

Abstract—We propose a model to generate music following a
linguistic approach. Musical melodies form the training corpus
where each of them is considered a phrase of a language.
Implementing an unsupervised technique we infer a grammar of
this language. We do not use predefined rules. Music generation
is based on music knowledge represented by probabilistic
matrices, which we call evolutionary matrices because they are
changing constantly, even while they are generating new
compositions. We show that the information coded by these
matrices can be represented at any time by a probabilistic
grammar; however we keep the representation of matrices
because they are easier to update, while it is possible to keep
separated matrices for generation of different elements of
expressivity such as velocity, changes of rhythm, or timbre,
adding several elements of expressiveness to the automatically
generated compositions. We present the melodies generated by
our model to a group of subjects and they ranked our
compositions among and sometimes above human composed
melodies.

Index Terms—Evolutionary systems, evolutionary matrix,
generative grammars, linguistic approach, generative music,
affective computing.

I. INTRODUCTION
usic generation does not have a definite solution. We
regard this task as the challenge to develop a system to

generate a pleasant sequence of notes to human beings and
also this system should be capable of generating several kinds
of music while resembling human expressivity. In literature,
several problems for developing models for fine arts,
especially music have been noted. Some of them are: How to
evaluate the results of a music generator? How to determine if
what such a system produces is music or not? How to say if a
music generator system is better than other? Can a machine
model expressivity?

Different models have been applied for developing
automatic music composers; for example, those based on
neural networks [15], genetic algorithms [2, 25] and swarms
[4] among other methods.

Manuscript received February 10, 2011. Manuscript accepted for

publication July 30, 2011.
H. A. García Salas is with the Natural Language Laboratory, Center for

Computing Research, National Polytechnic Institute, CIC-IPN, 07738, DF,
México (e-mail: itztzin@gmail.com).

A. Gelbukh was, at the time of submitting this paper, with the Waseda
University, Tokyo, Japan, on Sabbatical leave from the Natural Language
Laboratory, Center for Computing Research, National Polytechnic Institute,
CIC-IPN, 07738, DF, México (e-mail: gelbukh@gelbukh.com).

H. Calvo is with the Natural Language Laboratory, Center for Computing
Research, National Polytechnic Institute, CIC-IPN, 07738, DF, México (e-
mail: hcalvo@cic.ipn.mx).

F. Galindo Soria is with Informatics Development Network, REDI (e-mail:
fgalindo@ipn.mx).

In order to generate music automatically we developed a
model that describes music by means of a linguistic approach;
each musical composition is considered a phrase that is used
to learn the musical language by inferring its grammar. We
use a learning algorithm that extracts musical features and
forms probabilistic rules that afterwards are used by a note
generator algorithm to compose music. We propose a method
to generate linguistic rules [24] finding musical patterns on
human music compositions. These patterns consist of
sequences of notes that characterize a melody, an author, a
style or a music genre. The likelihood of these patterns of
being part of a musical work is used by our algorithm to
generate a new musical composition.

To model the process of musical composition we rely on the
concept of evolutionary systems [8], in the sense that systems
evolve as a result of constant change caused by flow of matter,
energy and information [10]. Genetic algorithms, evolutionary
neural networks, evolutionary grammars, evolutionary cellular
automata, evolutionary matrices, and others are examples of
evolutionary systems. In this work we follow the approach of
evolutionary matrices [11].

This paper is organized as follows. In Section II we present
works related to automatic music composition. In Section III,
we describe our model. In Section IV, we describe an
algorithm to transform a matrix into a grammar. In Section V
we show how we handle expressivity in our model. In Section
VI, we present results of a test to evaluate generated music.
Finally, in Section VII, we present some conclusions of our
model and future work to improve our model.

II. RELATED WORK

A. Review Stage
An outcome of development of computational models

applied to humanistic branches as fine arts like music is
generative music or music generated from algorithms.

Different methods have been used to develop music
composition systems, for example: noise [5], cellular automata
[20], grammars [13, 22], evolutionary methods [13], fractals
[14, 16], genetic algorithms [1], case based reasoning [19],
agents [21] and neural networks [7, 15]. Some systems are
called hybrid since they combine some of these techniques.
For a comprehensive study please refer to [23] and [17].

