by function L with every musical 
composition mi. This makes the system evolve recursively 
according to musical compositions m0, m1, m2,…, mi. 

L(mi,…L(m2, L(m1, L(m0, MF0))))=MFi+1 

D. Composer Function C: Music Generator Module 

Monophonic music composition is the art of creating a 
single melodic line with no accompaniment. To compose a 
melody a human composer uses his/her creativity and musical 
knowledge. In our model composer function C generates a 
melodic line based on knowledge represented by cumulative 
frequency distribution matrix CFM.  

For music generation is necessary to choose next note. In 
our model each i row of CFM represents a probability function 
for each i note on which is based the decision of the next note. 
Each j column different of zero represents possible notes to 
follow the i note. The most probable notes form characteristic 
musical patterns. 

Definition 12: Ti  and T. 
Let Ti to be an element where it is store the total of cumulative 
frequency sum of each i row of FDM. 
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∀i ∈ [1,n], [1,n]  ⊂ Ν,  ∑
=

=
n

k
kii FDM

1
,T  

Let T be a column with n elements where it is store the total of 
cumulative frequency sum of FDM. 

Note generation algorithm: 
while(not end) 
{ 
 p=random(T

i
) 

 while(CFM
i,j
 < p) 

  j=j+1 
  next note=j 
  i=j 
} 

E. Example 
Let us take the sequence of frequencies of musical 

composition “El cóndor pasa”: 
b e d# e f# g f# g a b2 d2 b2 e2 d2 b2 a g e g e b e d# e f# g f# g a b2 d2 b2 
e2 d2 b2 a g e g e b2 e2 d2 e2 d2 e2 g2 e2 d2 e2 d2 b2 g e2 d2 e2 d2 e2 g2 e2 
d2 e2 d2 b2 a g e g e 

FrequencyNotes = {b, d#, e, f#, g, a, b2, d2, e2, g2} are the 
terminal symbols or alphabet of this musical composition. 
They are used to tag each row and column of frequency 
distribution matrix FDM. Each number stored in FDM of Fig. 
2, represents how many times a row note was followed by a 
column note in condor pasa melody. To store the first note of 
each musical composition S row is added, it represents the 
axiom or initial symbol. Applying the learning algorithm of L 
we generate frequency distribution matrix FDM of Fig. 2. 

 

 b d# e f# g a b2 d2 e2 g2 

S  1          
b    2        
d#    2        
e  1 2  2 3  1    
f#      4      
g    6 2  2   1  
a     3  2    
b2      1 3  2 3  
d2        6  6  
e2         10  2 
g2          2  

Fig. 2. Frequency distribution matrix FDM. 

We apply the algorithm of L to calculate cumulative 
frequency distribution matrix CFM of Fig. 3 from frequency 
distribution matrix FDM of Fig. 2. Then we calculate each Ti 
of T column. 

For generation of a musical composition we use note 
generator algorithm. Music generation begins by choosing the 
first composition note. S row of matrix of Fig. 3 contains all 
possible beginning notes. In our example only the b note can 
be chosen. Then b is the first note and the i row of CFMi,j 
which we use to determine second note. Only the e note can be 
chosen after the first note b. 

So the first two notes of this new musical melody are 
mi+1={b, e}. Applying note generator algorithm to determine 
third note: We take the value of column Te=9. A p random 

number between zero and 9 is generated, suppose p=6. To find 
next note we compare p random number with each non-zero 
value of e row until one greater than or equal to this number is 
found. Then column g is the next note since Me,g=8 is greater 
than p = 6. The column j = g is where it is stored this number 
that indicates the following composition note and the 
following i row to be processed. The third note of new musical 
composition mi+1 is g. So mi+1 = {b, e, g,…}. Then to 
determine the fourth note we must apply the note generator 
algorithm to i = g row. 

Since each non-zero value of i row represents notes that 
used to follow i note, then we will generate patterns according 
to probabilities learned from musical compositions examples. 
 

 b d# e f# g a b2 d2 e2 g2 T 

S  1          1 

b    2        2 

d#    2        2 

e  1 3  5 8  9    9 

f#      4      4 

g    6 8  10   11  11 

a     3  5    5 

b2      1 4  6 9  9 

d2        6  12  12 

e2         10  12 12 

g2          2  2 

Fig. 3. Cumulative frequency distribution matrix CFM. 

IV. MATRICES AND GRAMMAR 
Our work is based on a linguistic approach and we have 

used a workspace represented by matrices to manipulate music 
information. Now we show that this information 
representation is equivalent to a probabilistic generative 
grammar.   

There are different ways to obtain a generative grammar G,. 
From frequency distribution matrix FDM and total column T, 
it is possible to construct a probabilistic generative grammar. 

Definition 13: MG is a workspace formed by FDM and a 
probabilistic grammar G. 

To generate a grammar first we generate a probability 
matrix PM determined from frequency distribution matrix 
FDM. 

Definition 14: Probability Matrix (PM) is a matrix with n rows 
and n columns. 

The algorithm to generate probability matrix PM is: 
∀i ∈ [1,n], ∀j ∈ [1,n], ∀FDMi,j ≠ 0      PMi,j = FDMi,j/Ti 

There is a probabilistic generative grammar G{Vn, Vt, S, P, 
Pr} such that G can be generated from PM. Vn is the set of 
nonterminals symbols, Vt is the set of all terminal symbols or 
alphabet which represents musical composition notes. S is the 
axiom or initial symbol, P is the set of rules generated and Pr 
is the set of rules probabilities represented by values of matrix 
PM. 

For transforming the PM matrix in a grammar we use the 
following algorithm: 

Horacio Alberto García Salas, Alexander Gelbukh, Hiram Calvo, and Fernando Galindo Soria

62Polibits (44) 2011



 
 

1. Build the auxiliary matrix AM from PM: 
a. substitute each row i tag of PM with a 

nonterminal symbol Xi except S row which is 
copied as it is 

b. substitute each column j tag by its note fj and a 
nonterminal symbol Xj 

c. copy all values of cells of matrix PM into 
corresponding cells of matrix AM 

2. For each row i and each column j such that AMi,j ≠ 0 
a. i row corresponds to grammar rule Xi 
b. j column corresponds to a terminal symbol fj and a 

nonterminal symbol Xj with probability pi,j 
Then rules of grammar G are of the form Xi → fj Xj (pi,j). 

This is a grammatical representation of our model. For each 
music composition mi a MG, the workspace formed by FDM 
and grammar G, can be recursively generated.  

L(mi,…L(m2, L(m1, L(m0, MG0))))=MGi+1 

A.  Example 
From frequency distribution matrix FDM of Fig. 2 it is 

generated probability matrix PM of Fig. 4. 

 

 b d# e f# g a b2 d2 e2 g2 

S  1          

b    1        

d#    1        

e  1/9 2/9  2/9 3/9  1/9    

f#      1      

g    6/11 2/11  2/11   1/11  

a     3/5  2/5    

b2      1/9 3/9  2/9 3/9  

d2        6/12  6/12  

e2         10/12  2/12 

g2          1  

Fig. 4. Probability matrix PM. 

 

 bX1 d#X2 e X3 f# X4 gX5 a X6 b2 X7 d2 X8 e2 X9 g2 X10 

S  1          

X1   1        

X2   1        

X3 1/9 2/9  2/9 3/9  1/9    

X4     1      

X5   6/11 2/11  2/11   1/11  

X6     3/5  2/5    

X7     1/9 3/9  2/9 3/9  

X8       6/12  6/12  

X9        10/12  2/12 

X10         1  

Fig. 5. Auxiliary matrix AM. 