Harmonet [15] is a system based on connectionist networks,
which has been trained to produce chorale style of J. S. Bach.
It focuses on the essence of musical information, rather than
restrictions on music structure. Eck and Shmidhuber [7]
believe that music composed by recurrent neural networks
lacks structure, and do not maintain memory of distant events.

Automatic Music Composition
with Simple Probabilistic Generative Grammars

Horacio Alberto García Salas, Alexander Gelbukh, Hiram Calvo, and Fernando Galindo Soria

M

59 Polibits (44) 2011

They developed a model based on LSTM (Long Short Term
Memory) to represent the overall and local music structure,
generating blues compositions.

Kosina [18] describes a system for automatic music genre
recognition based on audio content signal, focusing on musical
compositions of three music genres: classical, metal and
dance. Blackburm and DeRoure [3] present a system to
recognize through the contents of a music database, with the
idea to make search based on music contours, i.e. in a relative
changes representation in a musical composition frequencies,
regardless of tone or time.

There is a number of works based on evolutionary ideas for
music composition. For example, Ortega et al. [22] used
generative context-free grammars for modeling the musical
composition. Implementing genetic algorithms they made
grammar evolve to improve the musical generation. GenJam
[1] is a system based on a genetic algorithm that models a
novice jazz musician learning to improvise. It depends on user
feedback to improve new compositions through several
generations.

Todd and Werner [25] developed a genetic algorithm based
on co-evolution, learning and rules. In their music composer
system there are male individuals that produce music and
female critics that evaluate it to mate them. After several
generations they create new musical compositions.

In our approach we focus on the following points:

– The evolutionary aspect—to keep learning while
generating;

– Stressing the linguistic metaphor of musical phrases
and textual phrases, words and sets of notes;

– Adding expressiveness to achieve a more human
aspect;

– Studying the equivalence between a subset of grammar
rules and matrices [11].

III. MUSIC GENERATION
A musical composition is a structure of note sequences

made of other structures built over time. How many times a
musical note is used after another reflects patterns of
sequences of notes that characterizes a genre, style or an
author of a musical composition. We focus on finding patterns
on monophonic music.

A. Linguistic approach
 Our model is based on a linguistic approach [9]. We

describe musical compositions as phrases made up of
sequences of notes as lexical items that represent sounds and
silences throughout time. The set of all musical compositions
forms the musical language.

In the following paragraphs we define some basic concepts
that we will use in the rest of this paper.

Definition 1: A note is a representation of tone and duration of
musical sound.

Definition 2: The alphabet is the set of all notes:
alphabet = {notes}.

Definition 3: A musical composition m is an arrangement of
musical notes: Musical composition = a1 a2 a3 … an where
ai ∈ {notes}.

In our research we work with musical compositions m of
monophonic melodies, modeling two variables of notes:
musical frequencies and musical tempos. We split these
variables to form a sequence of symbols with each of them.

Definition 4: The Musical Language is the set of all musical
compositions: Musical Language = {musical compositions}.

For example, having the sequence of notes (frequencies) of
musical composition “El cóndor pasa” (the condor passes by):
b e d# e f# g f# g a b2 d2 b2 e2 d2 b2 a g e g e b e d# e f# g f# g a b2 d2 b2
e2 d2 b2 a g e g e b2 e2 d2 e2 d2 e2 g2 e2 d2 e2 d2 b2 g e2 d2 e2 d2 e2 g2 e2
d2 e2 d2 b2 a g e g e
We assume this sequence is a phrase of musical language.

B. Musical Evolutionary System
Evolutionary systems interact with their environment

finding rules to describe phenomena and use functions that
allow them to learn and adapt to changes. A scheme of our
evolutionary model is shown in Fig. 1.

Fig. 1. Model.

The workspace of musical language rules is represented by
K and there exist many ways to make this representation, e.g.
grammars, matrices, neural nets, swarms and others. Each
musical genre, style and author has its own rules of

mi
Music corpus

L
Learning
function

C
Composing

function
User

request

m
Generated

music

K
Learned

rules

Send
output to

Horacio Alberto García Salas, Alexander Gelbukh, Hiram Calvo, and Fernando Galindo Soria

60Polibits (44) 2011

composition. Not all of these rules are described in music
theory. To make automatic music composition we use an
evolutionary system to find rules K in an unsupervised way.

The function L is a learning process that generates rules
from each musical composition mi creating a representation of
musical knowledge. The evolutionary system originally does
not have any rule. We call K0 when K is empty. While new
musical examples m0, m1, …, mi are learned K is modified
from K0 to Ki+1.