From matrix PM of Fig. 4 the auxiliary matrix AM of Fig. 5 
is generated. From given AM matrix of Fig. 5 We can 
generate grammar G{Vn,Vt, S, P, Pr}. Where Vn={S, X1, X2 
X3, X4, X5, X6, X7, X8, X9, X10} is the set of non-terminals 
symbols. Vt={b, d#, e, f#, g, a, b2, d2, e2, g2} is the set of all 

terminal symbols or alphabet. S is the axiom or initial symbol. 
Pr is the set of rules probabilities represented by values of 
matrix AM. Rules P are listed in Fig. 6. 

S    → b X1(1) 
X1  → e X3(1) 
X2  → e X3(1) 
X3  → b X1(1/9) | d# X2(2/9)| f# X4(2/9) | g X5(3/9) | b2 X7(1/9) 
X4  → g X5(1) 
X5  → e X3(6/11) | f# X4(2/11) | a X6(2/11) | e2 X9(1/11) 
X6  → g X5(3/5) | b2 X7(2/5) 
X7  → g X5(1/9) | a X6(3/9) | d2 X8(2/9) | e2 X9(3/9) 
X8  → b2 X7(6/12) | g2 X10(6/12) 
X9  → d2 X8(10/12) | g2 X10(2/12) 
X10 → e2 X9(1) 

Fig. 6. Probabilistic generative grammar. 

V. EXPRESSIVITY 
Expressivity can be regarded as a mechanism that displays 

transmission and interpretation vividness of feelings and 
emotions. For example fear in front of a threat. Physical 
factors interfere like cardiac rhythm, changes in respiratory 
system, in endocrine system, in muscular system, in 
circulatory system, secretion of neurotransmitters, etc.  
Another important factor is empathy which is the capacity of 
feelings and emotions recognition in others [6]. It is out of our 
research to explain how these physical changes are made or 
how empathy takes place among living beings. We just 
simulate expressivity in music generation. 

A. Expressivity within our Model 
Music can be broken down into different functions that 

characterize it like frequency, time and intensity. So each note 
of a melody is a symbol with several features or semantic 
descriptors that give the meaning of a long or short sound, 
low, high, intense, soft, of a guitar or of a piano. 

With our model is possible to represent each of these 
variables using matrices or grammars that reflect their 
probabilistic behavior. In this paper we have presented how to 
model frequency and time. We can build an intensity matrix 
the same way. With more variables more expressivity the 
generated music will reflect. 

Using our model we can characterize different kinds of 
music based on its expressivity, for example in happy music or 
sad music. Besides we have the possibility of mixing features 
of distinct kinds of music, for example frequency functions of 
happy music with time functions of sad music. Also we can 
combine different genres like classic times with rock 
frequencies. So in addition of generating music we can invent 
new genres and music styles. 

VI. RESULTS 
In order to evaluate whether our algorithm is generating 

music or not, we decided to conduct a Turing-like test. 
Participants of this test had to tell us if they like music 
generated by our model, without them knowing that it was 
automatically music generated. This way we sought the 
answer to two questions: whether or not we are doing music 
and whether or not our music is pleasant. 
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We compiled 10 melodies, 5 of them generated by our 
model and another 5 by human composers and we asked 
human subjects to rank melodies according to whether they 
liked them or not, with numbers between 1 and 10 being 
number 1 the most they liked. None of subjects knew about 
the order of music compositions. These 10 melodies were 
presented as in Table I. 

TABLE I 
ORDER OF MELODIES AS THEY WERE PRESENTED TO SUBJECTS 

ID Melody Author 
A Zanya                       (generated) 
B Fell                         Nathan Fake 
C Alucin                      (generated) 
D Idiot                         James Holden 
E Ciclos                      (generated) 
F Dali                         Astrix 
G Ritual Cibernetico   (generated) 
H Feelin' Electro         Rob Mooney 
I Infinito                     (generated) 
J Lost Town                Kraftwerk 

We presented this test to more than 30 participants in 
different places and events. We sought that the characteristics 
of these participants were as varied as possible (age, gender 
and education), however most of them come from a related IT 
background. Test results were encouraging, since 
automatically generated melodies were ranked at 3rd and 4th 
place above human compositions. Table II shows the ranking 
of melodies as a result of the Turing-like test we developed. 

TABLE II 
ORDER OF MELODIES OBTAINED AFTER THE TURING-LIKE TEST 
ID Ranking Melody Author 
B 1 Fell                          Nathan Fake 
D 2 Idiot                         James Holden 
C 3 Alucín                      (generated) 
A 4 Zanya                       (generated) 
F 5 Dali                         Astrix 
H 6 Feelin' Electro         Rob Mooney 
J 7 Lost Town                Kraftwerk 
E 8 Ciclos                      (generated) 
G 9 Ritual Cibernético   (generated) 
I 10 Infinito                     (generated) 

VII. CONCLUSIONS AND FUTURE WORK 
We proposed an evolutionary model based on evolutionary 

matrices for musical composition. Our model is learning 
constantly, increasing its knowledge for generating music 
while more data is presented. It does not need any predefined 
rules. It generates them from phrases of the seen language 
(musical compositions) in an unsupervised way. 

As we shown, our matrices can be expressed as 
probabilistic grammar rules, so that we can say that our 
systems extracts grammar rules dynamically from musical 
compositions. These rules generate a musical language based 
on the compositions presented to the system. These rules can 
be used to generate different musical phrases, meaning new 
musical compositions. Because the probabilistic grammars 
learned can generalize a language beyond the seen examples 
of it, our model has what can be called innovation, which is 

what we are looking for music creation, while keeping the 
patterns learned from human music. 

As a short-term future work we plan to characterize 
different kinds of music, from sad to happy, or from classic to 
electronic in order to find functions for generating this kind of 
music. We are also developing the use of other matrices to 
consider more variables involved in a musical work, such as 
velocity, fine-graded tempo changes, etc., thus adding more 
expressivity to the music created by our model. 

ACKNOWLEDGEMENTS 
The work was done under partial support of Mexican 

Government (CONACYT 50206-H, SIP-IPN 20113295, 
COFAA-IPN, PIFI-IPN, SNI). 

REFERENCES 
[1] J. A. Biles, “GenJam: Evolution of a Jazz Improviser,” Creative 

Evolutionary Systems, Section: Evolutionary Music, San Francisco, CA, 
USA. Morgan Kaufmann Publishers Inc., 2001, pp. 165–187. 

[2] D. Birchfield, “Generative Model for the Creation of Musical Emotion, 
Meaning and Form,” in Proceedings of the 2003 International 
Multimedia Conference ACM SIGMM, Berkeley, California: Workshop 
on Experiential Telepresence, Session: Playing experience, 2003, pp. 
99–104. 

[3] S. Blackburm, and D. DeRoure, “A tool for content based navigation of 
music,” in Source International Multimedia Conference. Proceedings of 
the sixth ACM international conference on Multimedia. Bristol, United 
Kingdom,  1998, pp. 361–368. 

[4] T. Blackwell, “Swarming and Music,” Evolutionary Computer Music. 
Springer London, 2007, pp. 194–217. 

[5] M. Bulmer, “Music From Fractal Noise,” in Proceedings of the 
Mathematics 2000 Festival, University of Queensland, Melbourne, 
2000. 

[6] T. Cochrane, “A Simulation Theory of Musical Expressivity,” The 
Australasian Journal of Philosophy, Volume 88, Issue 2, 191–207, 
2010.  

[7] D. Eck, and J. Schmidhuber, A First Look at Music Composition using 
LSTM Recurrent Neural Networks, Source Technical Report: IDSIA-07-
02. Publisher Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 
2002. 

[8] F. Galindo Soria, “Sistemas Evolutivos: Nuevo Paradigma de la 
Informática,” en Memorias XVII Conferencia Latinoamericana de 
Informática, Caracas Venezuela, 1991. 