L(mi, Ki) = Ki+1

Function L extracts musical features of mi and integrates
them to Ki generating a new representation Ki+1. This makes
knowledge representation K evolves according to the learned
examples.

These learned rules K are used to generate musical
composition m automatically. It is possible to construct a
function C(K) where C is called musical composer. Function
C uses K to produce a novel musical composition m.

C(K) = m

For listening of the new music composition there is a
function I called musical interpreter or performer that
generates the sound.

I(m) = sound

Function I takes music m generated by function C to stream
it to the sound device. We will not discuss this function in this
paper.

C. Learning Module based on Evolutionary Matrices
To describe our music learning module we need to define
several concepts. Let L be a learning process as the function
that extracts musical features and adds this information into K.
There are different ways to represent K. In our work we use a
matrix representation. We will show in Section IV that this is
equivalent to a probabilistic grammar.

Definition 5: Musical Frequency = {musical frequencies}
where musical frequencies (mf) are the number of vibrations
per second (Hz) of notes.

Definition 6: Musical Time = {musical times} where musical
times (mt) are durations of notes.

Function L receives musical compositions m. Musical
Composition m = a1 a2 a3… an where ai={fi,ti}, i ∈ [1,n], fi ∈
Musical Frequency, ti ∈ Musical Time, [1,n] ⊂ Ν

To represent rules K we use matrices for musical
frequencies and for musical times. We refer to them as rules
M. Originally these matrices are empty; they are modified
with every musical example.

Rules M are divided by function L into MF and MT where
MF is the component of musical frequencies (mf) rules
extracted from musical compositions and MT is the
component of musical time (mt) rules.

We are going to explain how L works with musical
frequency matrix MF. Time matrix MT works the same way.

Definition 7: MF is a workspace formed by two matrices. One
of them is a frequency distribution matrix (FDM) and the
other one is a cumulative frequency distribution matrix
(CFM).

Each time a musical composition mi arrives, L upgrades
FDM. Then it recalculates CFM, as follows:

Definition 8: Let FrequencyNotes be an array in which are
stored the numbers corresponding to a musical composition
notes.

Definition 9: Let n be the number of notes recognized by the
system, n ∈ N.

Definition 10: Frequency Distribution Matrix (FDM) is a
matrix with n rows and n columns.

Given the musical composition m = f1 f2 f3… fr where fi ∈
FrequencyNotes. The learning algorithm of L to generate the
frequency distribution matrix FDM is:

∀i ∈ [1,r], [1,r] ⊂ Ν, FDMfi,fi+1= FDMfi,fi+1+1,
where FDMfi,fi+1 ∈ FDM.

Definition 11: Cumulative Frequency Distribution Matrix
CFM is a matrix with n rows and n columns.

The algorithm of L to generate cumulative frequency
distribution matrix CFM is:

∀i ∈ [1,n], ∀j ∈ [1,n], [1,n] ⊂ Ν, ∀ FDMi,j ≠ 0

∑
=

=
j

k
kiji FDM

1
,,CFM

These algorithms to generate MF, the workspace formed by
FDM and CFM, are used by function L with every musical
composition mi. This makes the system evolve recursively
according to musical compositions m0, m1, m2,…, mi.

L(mi,…L(m2, L(m1, L(m0, MF0))))=MFi+1

D. Composer Function C: Music Generator Module

Monophonic music composition is the art of creating a
single melodic line with no accompaniment. To compose a
melody a human composer uses his/her creativity and musical
knowledge. In our model composer function C generates a
melodic line based on knowledge represented by cumulative
frequency distribution matrix CFM.

For music generation is necessary to choose next note. In
our model each i row of CFM represents a probability function
for each i note on which is based the decision of the next note.
Each j column different of zero represents possible notes to
follow the i note. The most probable notes form characteristic
musical patterns.

Definition 12: Ti and T.
Let Ti to be an element where it is store the total of cumulative
frequency sum of each i row of FDM.

Automatic Music Composition with Simple Probabilistic Generative Grammars

61 Polibits (44) 2011

∀i ∈ [1,n], [1,n] ⊂ Ν, ∑
=

=
n

k
kii FDM

1
,T

Let T be a column with n elements where it is store the total of
cumulative frequency sum of FDM.

Note generation algorithm:
while(not end)
{
 p=random(T

i
)

 while(CFM
i,j
 < p)

 j=j+1
 next note=j
 i=j
}

E. Example
Let us take the sequence of frequencies of musical

composition “El cóndor pasa”:
b e d# e f# g f# g a b2 d2 b2 e2 d2 b2 a g e g e b e d# e f# g f# g a b2 d2 b2
e2 d2 b2 a g e g e b2 e2 d2 e2 d2 e2 g2 e2 d2 e2 d2 b2 g e2 d2 e2 d2 e2 g2 e2
d2 e2 d2 b2 a g e g e

FrequencyNotes = {b, d#, e, f#, g, a, b2, d2, e2, g2} are the
terminal symbols or alphabet of this musical composition.
They are used to tag each row and column of frequency
distribution matrix FDM. Each number stored in FDM of Fig.
2, represents how many times a row note was followed by a
column note in condor pasa melody. To store the first note of
each musical composition S row is added, it represents the
axiom or initial symbol. Applying the learning algorithm of L
we generate frequency distribution matrix FDM of Fig. 2.

 b d# e f# g a b2 d2 e2 g2

S 1
b 2
d# 2
e 1 2 2 3 1
f# 4
g 6 2 2 1
a 3 2
b2 1 3 2 3
d2 6 6
e2 10 2
g2 2

Fig. 2. Frequency distribution matrix FDM.

We apply the algorithm of L to calculate cumulative
frequency distribution matrix CFM of Fig. 3 from frequency
distribution matrix FDM of Fig. 2. Then we calculate each Ti
of T column.

For generation of a musical composition we use note
generator algorithm. Music generation begins by choosing the
first composition note. S row of matrix of Fig. 3 contains all
possible beginning notes. In our example only the b note can
be chosen. Then b is the first note and the i row of CFMi,j
which we use to determine second note. Only the e note can be
chosen after the first note b.

So the first two notes of this new musical melody are
mi+1={b, e}. Applying note generator algorithm to determine
third note: We take the value of column Te=9. A p random

number between zero and 9 is generated, suppose p=6. To find
next note we compare p random number with each non-zero
value of e row until one greater than or equal to this number is
found. Then column g is the next note since Me,g=8 is greater
than p = 6. The column j = g is where it is stored this number
that indicates the following composition note and the
following i row to be processed. The third note of new musical
composition mi+1 is g. So mi+1 = {b, e, g,…}. Then to
determine the fourth note we must apply the note generator
algorithm to i = g row.

Since each non-zero value of i row represents notes that
used to follow i note, then we will generate patterns according
to probabilities learned from musical compositions examples.

 b d# e f# g a b2 d2 e2 g2 T

S 1 1

b 2 2

d# 2 2

e 1 3 5 8 9 9

f# 4 4

g 6 8 10 11 11

a 3 5 5

b2 1 4 6 9 9

d2 6 12 12

e2 10 12 12

g2 2 2

Fig. 3. Cumulative frequency distribution matrix CFM.

IV. MATRICES AND GRAMMAR
Our work is based on a linguistic approach and we have

used a workspace represented by matrices to manipulate music
information. Now we show that this information
representation is equivalent to a probabilistic generative
grammar.

There are different ways to obtain a generative grammar G,.
From frequency distribution matrix FDM and total column T,
it is possible to construct a probabilistic generative grammar.

Definition 13: MG is a workspace formed by FDM and a
probabilistic grammar G.

To generate a grammar first we generate a probability
matrix PM determined from frequency distribution matrix
FDM.

Definition 14: Probability Matrix (PM) is a matrix with n rows
and n columns.

The algorithm to generate probability matrix PM is:
∀i ∈ [1,n], ∀j ∈ [1,n], ∀FDMi,j ≠ 0 PMi,j = FDMi,j/Ti

There is a probabilistic generative grammar G{Vn, Vt, S, P,
Pr} such that G can be generated from PM. Vn is the set of
nonterminals symbols, Vt is the set of all terminal symbols or
alphabet which represents musical composition notes. S is the
axiom or initial symbol, P is the set of rules generated and Pr
is the set of rules probabilities represented by values of matrix
PM.