[9] F. Galindo Soria, “Enfoque Lingüístico,” en Memorias del Simposio 
Internacional de Computación de 1995, Cd. de México: Instituto 
Politécnico Nacional CENAC, 1995. 

[10] F. Galindo Soria, Teoría y Práctica de los Sistemas Evolutivos, Cd. de 
México, 1997. 

[11] F. Galindo Soria, “Matrices Evolutivas,” en Memorias de la Cuarta 
Conferencia de Ingeniería Eléctrica CIE/98, Cd. de México: Instituto 
Politécnico Nacional, CINVESTAV, 1998, pp. 17–22. 

[12] A. García Salas, Aplicación de los Sistemas Evolutivos a la Composición 
Musical, México D.F: Tesis de maestría, Instituto Politécnico Nacional 
UPIICSA, 1998. 

[13] A. García Salas, A. Gelbukh,  and H. Calvo, “Music Composition Based 
on Linguistic Approach,” in Proceedings of the 9th Mexican 
International Conference on Artificial Intelligence, Pachuca, México, 
2010, pp. 117–128. 

[14] M. Gardner, “Mathematical Games: White and Brown Music, Fractal 
Curves and One-Over-f Fluctuations,” Scientific American, 4, 16–32, 
1978. 

[15] H. Hild, J. Feulner, and W. Menzel, “Harmonet: A Neural Net for 
Harmonizing Chorales in the Style of J. S. Bach,” Neural Information 
Processing 4. Germany: Morgan Kaufmann Publishers Inc., 1992, pp. 
267–274. 

[16] R. Hinojosa, Realtime Algorithmic Music Systems From Fractals and 
Chaotic Functions: Toward an Active Musical Instrument, Barcelona: 
PhD Thesis, Universitat Pompeu Fabra, 2003. 

Horacio Alberto García Salas, Alexander Gelbukh, Hiram Calvo, and Fernando Galindo Soria

64Polibits (44) 2011



 
 
[17] H. Järveläinen, “Algorithmic Musical Composition,” in Seminar on 

content creation Art@Science, Helsinki: University of Technology, 
Laboratory of Acoustics and Audio Signal Processing, 2000. 

[18] K. Kosina, “Music Genre Recognition.” Diplomarbeit. Eingereicht am 
Fachhochschul-Studiengang. Mediente Chnik Und Design in 
Hagenberg, 2002. 

[19] G. Maarten, J.L. Arcos, and R. López de Mántaras, “A Case Based 
Approach to Expressivity-Aware Tempo Transformation,” Machine 
Learning, 65(2-3): 411–437, 2006. 

[20] K. McAlpine, E. Miranda, and S. Hoggar, “Making Music with 
Algorithms: A Case-Study System,” Computer Music Journal, 23(2): 
19–30, 1999. 

[21] M. Minsky, “Music, Mind, and Meaning.” Computer Music Journal, 
5(3), 1981. 

[22] A P. Ortega, A.R. Sánchez, and M. M. Alfonseca, “Automatic 
composition of music by means of Grammatical Evolution,” ACM 
SIGAPL APL, 32(4): 148–155, 2002. 

[23] G. Papadopoulos, and G. Wiggins, “AI Methods for Algorithmic 
Composition: A Survey, a Critical View and Future Prospects,” in 
Symposium on Musical Creativity 1999, University of Edinburgh, 
School of Artificial Intelligence Division of Informatics, 1999, pp. 110–
117. 

[24] Y. Ledeneva and G. Sidorov, “Recent Advances in Computational 
Linguistics,” Informatica. International Journal of Computing and 
Informatics, 34, 3–18, 2010. 

[25] P.M. Todd and G.M. Werner, “Frankensteinian Methods for 
Evolutionary Music Composition,” Musical networks: Parallel 
distributed perception and performance, MA, USA: Cambridge, MIT, 
Press Bradford Books, 1999. 

Automatic Music Composition with Simple Probabilistic Generative Grammars

65 Polibits (44) 2011