For transforming the PM matrix in a grammar we use the
following algorithm:

Horacio Alberto García Salas, Alexander Gelbukh, Hiram Calvo, and Fernando Galindo Soria

62Polibits (44) 2011

1. Build the auxiliary matrix AM from PM:
a. substitute each row i tag of PM with a

nonterminal symbol Xi except S row which is
copied as it is

b. substitute each column j tag by its note fj and a
nonterminal symbol Xj

c. copy all values of cells of matrix PM into
corresponding cells of matrix AM

2. For each row i and each column j such that AMi,j ≠ 0
a. i row corresponds to grammar rule Xi
b. j column corresponds to a terminal symbol fj and a

nonterminal symbol Xj with probability pi,j
Then rules of grammar G are of the form Xi → fj Xj (pi,j).

This is a grammatical representation of our model. For each
music composition mi a MG, the workspace formed by FDM
and grammar G, can be recursively generated.

L(mi,…L(m2, L(m1, L(m0, MG0))))=MGi+1

A. Example
From frequency distribution matrix FDM of Fig. 2 it is

generated probability matrix PM of Fig. 4.

 b d# e f# g a b2 d2 e2 g2

S 1

b 1

d# 1

e 1/9 2/9 2/9 3/9 1/9

f# 1

g 6/11 2/11 2/11 1/11

a 3/5 2/5

b2 1/9 3/9 2/9 3/9

d2 6/12 6/12

e2 10/12 2/12

g2 1

Fig. 4. Probability matrix PM.

 bX1 d#X2 e X3 f# X4 gX5 a X6 b2 X7 d2 X8 e2 X9 g2 X10

S 1

X1 1

X2 1

X3 1/9 2/9 2/9 3/9 1/9

X4 1

X5 6/11 2/11 2/11 1/11

X6 3/5 2/5

X7 1/9 3/9 2/9 3/9

X8 6/12 6/12

X9 10/12 2/12

X10 1

Fig. 5. Auxiliary matrix AM.

From matrix PM of Fig. 4 the auxiliary matrix AM of Fig. 5
is generated. From given AM matrix of Fig. 5 We can
generate grammar G{Vn,Vt, S, P, Pr}. Where Vn={S, X1, X2
X3, X4, X5, X6, X7, X8, X9, X10} is the set of non-terminals
symbols. Vt={b, d#, e, f#, g, a, b2, d2, e2, g2} is the set of all

terminal symbols or alphabet. S is the axiom or initial symbol.
Pr is the set of rules probabilities represented by values of
matrix AM. Rules P are listed in Fig. 6.

S → b X1(1)
X1 → e X3(1)
X2 → e X3(1)
X3 → b X1(1/9) | d# X2(2/9)| f# X4(2/9) | g X5(3/9) | b2 X7(1/9)
X4 → g X5(1)
X5 → e X3(6/11) | f# X4(2/11) | a X6(2/11) | e2 X9(1/11)
X6 → g X5(3/5) | b2 X7(2/5)
X7 → g X5(1/9) | a X6(3/9) | d2 X8(2/9) | e2 X9(3/9)
X8 → b2 X7(6/12) | g2 X10(6/12)
X9 → d2 X8(10/12) | g2 X10(2/12)
X10 → e2 X9(1)

Fig. 6. Probabilistic generative grammar.

V. EXPRESSIVITY
Expressivity can be regarded as a mechanism that displays

transmission and interpretation vividness of feelings and
emotions. For example fear in front of a threat. Physical
factors interfere like cardiac rhythm, changes in respiratory
system, in endocrine system, in muscular system, in
circulatory system, secretion of neurotransmitters, etc.
Another important factor is empathy which is the capacity of
feelings and emotions recognition in others [6]. It is out of our
research to explain how these physical changes are made or
how empathy takes place among living beings. We just
simulate expressivity in music generation.

A. Expressivity within our Model
Music can be broken down into different functions that

characterize it like frequency, time and intensity. So each note
of a melody is a symbol with several features or semantic
descriptors that give the meaning of a long or short sound,
low, high, intense, soft, of a guitar or of a piano.

With our model is possible to represent each of these
variables using matrices or grammars that reflect their
probabilistic behavior. In this paper we have presented how to
model frequency and time. We can build an intensity matrix
the same way. With more variables more expressivity the
generated music will reflect.

Using our model we can characterize different kinds of
music based on its expressivity, for example in happy music or
sad music. Besides we have the possibility of mixing features
of distinct kinds of music, for example frequency functions of
happy music with time functions of sad music. Also we can
combine different genres like classic times with rock
frequencies. So in addition of generating music we can invent
new genres and music styles.

VI. RESULTS
In order to evaluate whether our algorithm is generating

music or not, we decided to conduct a Turing-like test.
Participants of this test had to tell us if they like music
generated by our model, without them knowing that it was
automatically music generated. This way we sought the
answer to two questions: whether or not we are doing music
and whether or not our music is pleasant.

Automatic Music Composition with Simple Probabilistic Generative Grammars

63 Polibits (44) 2011

We compiled 10 melodies, 5 of them generated by our
model and another 5 by human composers and we asked
human subjects to rank melodies according to whether they
liked them or not, with numbers between 1 and 10 being
number 1 the most they liked. None of subjects knew about
the order of music compositions. These 10 melodies were
presented as in Table I.

TABLE I
ORDER OF MELODIES AS THEY WERE PRESENTED TO SUBJECTS

ID Melody Author
A Zanya (generated)
B Fell Nathan Fake
C Alucin (generated)
D Idiot James Holden
E Ciclos (generated)
F Dali Astrix
G Ritual Cibernetico (generated)
H Feelin' Electro Rob Mooney
I Infinito (generated)
J Lost Town Kraftwerk

We presented this test to more than 30 participants in
different places and events. We sought that the characteristics
of these participants were as varied as possible (age, gender
and education), however most of them come from a related IT
background. Test results were encouraging, since
automatically generated melodies were ranked at 3rd and 4th
place above human compositions. Table II shows the ranking
of melodies as a result of the Turing-like test we developed.

TABLE II
ORDER OF MELODIES OBTAINED AFTER THE TURING-LIKE TEST
ID Ranking Melody Author
B 1 Fell Nathan Fake
D 2 Idiot James Holden
C 3 Alucín (generated)
A 4 Zanya (generated)
F 5 Dali Astrix
H 6 Feelin' Electro Rob Mooney
J 7 Lost Town Kraftwerk
E 8 Ciclos (generated)
G 9 Ritual Cibernético (generated)
I 10 Infinito (generated)

VII. CONCLUSIONS AND FUTURE WORK
We proposed an evolutionary model based on evolutionary

matrices for musical composition. Our model is learning
constantly, increasing its knowledge for generating music
while more data is presented. It does not need any predefined
rules. It generates them from phrases of the seen language
(musical compositions) in an unsupervised way.

As we shown, our matrices can be expressed as
probabilistic grammar rules, so that we can say that our
systems extracts grammar rules dynamically from musical
compositions. These rules generate a musical language based
on the compositions presented to the system. These rules can
be used to generate different musical phrases, meaning new
musical compositions. Because the probabilistic grammars
learned can generalize a language beyond the seen examples
of it, our model has what can be called innovation, which is

what we are looking for music creation, while keeping the
patterns learned from human music.

As a short-term future work we plan to characterize
different kinds of music, from sad to happy, or from classic to
electronic in order to find functions for generating this kind of
music. We are also developing the use of other matrices to
consider more variables involved in a musical work, such as
velocity, fine-graded tempo changes, etc., thus adding more
expressivity to the music created by our model.

ACKNOWLEDGEMENTS
The work was done under partial support of Mexican

Government (CONACYT 50206-H, SIP-IPN 20113295,
COFAA-IPN, PIFI-IPN, SNI).

REFERENCES
[1] J. A. Biles, “GenJam: Evolution of a Jazz Improviser,” Creative

Evolutionary Systems, Section: Evolutionary Music, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc., 2001, pp. 165–187.

[2] D. Birchfield, “Generative Model for the Creation of Musical Emotion,
Meaning and Form,” in Proceedings of the 2003 International
Multimedia Conference ACM SIGMM, Berkeley, California: Workshop
on Experiential Telepresence, Session: Playing experience, 2003, pp.
99–104.

[3] S. Blackburm, and D. DeRoure, “A tool for content based navigation of
music,” in Source International Multimedia Conference. Proceedings of
the sixth ACM international conference on Multimedia. Bristol, United
Kingdom, 1998, pp. 361–368.

[4] T. Blackwell, “Swarming and Music,” Evolutionary Computer Music.
Springer London, 2007, pp. 194–217.

[5] M. Bulmer, “Music From Fractal Noise,” in Proceedings of the
Mathematics 2000 Festival, University of Queensland, Melbourne,
2000.

[6] T. Cochrane, “A Simulation Theory of Musical Expressivity,” The
Australasian Journal of Philosophy, Volume 88, Issue 2, 191–207,
2010.

[7] D. Eck, and J. Schmidhuber, A First Look at Music Composition using
LSTM Recurrent Neural Networks, Source Technical Report: IDSIA-07-
02. Publisher Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale,
2002.

[8] F. Galindo Soria, “Sistemas Evolutivos: Nuevo Paradigma de la
Informática,” en Memorias XVII Conferencia Latinoamericana de
Informática, Caracas Venezuela, 1991.

[9] F. Galindo Soria, “Enfoque Lingüístico,” en Memorias del Simposio
Internacional de Computación de 1995, Cd. de México: Instituto
Politécnico Nacional CENAC, 1995.

[10] F. Galindo Soria, Teoría y Práctica de los Sistemas Evolutivos, Cd. de
México, 1997.

[11] F. Galindo Soria, “Matrices Evolutivas,” en Memorias de la Cuarta
Conferencia de Ingeniería Eléctrica CIE/98, Cd. de México: Instituto
Politécnico Nacional, CINVESTAV, 1998, pp. 17–22.

[12] A. García Salas, Aplicación de los Sistemas Evolutivos a la Composición
Musical, México D.F: Tesis de maestría, Instituto Politécnico Nacional
UPIICSA, 1998.

[13] A. García Salas, A. Gelbukh, and H. Calvo, “Music Composition Based
on Linguistic Approach,” in Proceedings of the 9th Mexican
International Conference on Artificial Intelligence, Pachuca, México,
2010, pp. 117–128.

[14] M. Gardner, “Mathematical Games: White and Brown Music, Fractal
Curves and One-Over-f Fluctuations,” Scientific American, 4, 16–32,
1978.

[15] H. Hild, J. Feulner, and W. Menzel, “Harmonet: A Neural Net for
Harmonizing Chorales in the Style of J. S. Bach,” Neural Information
Processing 4. Germany: Morgan Kaufmann Publishers Inc., 1992, pp.
267–274.

[16] R. Hinojosa, Realtime Algorithmic Music Systems From Fractals and
Chaotic Functions: Toward an Active Musical Instrument, Barcelona:
PhD Thesis, Universitat Pompeu Fabra, 2003.

Horacio Alberto García Salas, Alexander Gelbukh, Hiram Calvo, and Fernando Galindo Soria

64Polibits (44) 2011

[17] H. Järveläinen, “Algorithmic Musical Composition,” in Seminar on

content creation Art@Science, Helsinki: University of Technology,
Laboratory of Acoustics and Audio Signal Processing, 2000.

[18] K. Kosina, “Music Genre Recognition.” Diplomarbeit. Eingereicht am
Fachhochschul-Studiengang. Mediente Chnik Und Design in
Hagenberg, 2002.

[19] G. Maarten, J.L. Arcos, and R. López de Mántaras, “A Case Based
Approach to Expressivity-Aware Tempo Transformation,” Machine
Learning, 65(2-3): 411–437, 2006.

[20] K. McAlpine, E. Miranda, and S. Hoggar, “Making Music with
Algorithms: A Case-Study System,” Computer Music Journal, 23(2):
19–30, 1999.

[21] M. Minsky, “Music, Mind, and Meaning.” Computer Music Journal,
5(3), 1981.

[22] A P. Ortega, A.R. Sánchez, and M. M. Alfonseca, “Automatic
composition of music by means of Grammatical Evolution,” ACM
SIGAPL APL, 32(4): 148–155, 2002.

[23] G. Papadopoulos, and G. Wiggins, “AI Methods for Algorithmic
Composition: A Survey, a Critical View and Future Prospects,” in
Symposium on Musical Creativity 1999, University of Edinburgh,
School of Artificial Intelligence Division of Informatics, 1999, pp. 110–
117.

[24] Y. Ledeneva and G. Sidorov, “Recent Advances in Computational
Linguistics,” Informatica. International Journal of Computing and
Informatics, 34, 3–18, 2010.

[25] P.M. Todd and G.M. Werner, “Frankensteinian Methods for
Evolutionary Music Composition,” Musical networks: Parallel
distributed perception and performance, MA, USA: Cambridge, MIT,
Press Bradford Books, 1999.

Automatic Music Composition with Simple Probabilistic Generative Grammars

65 Polibits (44) 2011

